Chapter 02 Test Bank

Many traits of organisms, such as body form and color, are controlled by specific proteins, in turn controlled by the DNA genetic sequence of nucleotides. The genetic control of color, as in aphids, does not usually shift during the life of an organism. Researchers found that some specific aphid populations shift from an original red coloration to a green coloration. Genetics could be a factor, if some programmed shift could be identified. Environmental conditions of the living and nonliving habitat could be a factor. Either way, the chemistry and observed changes of pigment molecules in the aphids can be studied with the scientific method.

What is the link between colored pigment molecules and other organic molecules?

A.	The DNA molecule
	4.

genetic sequence regulates protein

molecule function, which can specifically modify pigment structure that

affects color.

B. In the case of the aphids,

the pigment molecules of bacteria are genetically passed on to the DNA of

infected aphids.

C. This one group of aphids

can easily alter the pigment molecule

structure by modifying its

DNA nucleotide

sequence and building

new proteins.

D. Pigment molecules are

complex, made up of all four of the other organic

molecule groups.

The initial experiment of Koga and Fugatsu, in testing for any bacterial cause of aphid color change, involved all of these except

A. the specific amounts of red and green pigment molecules were initially measured as dependent

variables.

B.

a group of aphids infected with *Rickettsiella* bacteria was grown, then killed in order to produce an extract to test on red

aphids.

C. a group of green aphids

was grown, then killed in order to produce an extract to test on red

aphids.

D. a group of red aphids

was grown as a control

group.

E. a group of red aphids

was treated with the independent variable of *Rickettsiella* bacteria infection from green

aphids.

The observations and research on aphid color changes can most directly be summarized in that

A.	Koga and Fugatsu
	• • • • • •

proved that the color change from red to green

in aphids was

ecologically favorable to

survival.

B. species of organisms

can be chemically diverse and affect each other, even among similar groups of aphids

and bacteria.

C. the method of paper fiber

separation of pigment molecules showed that *Ricketsiella* bacteria were the source of the green coloration of

aphids.

D. it turned out that the

green appearance of aphids was because of the large amount of green *Ricketsiella* bacteria coating their

bodies.

Researchers noted that only few aphids changed color to green from their original red. This is an unusual observation among any animals. What research question came out of the observations?

A. Will green aphids change

their color to red, or remain green as they

age?

B. Is the color shift of

certain aphids due to genetics or some other

factor?

C. The color shift of certain

aphids is due to genetics

within the species.

D. Do other aphids change

colors as they age?

5.

A conscientious person habitually reads nutrition labels on food packages for weight watching and general health. The main nutritional molecules are made up of

A. buffers.

B. trace elements.

C. isotopes.

D. bulk elements.

In the 1700s, a French scientist, Antoine Lavoisier gained new experimental information about how chemistry works. He isolated chemicals that were reacting, including a metal and an acid. His observation of the results seemed to show that much of the metal had been lost in the chemical reaction. Yet, upon weighing the system, the total amounts of materials had not changed during the reaction. His resulting law of Conservation of Mass also applies to biology, because the materials we are made of are ______ that change forms, but aren't truly lost as we conduct life chemical reactions.

A. isotopes
B. energy
C. solutions
D. matter

7.

The unique properties of water, including its strength as a solvent, its three environmental stages of solid, liquid, and gas, and its temperature regulation, are a result of

A. symmetric balance of

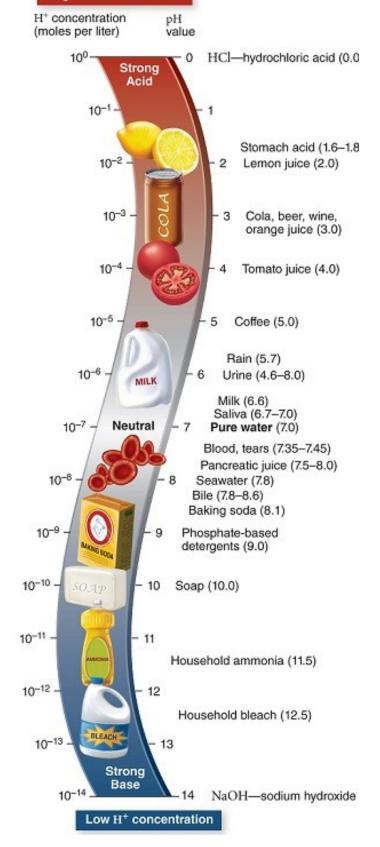
electronegativity as shared electrons orbit equally around the

hydrogens and oxygens.

B. the cohesion and

adhesion of water molecules that bond more strongly to each other than other

substances.


C. unbalanced

electronegativity of the hydrogens and oxygens as they share electrons.

D. the imbalance in

numbers of electrons around hydrogen and oxygen valence shells after they ionically bond. Refer to this diagram with common examples of substances and their pH.

High H+ concentration

The correct functions of your lungs contribute to the normal pH level of between 7.35 and 7.45. If your lungs do not exchange and remove carbon dioxide from your blood, the blood pH will change. A pH 6.4 reading of your blood indicates

A.

a health problem due to the pH value being 10X higher H⁺ concentrations than normal in your body.

B.

a health problem due to the pH value being 10X higher OH⁻ concentrations than normal in your body.

C.

a health problem due to the pH value being 2X higher OH⁻ concentrations than normal in your body.

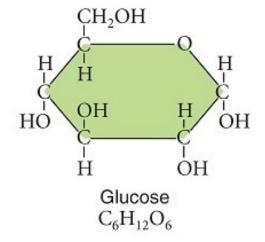
D.

no health risk, as part of normal pH changes in your body that in this case bring it closer to neutral pH.

E.

a health problem due to the pH value being 2X higher H⁺ concentrations than normal in your body.

Our normal blood pH should be in a fairly narrow range. Imagine you sit down to eat a large meal with cola, tomato-based sauce, and a salad with many citrus fruit slices. Identify the one statement that does not apply as one of the likely outcomes of your meal.


Α.	The cola, tomato and citrus fruits will add hydrogen (H ⁺) to your blood and body fluids.
В.	Your blood and body fluids will likely become more basic, with higher pH than the normal
C.	range. Your body will produce buffer molecules to help neutralize acids you ate,

so your blood pH doesn't change much. D. Your blood and body

fluids will likely become more acidic, with lower pH than the normal

range.

Examine this image of the glucose molecule.

This glucose molecule is a(an)

A.	triglyceride.
B.	disaccharide.
C.	polymer.
D.	carbohydrate.

In our diets, this molecule is often covalently bonded with others in the polymer form of

A. a complex carbohydrate.B. a fatty acid chain.C. a triglyceride.D. a simple sugar.

Compared with a molecule of glucose, this starch molecule does NOT have which characteristic below?

A.	This molecule is used by
	cells for long-term
	storage and release of
	energy for cell functions.
B.	This molecule is used by
	cells for quick release of
	energy for cell functions.
C.	This molecule can
	provide structure for cells
	that contain it.
D.	This molecule is a

complex carbohydrate

polymer.

11.

Examine these two sugars, as shown prior to the chemical reaction that would bond them.

13.

14.

15.

These glucose and fructose molecules will bond to form a monosaccharide with the removal of water.

True False

The diagram shows glucose and fructose before the chemical reaction called _____ builds a larger polymer from the two monomers.

A. evaporation

B. dehydration synthesis

C. hydrolysis
D. reproduction

The ring structure of glucose indicates that it is a(an)

A. disaccharide.

B. fatty acid.

C. monosaccharide.

D. nucleotide.

E. amino acid.

4	\sim
1	h

The primary elements making up living organisms are

A. carbon, hydrogen,

oxygen, sulfur, nitrogen,

and phosphorus.

B. carbon, hydrogen, iron,

sulfur, sodium, and

calcium.

C. carbon, oxygen, iron,

chlorine, sulfur, and

phosphorus.

D. carbon, hydrogen,

oxygen, calcium, iron,

and iodine.

E. carbon, oxygen, sulfur,

calcium, iron, and

phosphorus.

The atomic number of an element is the number of

A. protons in the orbitals.B. neutrons in the orbitals.C. neutrons in the nucleus.

D. protons in the nucleus.

E. electrons in the nucleus.

Given this information from one element in the periodic table of elements, the number of neutrons and protons is

7
Nitrogen
N
14.0067

E.

7, which is the atomic		
number indicated. 7, which is the atomic mass indicated.		
14, which is the atomic number indicated.		
not discernable, because the number of electrons		
is also needed. 14, which is the atomic mass indicated.		
The mass number is defined as the total number of of an atom.		
neutrons and electrons		
protons		
protons protons, neutrons, and electrons		

protons and electrons

	A.	a net negative or positive charge, with number of electrons different from number of protons.
	B. C.	a net positive charge. the same number of electrons as it does protons.
	D. E.	a net negative charge. a different number of neutrons from the number of protons.
21.	The first energy shell of maximum ofe	
	A. B. C. D. E.	one two eight four sixteen
22.	An element is found to helectrons in its valence s	
	A. B. C. D.	highly reactive. not chemically stable. chemically stable. highly likely to combine with other atoms. not inert.
23.	In a covalent bond, atom	าร
	A. B. C. D.	share a proton. share electrons. of opposite charges attract each other. both become highly electronegative.

A. two atoms both become strongly electronegative

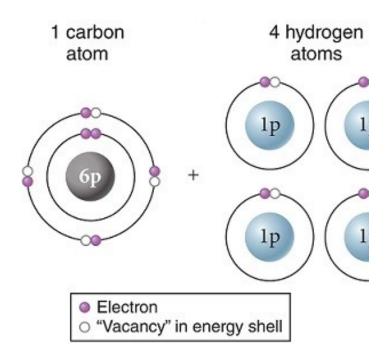
and attract each other.

B. atoms attract each other

by sharing electrons to fill their valence shells.

C. atoms, having gained or lost electrons, attract one

another with opposite


charges.

D. two atoms are attracted

by partial positive and

negative charges.

Carbon and hydrogen make up many biologically important molecules. Carbon has an electronegativity of 2.55 while hydrogen has an electronegativity of 2.0. On the scale of electronegativity from zero (0) to four (4), the carbon and hydrogens shown here have just formed

A.	a nonpolar covalent
	bond.
B.	a hydrogen bond.
C.	a polar covalent bond.
D.	an ionic bond.

Which statement summarizes the distinction between nonpolar and polar covalent bonds?

A. The electrons are more evenly and symmetrically

evenly and symmetrically distributed in orbit among

atoms in a nonpolar covalent bond.

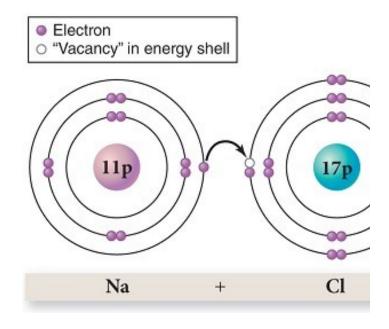
B. Polar covalent bonds are

formed when the atoms gain or lose electrons to bond, and become

oppositely charged ions.

C. The difference in

electronegativity of the atoms in a nonpolar covalent bond is very


large.

D. The electrons are more

evenly and symmetrically distributed in orbit among atoms in a polar covalent

bond.

In the example of ionic bond formation between sodium and chlorine, as shown, which of the following is not a true statement?

A.	Sodium donates an
	electron.
B.	The bond that is formed
	is stronger than a
	hydrogen bond.
C.	Na is the chemical
	symbol for sodium.
D.	Sodium becomes
	positively charged.
E.	Chlorine donates an
	electron.

28.

The chapter concept map links covalent and ionic bonds as chemical bonds that attract atoms or molecules. What is the chemical bond characteristic that contributes to the numerous important properties of water molecules for living organisms?

A.

B.

C.

D.

The property of water demonstrated by this water strider, as it remains on top of the water, is that water is a universal solvent.

© Herman

True False

You can painlessly wade into a pool, but doing a belly flop off of the high diving board hurts because of

A.	water's neutral pH.
B.	adhesion in water.
C.	cohesion in water.
D.	water's high density.
E.	water's high boiling point.

Trees are able to transport water from the roots to the top branches because

A.	cohesion bonds water
	molecules to each other

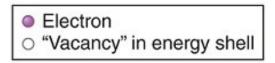
strongly.

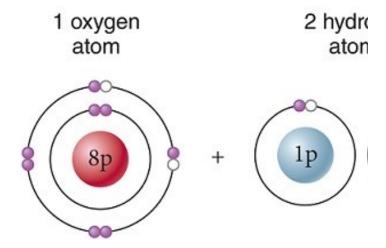
adhesion bonds water B.

molecules to the insides

of the plant cells.

C. liquid water has a higher


density than the air in the plant cells of the roots, trunk and branches.


D. water acts as a solvent

of the tree cells as it moves upwards to the

branches.

Within a single molecule of water, as shown, ____ bonds are formed between oxygen and hydrogen.

A.	hydrophobic
B.	hydrogen
C.	nuclear
D.	ionic
E.	covalent

If a molecule is added to a glass of water, and is easily dissolved by the water, the added molecule is described as hydrophilic.

True False

Evaporation of water is

A.

В.

C.

D.

E.

33.

You collect and measure samples of ice and surrounding ice water from a stream in the Winter. You find that you collected the same number of water molecules in each form. Water in the ice (solid) form floats in water of the liquid form because

A. in the ice form, the same

number of water

molecules are found in a crystal form, yet total larger volume than the

liquid water.

B. in the ice form, the same

number of water

molecules are found in a solid, more compact volume than the liquid

water.

C. once the water

molecules froze into ice,

they became

hydrophobic, and started repelling from the liquid.

the ice is actively D.

melting, since it was surrounded by the liquid water in the stream where it was collected.

36.

37.

In a chemical equation, which components of a chemical reaction is not noted in symbols and abbreviations?

A. Some substance atoms on the left side of the chemical reaction arrow must be destroyed in order to form the substances on the right

side.

B. The reactants, or starting

substances, are on the left of the chemical

reaction arrow.

C. The products, or ending

substances, are on the right of the chemical

reaction arrow.

Reactants and products D.

are on both sides of the

yields arrow.

E. The number of atoms of

> each element must be the same, balanced on

each side of the

chemical reaction arrow.

An acid

Α.

B.

C.

D. E.

38. A base

> A. is a chemical that

absorbs hydrogen ions

from a solution.

В. has a value of 7 on the

pH scale.

C. has a value below 7 on

the pH scale.

is a chemical that adds D.

hydrogen ions to a

solution.

Algal phytoplankton are single-celled water organisms that can do photosynthesis like plants. In a lake, summer growth of phytoplankton can change the water pH from pH 7.2 to 6.2. This change indicates all of these except

A.	the water at pH 6.2 is a stronger acid solution than before the phytoplankton growth.
B.	the water at pH 6.2 has ten times the hydrogen (H ⁺) concentration as before the phytoplankton growth.
C.	the water at pH 6.2 has twice the hydrogen (H ⁺) concentration as before the phytoplankton growth.
D.	the lake water solution changed from slightly basic to slightly acidic in pH.
Organic molecules are d compounds that chiefly d distinct ratios and structu	contain in fairly
A. B. C. D.	carbon and oxygen carbon and nitrogen carbon carbon, hydrogen, and nitrogen

carbon and hydrogen

E.

41.	The four major groups of	organic compounds are
	A.	carbohydrates, lipids, steroids, and monosaccharides.
	В.	lipids, fats, waxes, and steroids.
	C.	carbohydrates, proteins, amino acids, and nucleic acids.
	D.	carbohydrates, lipids, proteins, and nucleic acids.
	E.	fats, waxes, carbohydrates, and amino acids.
42.	In living cells, a process polymers down into mon covalent bonds is	
	A. B. C. D.	
43.	Examples of monosacch	arides are
	A. B. C. D. E.	

Δ	Δ	L

Blood pH is closely maintained at a pH of 7.4. A patient whose blood pH drops below 7.35 is suffering from metabolic acidosis and can go into a coma. What happens to the concentration of H⁺ ions in a patient with a blood pH of 6.4?

A. H⁺ concentration is increased 2-fold.

B. H⁺ concentration is decreased 2-fold.

C. H⁺ concentration is increased 10-fold.

D. H⁺ concentration is decreased 4-fold.

E. H⁺ concentration is

Which is not a lipid?

A. a triglycerideB. a phospholipid

C. a waxD. a sterolE. a starch

The primary building block (monomer) of proteins is

A. a nucleotide.
B. a fatty acid.

C. a glucose molecule.
D. a group of four

interconnected rings.

decreased 10-fold.

E. an amino acid.

45.

An amino acid contains a structural "backbone" chain of

A.	nitrogens and carbons.	
B.	phosphorus atoms.	
C	carbone	

C. carbons. D. nitrogens.

E. carbon and phosphorus

atoms.

The bond that builds amino acid monomers into protein polymers is

A. a denatured hydrogen

bond.

B. an ionic bond also known

as a peptide bond.

C. a covalent bond also

known as a peptide

bond.

D. a primary structural

bond.

Many diseases, cancers and even normal human variations can be caused by mutations and variations in the DNA nucleotide sequence. The most likely immediate result of DNA having a different nucleotide sequence is that

A. the peptide bonds in the

protein would by hydrolyzed and the protein would fall apart.

B. the protein resulting from the DNA mutation would

be denatured and nonfunctional.

C. the primary structure of

R group sequence in a protein would be altered.

D. no direct result of change

in the protein molecule would occur if DNA is

mutated.

48.

50.	. ,	ock (monomer) of nucleic
	acids is	
	A. B. C. D. E.	a glucose molecule. a fatty acid. a nucleotide. an amino acid. a group of four interconnected rings.
51.	The three major compo	onents in a nucleotide are
	A.	a nitrogen base, a five- carbon sugar, and a
	B.	phosphate group. a carboxyl group, an R group, and an amino group.
	C.	glucose, a nitrogen base, and a phosphate group.
	D.	a nitrogen base, a six- carbon sugar, and a
	E.	phosphate group. glucose, a fatty acid, and glycerol.
52.	The comparison listed	below that is not true in

The comparison listed below that is not true in distinguishing DNA from RNA is that

A.	DNA has a main function
	of storing our genetic
	code, while RNA is used
	in units to build specific
	proteins in a cell.
B.	DNA is a long two-sided
	z t.e a long two olded

molecule while RNA is a shorter single-sided

molecule.

C. DNA and RNA share all nucleotides, except that RNA has Uracil instead

of Thymine.

DNA is a molecule that D.

> stores and regulates our genetics, while RNA is used for cellular energy storage and release for biological functions.

53.	The four nitro	gen bases found in RNA are	
	A. B. C. D. E.		
54.		D) _n dissolve well in water because bonds with water.	
	A. B. C. D. E.	hydrophobic hydrogen non-polar ionic covalent	
55.		bonds are formed between monomers to form a polymer.	
	A. B. C. D. E.	Hydrogen Covalent Nuclear Hydrophobic Ionic	
56.	acids, and cal cells and anin kinks in their t prevents then Animals that a temperature f to keep their r	s have long straight tails of fatty n pack or clump tightly together in nal bodies. Unsaturated fats have tails due to double bonds, which n from packing together as tightly. are ectothermic (their body fluctuates with the environment) need membranes fluid at cooler and thus use in their	
	A. B. C. D. E.		

57. Saturated fats have long straight tails of fatty acids, while unsaturated fats from vegetables have kinks in their tails due to double bonds. These kinks prevent the fats from packing together as tightly. Hydrogenated vegetable oils, or trans fats, have hydrogens added back to the double bonds and thus behave like Α. carbohydrates. В. waxes. C. unsaturated fats. D. saturated fats. E. proteins. 58. The group of organic molecule polymers with the most complex and diverse three-dimensional structure are A. unsaturated fats. В. proteins. C. carbohydrates. D. waxes. E. saturated fats. 59. Cohesion is a property of water in which water molecules tend to stick together. True False 60. A peptide bond is a covalent bond formed between group of another amino acid. True False

61.

62.

the amino group of one amino acid and the R

A substance in which other substances dissolve is called a solute.

True False

Our general economic source of unsaturated fatty acids is from plants, and composed of at least one pair of double-bonded carbons.

True False

63.		no acids in all organisms, re those we must consume
	True False	
64.	Among numerous functi which of these pairs doe protein with its function?	<u> </u>
	A.	DNA polymerase helps synthesize new DNA before our cells divide.
	В.	Antibodies regulate sweat to keep infections out of our skin pores.
	C.	Collagen is a structural protein to support hair, skin, and nails.
	D.	Insulin regulates blood glucose levels.
	E.	Hemoglobin protein transports oxygen to our cells.
65.	If a protein is denatured changed enough to mak nonfunctional.	
	True False	
66.	Proteins store the genet and transmit it to the ne	tic information of the cell xt generation.
	True False	
67.	If a carbohydrate polymomonomer units, such as glucose and fructose, it	sucrose made from

А. В.

C. D. an oligosaccharide.

a monosaccharide.

a disaccharide. a polysaccharide. Having the typical ratio of carbon, hydrogen, and oxygen of carbohydrates, the chemical formula for glucose is

A.	$C_{12}H_{22}O_{11}$
B.	$C_6H_6O_{12}$
C.	$C_6H_{12}O_{6.}$
D.	$C_{12}H_6O_{12}$
E.	$C_6H_6O_6$

Chapter 02 Test Bank Key

Many traits of organisms, such as body form and color, are controlled by specific proteins, in turn controlled by the DNA genetic sequence of nucleotides. The genetic control of color, as in aphids, does not usually shift during the life of an organism. Researchers found that some specific aphid populations shift from an original red coloration to a green coloration. Genetics could be a factor, if some programmed shift could be identified. Environmental conditions of the living and nonliving habitat could be a factor. Either way, the chemistry and observed changes of pigment molecules in the aphids can be studied with the scientific method.

What is the link between colored pigment molecules and other organic molecules?

<u>A.</u>

The DNA molecule genetic sequence regulates protein molecule function, which can specifically modify pigment structure that affects color.

В.

C.

D.

Blooms Level: 4. Analyze

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules. Learning Outcome: 02.06.01 Explain how researchers determined that bacteria induce green pigment production in aphids.

Section: 02.05 Section: 02.06 Topic: Nucleic Acids Type: Integrative Type: Investigating Life

2.

The initial experiment of Koga and Fugatsu, in testing for any bacterial cause of aphid color change, involved all of these except

<u>A.</u>

the specific amounts of red and green pigment molecules were initially measured as dependent variables.

В.

C.

D.

Ε.

Blooms Level: 3. Apply Learning Outcome: 02.06.01 Explain how researchers determined that bacteria induce green pigment production in aphids.

Section: 02.06

Topic: Chemical Bonds Topic: Nucleic Acids Type: Investigating Life

3.

The observations and research on aphid color changes can most directly be summarized in that

Α.

В.

species of organisms can be chemically diverse and affect each other, even among similar groups of aphids and bacteria.

C.

D.

Blooms Level: 4. Analyze

Learning Outcome: 02.06.01 Explain how researchers determined that bacteria induce green pigment production in aphids. Section: 02.06

Topic: Chemical Bonds

Topic: Nucleic Acids Type: Investigating Life 4.

Researchers noted that only few aphids changed color to green from their original red. This is an unusual observation among any animals. What research question came out of the observations?

Α.

<u>B.</u>

Is the color shift of certain aphids due to genetics or some other factor?

C.

D.

Blooms Level: 2. Understand

Learning Outcome: 02.06.01 Explain how researchers determined that bacteria induce green pigment production in aphids.

Section: 02.06 Topic: Nucleic Acids Type: Investigating Life

5.

A conscientious person habitually reads nutrition labels on food packages for weight watching and general health. The main nutritional molecules are made up of

Α.

В.

C.

D.

bulk elements.

Blooms Level: 2. Understand

Learning Outcome: 02.01.01 Identify the most abundant essential elements in living organisms. Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.01

Section: 02.05 Topic: Carbohydrate Topic: Lipids Topic: Nucleic Acids

Topic: Proteins
Type: Integrative

In the 1700s, a French scientist, Antoine Lavoisier gained new experimental information about how chemistry works. He isolated chemicals that were reacting, including a metal and an acid. His observation of the results seemed to show that much of the metal had been lost in the chemical reaction. Yet, upon weighing the system, the total amounts of materials had not changed during the reaction. His resulting law of Conservation of Mass also applies to biology, because the materials we are made of are ______ that change forms, but aren't truly lost as we conduct life chemical reactions.

Α.

В.

C. **D.**

matter

Blooms Level: 2. Understand Learning Outcome: 02.00.01 Explain the relationship between chemistry and biology. Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Section: 02.01

Topic: Atomic Structure Type: Integrative

The unique properties of water, including its strength as a solvent, its three environmental stages of solid, liquid, and gas, and its temperature regulation, are a result of

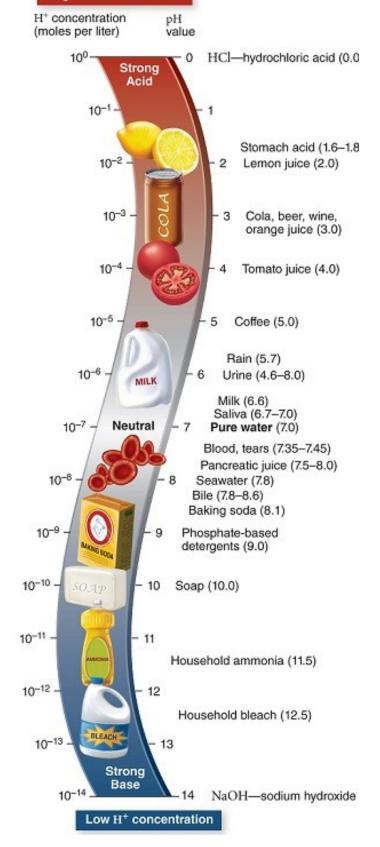
Α.

В.

<u>C.</u>

unbalanced electronegativity of the hydrogens and oxygens as they share electrons.

D.


Blooms Level: 2. Understand Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Learning Outcome: 02.02.04 Explain the relationship between electronegativity and chemical bond formation. Learning Outcome: 02.03.01 Explain how the structure of water affects its chemical properties.

Section: 02.02 Section: 02.03

Topic: Properties of Water Type: Integrative

Refer to this diagram with common examples of substances and their pH.

High H+ concentration

The correct functions of your lungs contribute to the normal pH level of between 7.35 and 7.45. If your lungs do not exchange and remove carbon dioxide from your blood, the blood pH will change. A pH 6.4 reading of your blood indicates

<u>A.</u>

a health problem due to the pH value being 10X higher H⁺ concentrations than normal in your body.

В.

C.

D.

Ε.

Blooms Level: 3. Apply

Figure: 02.14

Learning Outcome: 02.04.01 Explain how acids and bases affect pH.

Section: 02.04

Topic: Acids and Bases

Topic: Acids and Bases Topic: Properties of Water

Our normal blood pH should be in a fairly narrow range. Imagine you sit down to eat a large meal with cola, tomato-based sauce, and a salad with many citrus fruit slices. Identify the one statement that does not apply as one of the likely outcomes of your meal.

Α.

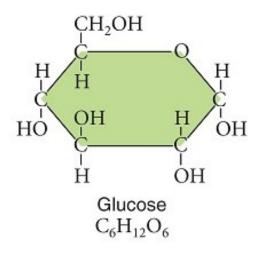
<u>B.</u>

Your blood and body fluids will likely become more basic, with higher pH than the normal range.

C.

D.

Blooms Level: 3. Apply Figure: 02.14


Learning Outcome: 02.00.01 Explain the relationship between chemistry and biology.

Learning Outcome: 02.04.01 Explain how acids and bases affect pH.

Section: 02.04

Topic: Acids and Bases Topic: Properties of Water

Examine this image of the glucose molecule.

10.

This glucose molecule is a(an)

Α.

В.

C.

<u>D.</u>

carbohydrate.

Blooms Level: 1. Remember

Figure: 02.17

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05

Topic: Carbohydrate

11.

In our diets, this molecule is often covalently bonded with others in the polymer form of

<u>**Α.**</u> Β.

Ο.

C.

D.

Blooms Level: 2. Understand

a complex carbohydrate.

Figure: 02.17

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05

Topic: Carbohydrate

Compared with a molecule of glucose, this starch molecule does NOT have which characteristic below?

Α.

<u>B.</u>

This molecule is used by cells for quick release of energy for cell functions.

C.

D.

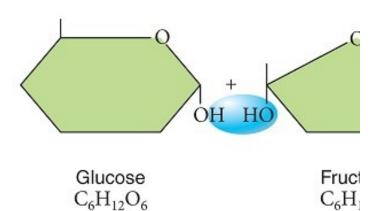

Blooms Level: 2. Understand

Figure: 02.17

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules. Section: 02.05

Topic: Carbohydrate

Examine these two sugars, as shown prior to the chemical reaction that would bond them.

1	3	
ı	J	•

These glucose and fructose molecules will bond to form a monosaccharide with the removal of water.

FALSE

Formation of new covalent bonds between monomers results in larger, multiple unit molecules. Read section 2.5 for more information.

Blooms Level: 1. Remember

Figure: 02.17

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05 Topic: Carbohydrate

14.

The diagram shows glucose and fructose before the chemical reaction called _____ builds a larger polymer from the two monomers.

Α.

<u>B.</u>

dehydration synthesis

 \Box

Blooms Level: 2. Understand

Figure: 02.17

Learning Outcome: 02.05.01 Differentiate between dehydration synthesis and hydrolysis.

Section: 02.05 Topic: Carbohydrate Topic: Chemical Bonds

15.

The ring structure of glucose indicates that it is a(an)

Α.

В.

<u>C.</u>

monosaccharide.

_

Ξ.

Blooms Level: 1. Remember

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05 Topic: Carbohydrate

Topic: Chemical Bonds

16.	The primary el are	The primary elements making up living organisms are	
	<u>A.</u>	carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus.	
	B.		
	C.		
	D.		
	E.		
	Learning Outcome: 02.01.01 Identify the	Blooms Level: 1. Remembe e most abundant essential elements in living organisms Section: 02.0 Topic: Atomic Structure	
17.	The atomic nu of	ımber of an element is the number	
	Α.		
	В.		
	C.		
	<u>D.</u> E.	protons in the nucleus.	
		Blooms Level: 1 Remembe	

Blooms Level: 1. Remember Learning Outcome: 02.01.02 Describe the structure of atoms. Section: 02.01 Topic: Atomic Structure Given this information from one element in the periodic table of elements, the number of neutrons and protons is

7
Nitrogen
N
14.0067

A. B. C. D.

14, which is the atomic mass indicated.

Blooms Level: 3. Apply Learning Outcome: 02.01.02 Describe the structure of atoms. Section: 02.01 Topic: Atomic Structure

The mass number is defined as the total number of _____ of an atom.

Α.

В. С.

<u>D.</u> protons and neutrons

Blooms Level: 1. Remember Learning Outcome: 02.01.02 Describe the structure of atoms. Section: 02.01 Topic: Atomic Structure

20. An ion is an atom that has		m that has	
		<u>A.</u>	a net negative or positive charge, with number of electrons different from number of protons.
		B.	
		C.	
		D.	
		E.	
	Learning Outo	come: 02.01.01 Identify the m	Blooms Level: 2. Understand nost abundant essential elements in living organisms. Section: 02.01 Topic: Atomic Structure
21.			shell of an atom contains a electron(s).
		Α.	
		<u>B.</u> C.	two
		D.	
		E.	
	Learning Outcome: 02.02.02 Use the r	number of valence electrons i	Blooms Level: 1. Remember in an atom to predict the number of bonds it will form. Section: 02.02 Topic: Atomic Structure
22.			ound to have atoms with eight valence shell. The atoms will be
		A.	

В.

<u>C.</u> D.

chemically stable.

Blooms Level: 3. Apply
Learning Outcome: 02.01.02 Describe the structure of atoms.
Learning Outcome: 02.02.02 Use the number of valence electrons in an atom to predict the number of bonds it will form.
Section: 02.01

Section: 02.02
Topic: Atomic Structure
Type: Integrative

2)
23).

In a covalent bond, atoms

Α. <u>B.</u> share electrons.

Blooms Level: 1. Remember Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds.

Section: 02.02 Topic: Chemical Bonds

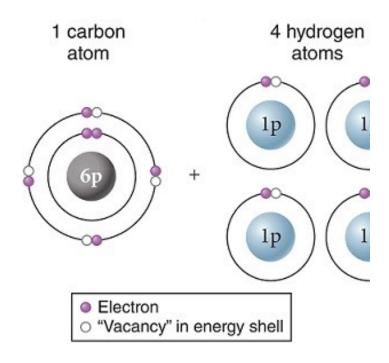
In an ionic bond,

Α.

D.

В. <u>C.</u>

atoms, having gained or lost electrons, attract one another with opposite charges.


D.

Blooms Level: 1. Remember Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds.

Section: 02.02

Topic: Chemical Bonds

Carbon and hydrogen make up many biologically important molecules. Carbon has an electronegativity of 2.55 while hydrogen has an electronegativity of 2.0. On the scale of electronegativity from zero (0) to four (4), the carbon and hydrogens shown here have just formed

A. a nonpolar covalent bond.

B. C. D.

Blooms Level: 4. Analyze Figure: 02.07

Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Learning Outcome: 02.02.04 Explain the relationship between electronegativity and chemical bond formation.

Section: 02.02

Topic: Chemical Bonds
Type: Integrative

Which statement summarizes the distinction between nonpolar and polar covalent bonds?

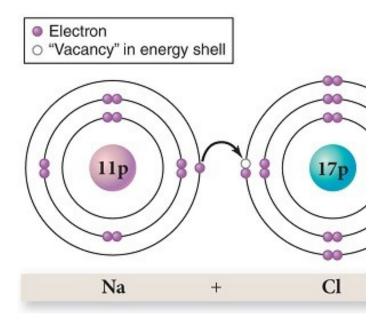
<u>A.</u>

The electrons are more evenly and symmetrically distributed in orbit among atoms in a nonpolar covalent bond.

В.

C.

D.


Blooms Level: 2. Understand

Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Learning Outcome: 02.02.04 Explain the relationship between electronegativity and chemical bond formation.

Section: 02.02

Topic: Chemical Bonds

In the example of ionic bond formation between sodium and chlorine, as shown, which of the following is not a true statement?

Α. В. C. D. <u>E.</u> Chlorine donates an electron.

Blooms Level: 1. Remember

Topic: Chemical Bonds

Figure: 02.06 Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Section: 02.02

The chapter concept map links covalent and ionic bonds as chemical bonds that attract atoms or molecules. What is the chemical bond characteristic that contributes to the numerous important properties of water molecules for living organisms?

Α.

В.

<u>C.</u>

D.

Blooms Level: 2. Understand Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Learning Outcome: 02.03.01 Explain how the structure of water affects its chemical properties.

Section: 02.02 Section: 02.03 Topic: Chemical Bonds Type: Integrative The property of water demonstrated by this water strider, as it remains on top of the water, is that water is a universal solvent.

© Herman

FALSE

Water's partial charges allow it to be cohesive, so that the surface tension among molecules can support this light insect. Read section 2.3.A for more information.

2	Λ	
J	U	

You can painlessly wade into a pool, but doing a belly flop off of the high diving board hurts because of

Α.

В.

<u>C.</u> cohesion in water.

D.

Ε.

Blooms Level: 3. Apply

Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Learning Outcome: 02.03.01 Explain how the structure of water affects its chemical properties.

Section: 02.02 Section: 02.03

Topic: Chemical Bonds Topic: Properties of Water Type: Integrative

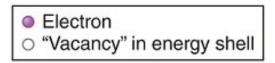
Trees are able to transport water from the roots to the top branches because

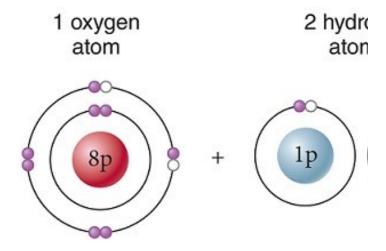
Α.

B. adhesion bonds water molecules to the insides of the plant cells.

C.

D.


Blooms Level: 1. Remember


Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Learning Outcome: 02.03.01 Explain how the structure of water affects its chemical properties.

Section: 02.03 Topic: Chemical Bonds

Topic: Properties of Water

Within a single molecule of water, as shown, __ bonds are formed between oxygen and hydrogen.

Α. В. C. D. <u>E.</u> covalent

> Blooms Level: 1. Remember Figure: 02.07

Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds.

Section: 02.02

Topic: Atomic Structure Topic: Chemical Bonds Topic: Properties of Water

If a molecule is added to a glass of water, and is easily dissolved by the water, the added molecule is described as hydrophilic.

TRUE

In understanding water's function as a solvent, hydrophilic molecules are paired with polar molecules that can be dissolved easily by the polar

water molecule. Read section 2.3.B for more information.

Blooms Level: 1. Remember

Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Learning Outcome: 02.03.01 Explain how the structure of water affects its chemical properties.

Section: 02.02 Section: 02.03

Topic: Properties of Water Type: Integrative

Evaporation of water is

Α.

В.

С.

D. E.

Blooms Level: 1. Remember

Learning Outcome: 02.03.01 Explain how the structure of water affects its chemical properties.

Section: 02.03

Section: 02.03

Topic: Properties of Water

You collect and measure samples of ice and surrounding ice water from a stream in the Winter. You find that you collected the same number of water molecules in each form. Water in the ice (solid) form floats in water of the liquid form because

<u>A.</u>

in the ice form, the same number of water molecules are found in a crystal form, yet total larger volume than the liquid water.

В.

C.

D.

35.

In a chemical equation, which components of a chemical reaction is not noted in symbols and abbreviations?

<u>A.</u>

Some substance atoms on the left side of the chemical reaction arrow must be destroyed in order to form the substances on the right side.

В.

C.

D.

Ε.

Blooms Level: 1. Remember Learning Outcome: 02.03.01 Explain how the structure of water affects its chemical properties.

Section: 02.03 Topic: Chemical Reactions

37.

An acid

Α.

В. С.

<u>D.</u>

F

Blooms Level: 1. Remember Learning Outcome: 02.04.01 Explain how acids and bases affect pH. Section: 02.04 Topic: Acids and Bases

38.

A base

<u>A.</u>

is a chemical that absorbs hydrogen ions from a solution.

В.

C.

D.

Blooms Level: 1. Remember Learning Outcome: 02.04.01 Explain how acids and bases affect pH. Section: 02.04 Topic: Acids and Bases

Algal phytoplankton are single-celled water organisms that can do photosynthesis like plants. In a lake, summer growth of phytoplankton can change the water pH from pH 7.2 to 6.2. This change indicates all of these except

A. B.	
<u>C.</u>	the water at pH 6.2 has twice the hydrogen (H ⁺) concentration as before the phytoplankton growth.
D. Learning Outcome: 02.04.01	Blooms Level: 2. Understand Explain how acids and bases affect pH. Section: 02.04 Topic: Acids and Bases
Organic molecules are d compounds that chiefly d distinct ratios and structu	contain in fairly
A. B. C. D.	carbon and hydrogen

Blooms Level: 1. Remember

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05 Topic: Carbohydrate Topic: Chemical Bonds

Topic: Lipids Topic: Nucleic Acids Topic: Proteins

41.	Th	e four major groups of	organic compounds are
	A. B. C. <u>D.</u>		carbohydrates, lipids, proteins, and nucleic acids.
	Learning Outcome: 02.05.02 Compare and contrast the	e structures and functions of the fo	Blooms Level: 1. Remember our main classes of organic molecules. Section: 02.05 Topic: Carbohydrate Topic: Lipids Topic: Nucleic Acids Topic: Proteins
42.	pol	living cells, a process b lymers down into mono valent bonds is	
	A. B. C. D.		
	Learning Outcon	ne: 02.05.01 Differentiate between	Blooms Level: 1. Remember dehydration synthesis and hydrolysis. Section: 02.05 Topic: Chemical Bonds Topic: Chemical Reactions
43.	Ex	amples of monosaccha	arides are
	A. B. C. D. E.		
	Learning Outcome: 02.05.02 Compare and contrast the	e structures and functions of the fo	Blooms Level: 1. Remember our main classes of organic molecules. Section: 02.05 Topic: Carbohydrate

44.	pa su co	ood pH is closely maintained at a pH of 7.4. A atient whose blood pH drops below 7.35 is affering from metabolic acidosis and can go into a soma. What happens to the concentration of H ⁺ has in a patient with a blood pH of 6.4?
	A. B. <u>C.</u> D. E.	H⁺ concentration is increased 10-fold.
		Blooms Level: 2. Understand Learning Outcome: 02.04.01 Explain how acids and bases affect pH. Section: 02.04 Topic: Acids and Bases
45.	W	hich is not a lipid?
	A.B.C.D.E.	a starch Blooms Level: 1. Remember he structures and functions of the four main classes of organic molecules.
		Section: 02.05 Topic: Lipids
46.	Th is	ne primary building block (monomer) of proteins
	A. B. C. D.	
	<u>E.</u>	
	Learning Outcome: 02.05.02 Compare and contrast to	Blooms Level: 1. Remember he structures and functions of the four main classes of organic molecules. Section: 02.05 Topic: Proteins

An amino acid contains a structural "backbone" chain of

<u>A.</u>

nitrogens and carbons.

В.

C.

D.

Ε.

Blooms Level: 2. Understand

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05

Topic: Proteins

48.

The bond that builds amino acid monomers into protein polymers is

Α.

В.

<u>C.</u>

a covalent bond also known as a peptide bond.

D.

Blooms Level: 1. Remember

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05

Topic: Chemical Bonds Topic: Proteins

49.

Many diseases, cancers and even normal human variations can be caused by mutations and variations in the DNA nucleotide sequence. The most likely immediate result of DNA having a different nucleotide sequence is that

Α.

В.

<u>C.</u>

the primary structure of R group sequence in a protein would be altered.

D.

Blooms Level: 3. Apply

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05

Topic: Nucleic Acids Topic: Proteins Type: Integrative

50.	The prin acids is	nary building block (monomer) of nucleic
	A. B. C. D. E.	a nucleotide.
	Learning Outcome: 02.05.02 Compare and contrast the structu	Blooms Level: 1. Remember Fres and functions of the four main classes of organic molecules Section: 02.05 Topic: Nucleic Acids
51.	The three	e major components in a nucleotide are
	<u>A.</u>	a nitrogen base, a five- carbon sugar, and a phosphate group.
	B. C. D. E.	
	Learning Outcome: 02.05.02 Compare and contrast the structu	Blooms Level: 1. Remember Pres and functions of the four main classes of organic molecules Section: 02.05 Topic: Nucleic Acids
52.		nparison listed below that is not true in shing DNA from RNA is that
	A. B. C.	
	<u>D.</u>	DNA is a molecule that stores and regulates our genetics, while RNA is used for cellular energy storage and release for biological functions.

Blooms Level: 2. Understand Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules. Section: 02.05 Topic: Nucleic Acids

		A. B. C.	
		D. E.	
	Learning Outcome: 02.05.02 Compare and control	ast the structures and functions of the f	Blooms Level: 1. Remember our main classes of organic molecules. Section: 02.05 Topic: Nucleic Acids
54.		Sugars (CH ₂ O) _n dissolve sugars form bonds	
		A. B. C. D. E.	hydrogen
		utcome: 02.02.03 Compare and contras ne: 02.03.01 Explain how the structure o	
55.		bonds are formed b form a polymer.	etween monomers to
		A. B. C. D. E.	Covalent
	Learning Ou Learning Outcome: 02.05.02 Compare and contra	utcome: 02.02.03 Compare and contras ast the structures and functions of the f	

The four nitrogen bases found in RNA are

Saturated fats have long straight tails of fatty
acids, and can pack or clump tightly together in
cells and animal bodies. Unsaturated fats have
kinks in their tails due to double bonds, which
prevents them from packing together as tightly.
Animals that are ectothermic (their body
temperature fluctuates with the environment) need
to keep their membranes fluid at cooler
temperature and thus use in their
membranes.

D. E.

Blooms Level: 3. Apply Learning Outcome: 02.00.01 Explain the relationship between chemistry and biology.

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules. Section: 02.05

Topic: Chemical Bonds Topic: Lipids Type: Integrative

57.

Saturated fats have long straight tails of fatty acids, while unsaturated fats from vegetables have kinks in their tails due to double bonds. These kinks prevent the fats from packing together as tightly. Hydrogenated vegetable oils, or trans fats, have hydrogens added back to the double bonds and thus behave like

Α.

В.

saturated fats.

Blooms Level: 2. Understand

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05 Topic: Chemical Bonds

Topic: Lipids

The group of organic molecule polymers with the most complex and diverse three-dimensional structure are

Α.

В. proteins.

D.

Ε.

Blooms Level: 2. Understand

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05 Topic: Chemical Bonds

Topic: Proteins

59.

Cohesion is a property of water in which water molecules tend to stick together.

TRUE

Cohesion occurs when molecules of any substance attract other molecules of the same substance, and water does this with hydrogen bonds. Read sections 2.2.D and 2.3 for more information.

Blooms Level: 1. Remember

Learning Outcome: 02.02.03 Compare and contrast ionic, covalent, and hydrogen bonds. Learning Outcome: 02.03.01 Explain how the structure of water affects its chemical properties.

Section: 02.02 Section: 02.03

Topic: Chemical Bonds Topic: Properties of Water

60.

A peptide bond is a covalent bond formed between the amino group of one amino acid and the R group of another amino acid.

FALSE

Locations of peptide bonds is not random in building the polymers, but must be located in specific positions. Read section 2.5.C for more information.

Blooms Level: 1. Remember

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules. Section: 02.05

Topic: Chemical Bonds Topic: Proteins

A substance in which other substances dissolve is called a solute.

FALSE

Liquid solutions, such as our blood plasma rely on the solvent and solute components to be balanced for our health. Read section 2.3.B for more information.

Blooms Level: 1. Remember

Learning Outcome: 02.03.01 Explain how the structure of water affects its chemical properties.

Section: 02.03 Topic: Chemical Bonds

Topic: Properties of Water

62.

Our general economic source of unsaturated fatty acids is from plants, and composed of at least one pair of double-bonded carbons.

TRUE

The economic understanding of food sources we buy can be important as you note differences among the natural and modified fatty acids. Read section 2.5.B for more information.

Blooms Level: 2. Understand Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05

Topic: Chemical Bonds

Topic: Lipids

63.

Of the 20 common amino acids in all organisms, essential amino acids are those we must consume in food.

TRUE

There are eight amino acids that humans gain from protein-rich foods. Read section 2.5.C for more information.

Blooms Level: 1. Remember

Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules.

Section: 02.05

Topic: Proteins

Among numerous functions of common proteins, which of these pairs does not correctly match a protein with its function?

Α.

<u>B.</u>

Antibodies regulate sweat to keep infections out of our skin pores.

C.

D.

Ε.

Blooms Level: 2. Understand Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules. Section: 02.05

Topic: Chemical Reactions Topic: Proteins

65.

If a protein is denatured, its structure has been changed enough to make the protein nonfunctional.

TRUE

Normal functions of proteins cease if the 3dimensional structure is changed by various conditions. Read section 2.5.C for more information.

Blooms Level: 1. Remember Learning Outcome: 02.05.01 Differentiate between dehydration synthesis and hydrolysis. Section: 02.05 Topic: Proteins

Proteins store the genetic information of the cell and transmit it to the next generation.

FALSE

Although proteins have many functions, and have structure determined by the DNA genetic code, protein functions do not include storage and inheritance of genetics. Read section 2.5.C for more information.

\sim	7	
n	1	
v		

If a carbohydrate polymer is limited to two monomer units, such as sucrose made from glucose and fructose, it is called

A.

B. a disaccharide.
C.

Blooms Level: 1. Remember Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules. Section: 02.05 Topic: Carbohydrate

68.

Having the typical ratio of carbon, hydrogen, and oxygen of carbohydrates, the chemical formula for glucose is

A.
B.
C₆H₁₂O₆

Blooms Level: 2. Understand Learning Outcome: 02.05.02 Compare and contrast the structures and functions of the four main classes of organic molecules. Section: 02.05 Topic: Carbohydrate

Ε.

Chapter 02 Test Bank Summary