https://selldocx.com/products/test-bank-brain-and-behavior-a-cognitive-neuroscience-perspective-1e-eagleman

A) B) C) D)	medulla oblongata spinal cord
A) B) C) D)	bilaterally vertically
A) B) C) D)	rhombencephalon telencephalon
B)	4 weeks
A) B) C) D)	5. The metencephalon is subdivided into the pons and the: midbrain cerebellum medulla hypothalamus
A) B) C) D)	myelencephalon diencephalon

A) peripheral nerB) cerebellumC) brainstemD) diencephalon	us and hypothalamus are both subdivisions of the: vous system
8. The vertebra A) brainstem B) metencephalo C) telencephalon D) diencephalon	
9. The vertebraA) diencephalonB) brainstemC) telencephalonD) myelencephal	
•	ford has input and output connections to the rest of the body via the bus system.
11. The cerebraA) diencephalonB) hindbrainC) telencephalonD) peripheral ner	
12. The basal gaA) diencephalonB) peripheral nerC) hindbrainD) telencephalon	

 13. The cerebral cortex, subcortical white matter, basal ganglia, and basal forebrain nuclei are all subdivisions of the: A) mesencephalon B) hindbrain C) diencephalon D) telencephalon
 14. The diencephalon is divided into the: A) thalamus and pons B) basal ganglia and hippocampus C) pons and medulla D) thalamus and hypothalamus
15. The anatomical directions anterior and posterior mean toward the and, respectively. A) top; bottom B) outside; inside C) front; back D) left; right
 16. The anatomical word for "on the same side" is: A) medial B) ipsilateral C) caudal D) contralateral
17. The temporal lobe is to the corpus callosum. A) superior B) lateral C) medial D) anterior
 18. The anatomical word for "toward the middle" is: A) rostral B) lateral C) medial D) caudal

9. Sensory neurons are sensitive to:
fatigue
pain
temperature
all of the above
0. When you digest your lunch or your heart rate speeds up, you are using the nervous system.
somatic
automatic
autonomic
central
1. The anatomical word for "on the opposite side" is:
ipsilateral
medial
caudal
contralateral
cogittal alice would divide the hody into
sagittal slice would divide the body into: anterior and posterior left and right top and bottom front and back
anterior and posterior left and right top and bottom front and back 3. A slice through the exact midline of the body or nervous system is called a:
anterior and posterior left and right top and bottom front and back 3. A slice through the exact midline of the body or nervous system is called a: transverse slice
anterior and posterior left and right top and bottom front and back 3. A slice through the exact midline of the body or nervous system is called a:
anterior and posterior left and right top and bottom front and back 3. A slice through the exact midline of the body or nervous system is called a: transverse slice midsagittal slice

25. The anatomical term for "toward the point where the point	here the limb attaches to the body"
is: A) anterior B) distal C) proximal	
D) ventral	
 26. These neurons convey a multitude of different A) input neurons B) sensory neurons C) perceptions D) motor neurons 	at kinds of sensory input to the body:
 27. When you raise your arm, kick a ball, or with you are using the nervous system. A) autonomic B) parasympathetic C) sympathetic D) somatic 	ndraw your hand from a hot plate,
 28. The body has two major compartments: the sthe, containing the internal organs. A) central nervous system B) peripheral nerves C) viscera D) vasculature 	oma, including skin and bones, and
 29. The motor side of the somatic nervous system the musculature called: A) muscle tones B) myopias C) myotomes D) dermatomes 	n is organized into segments within
 30. Paralysis of all four limbs is called: A) quadraparalysis B) quadriplegia C) quadritoma D) paraplegia 	

31. The section of the spine nearest to the brainstem is called the spine. A) thoracic B) lumbar C) sacral D) cervical
32. The section of the spine between the cervical spine and lumbar spine is the: A) sacral B) thermic C) thoracic D) segmental
 33. Visceral motor neurons are the output neurons of the sympathetic and parasympathetic nervous systems, sending control signals to the body's: A) muscles B) internal organs C) cranial nerves D) skin
34. The neurons in the ventral layers of gray matter are mostly neurons. A) input B) reflex C) sensory D) motor
 35. Raising the hair follicles in response to cold is a: A) conditioned response B) visceral response C) reflex D) none of the above
 36. T. Graham Brown proposed that the main functional unit of the nervous system is the: A) reflex arc B) neuron C) interneuron D) central pattern generator

3	7. The hindbrain contains the pons and the:
	thalamus
B)	amygdala medulla oblongata
	hippocampus
A) B) C)	8. The involuntary functions essential to life such as breathing and heart rate are controlled by the: insula hippocampus parietal lobe medulla oblongata
3	9. Chewing, swallowing, yawning, and sneezing are examples of rhythmical
	movements generated by the:
A) B)	frontal lobe parietal lobe
-	occipital lobe
D)	brainstem
4.	
	0. Destruction of the, which regulates heart rate and blood pressure, is fatal. substantia nigra
B)	insula
-	amygdala
D)	medulla oblongata
4	1. The organ in the inner ear that senses balance is the:
	eardrum
B)	vestibular organ
C) D)	cochlea stapes
<i>ک</i>	2
42. The reflex keeps the eye steady if the head is suddenly turned.	
A)	ocular
B)	vestibular vestibuloocular
C) D)	oculomotor
,	

A) B) C)	3. The midbrain area called the uses auditory inputs to direct movements. ventral tegmental area thalamus inferior colliculus superior colliculus
A) B) C)	4. The coordinates the key survival behavior of reproduction. hindbrain midbrain cerebellum forebrain
A) B) C)	5. More complex behaviors such as defense, aggression, and reproduction are controlled by the: inferior colliculus superior colliculus periaqueductal gray matter lateral geniculate nucleus
A) B) C)	6. The midbrain area called the is involved in locating visual stimuli in space and using this information to direct movements. retina superior colliculus thalamus lateral geniculate nucleus
A) B)	7. A midbrain cell group called the sends alerting signals using norepinephrine. red nucleus reticular formation substantia nigra locus coeruleus
A) B) C)	8. A diffuse network of midbrain cells known as the midbrain plays a central role in regulating states of consciousness. locus coeruleus substantia nigra red nucleus reticular formation

49. The midbrain raphe nuclei, which lie along the seam between the two sides of the brainstem, are the main source of the neurotransmitter:A) dopamine
B) norepinephrine
C) serotoninD) acetylcholine
50. The main source of the neurotransmitter dopamine for the motor system is the: A) locus coeruleus B) reticular formation C) substantia nigra D) red nucleus
51When you swallow, you are using the cranial nerve.
A) optic B) olfactory
C) vestibulocochlear
D) glossopharyngeal
52. Making eye movements requires the cranial nerve. A) trigeminal B) oculomotor C) glossopharyngeal D) olfactory
53. Moving your head and neck requires signals carried by the cranial nerve. A) glossopharyngeal
B) oculomotor
C) optic
D) spinal accessory
54. This cranial nerve controls the muscles of chewing: A) olfactory B) trigeminal C) optic D) oculomotor

5	5. The signals for the senses of hearing and balance are carried by the cranial nerve.
A)	olfactory
B)	optic
	glossopharyngeal
D)	vestibulocochlear
5	6. The, or "little brain," contains an enormous number of neurons compared to its size.
A)	
	frontal lobe
	cerebellum brainstem
D)	
	7. Generating a forward model is a possible strategy used by the to execute fast, precise movements.
A) B)	primary visual cortex cerebellum
	orbitofrontal cortex
D)	vestibular organ
	8. The neurons that drive homeostasis can be found in the: frontal lobe
A) B)	lateral geniculate nucleus
	hippocampus
D)	hypothalamus
	9. Although the hypothalamus detects deviations from homeostasis, it must rely on the to execute the necessary actions to restore homeostasis.
A) B)	cerebellum insula
C)	hippocampus
-	cerebral cortex
6	0. Because it controls the pituitary gland, the can be considered the controller
A)	of the hormone-secreting systems. brainstem
B)	amygdala
C)	thalamus
D)	hypothalamus

A) B)	norepinephrine prolactin oxytocin serotonin
A) B) C)	2. Controlled by the hypothalamus, the releases growth hormone into the body. amygdala dorsal raphe nuclei adrenal gland pituitary gland
A) B)	3. A major function of the hypothalamus is controlling: eye movements blood pressure satiety heart rate
A)	4. Removing which structure would have the largest impact on conscious perception of the outside world? amygdala thalamus hippocampus orbitofrontal cortex
6 A) B) C) D)	5. Damage to the prefrontal cortex may result in the inability to: become full after a meal regulate heart rate regulate body temperature reason and plan goals
A) B) C) D)	6. The consists of a thin sheet of neurons that wraps around the entire surface of the thalamus. corpus callosum amygdala reticular nucleus hypothalamus

A) B) C)	7. Which part of the brain is responsible for our most advanced cognitive functions? cerebellum amygdala cerebral cortex insula
A) B)	8. Deep brain stimulation delivers signals directly to specific brain structures. radio electrical chemical magnetic
A) B) C)	9. The cerebral cortex controls such higher functions as: circadian rhythms fight-or-flight responses satiety goal planning
A) B) C)	0. The lobes of the cerebral cortex include the: occipital frontal parietal all of the above
	 The is devoted to processing visual input and contains many different subregions for mapping out the various features of visual stimuli. parietal lobe cingulate cortex occipital lobe frontal lobe
7 A) B) C) D)	2. The plays an important role in setting priorities and determining how valuable an action or a resource might be, given current needs. primary somatosensory cortex orbitofrontal cortex prefrontal cortex primary motor cortex

7	3. The is act	ive when we are imagining scenes and when we are navigating.	
A)	amygdala		
B)			
C)	precuneus		
	lateral geniculate n	aucleus	
,	S		
7	4. The assen	ables more elaborate sequences of movement and behavior and	
		in cognition and goal planning.	
A)			
B)	orbitofrontal cortex		
	prefrontal cortex		
	primary motor cort	ex	
,			
	•	rtex is important in the sense of:	
A)	balance		
B)	smell		
	vision		
D)	hearing		
7 A)		he rounded convolutions of the cerebral cortex are called gyri, between gyri are called	
B)	valleys		
C)	nuclei		
D)	sulci		
_			
7		set of closely interconnected gray matter structures involved in a such as limb movements, eye movements, planning and goal on, and reward.	
A)	gyri		
B)	cranial nerves		
C)	basal ganglia		
D)	cerebellum		
7	8. A stroke that dan	nages the posterior temporal lobe is most likely to affect which	
,	ability?	2.25 are possesses competer took is most interf to which which	
A)	complex motor pla	nning	
B)	fine olfactory abili	-	
C)	visual perception		
D)	spoken language c	omprehension	

79. The primary auditory cortex is located within the: A) parietal lobe B) frontal lobe C) occipital lobe D) temporal lobe
80. The widely used Brodmann atlas divides the cortex into around numbered regions. A) 5000 B) 50 C) 5 D) 500
 81. Processing emotions from sights, sounds, and smells of would be handled by this limbic structure: A) thalamus B) amygdala C) hippocampus D) hypothalamus
82. The hippocampus plays an important role in spatial navigation and: A) circadian rhythms B) sleeping C) episodic memory D) eating
 83. A man remembers that on his 8th birthday, he received a red bicycle from his parents. This type of memory relies on the: A) occipital lobe B) frontal lobe C) hippocampus D) hypothalamus
 84. This substance protects the brain from injury and helps to maintain a stable chemical environment for the neurons: A) serotonin B) norepinephrine C) cerebrospinal fluid D) acetylcholine

A) B) C)	5. The system that puts the body in the mode of reacting to threats or opportunities in the external world is the nervous system. automatic central parasympathetic sympathetic
A) B) C)	6. The nervous system is activated when a predator approaches and we must prepare for fight or flight. central sympathetic somatic parasympathetic
A) B) C)	7 integrate sensory and motor functions, allowing more complex forms of sensory processing and motor planning. Ventral regions Association areas Interneurons Dorsal regions
A) B) C)	8. The four in the brain are filled with cerebrospinal fluid, not neurons. compartments modules lobes ventricles
A) B) C) D)	9. In the spinal cord, sensory input enters the side and motor output exits the side. ipsilateral; contralateral medial; lateral dorsal; ventral rostral; caudal
9(A) B)	0. The brains of all mammals have a common underlying structure. True False

91. The brains of insects have underlying similarities to our own.A) TrueB) False
92. The fundamental organization of the nervous system is ancient and has been highly conserved over time.A) TrueB) False
93. One key feature of a bilateral nervous system is the presence of local, centralized networks with each body segment.A) TrueB) False
94. It is not possible that both neurons and brains arose independently in several different lines of living creatures at different times.A) TrueB) False
 95. Signaling mechanisms are so similar that, in many cases, the gene of one organism can still perform its usual signaling function even when placed inside the nervous system of a distantly related organism. A) True B) False
96. The vertebrate nervous system may actually be an upside-down relative of the invertebrate nervous system.A) TrueB) False
97. The vertebrate brain contains three main bulges or zones of expansion: the forebrain, the midbrain, and the hindbrain.A) TrueB) False
98. Most neurons are unconnected to other neurons. A) True B) False

99. When the brain refines one of its functions over evolutionary time scales, it often does so by inserting an additional layer of neurons between the existing inputs and outputs.
A) True B) False
100. All sensory input, somatic and visceral, enters the spinal cord through the dorsal nerve root at the back of the spinal cord.A) TrueB) False
b) raise
101. If damage occurred to the hippocampus, we would expect to see a decreased ability to process visual stimuli.A) True
B) False
102. The occipital lobe is located directly behind the eyes.A) TrueB) False
 103. Damage to the cerebellum interferes with the smooth, efficient movements of body parts to their targets in the surrounding environment. A) True B) False
104. A dopamine imbalance may result in sleep disturbances.A) TrueB) False
105. Activation of the sympathetic nervous system would likely result in increased respiration and quickened heartbeat.A) TrueB) False
106 Anterior means "toward the back"

A) TrueB) False

	107. A spinal cord injury would have no bearing on the ability to feel pain.A) TrueB) False
	108. A disruption in hormonal regulation may be a sign of problems in the hypothalamus.A) TrueB) False
	109. The relay nuclei of the thalamus are tightly connected to the cerebral cortex.A) TrueB) False
110.	Although they do possess, jellyfish and sea anemones are literally spineless and brainless.
111.	The peripheral nervous system connects not only to the skin and muscles, but also to the of the body.
112.	The pons and are both subdivisions of the metencephalon.
113.	The thalamus and are both subdivisions of the diencephalon.
114.	The primary visual cortex is located in the lobe.
115.	The neurotransmitter is critical for movement, cognition, motivation, and reward.
116.	The system includes the amygdala and hippocampus.
117.	The cortex provides the nervous system's most elaborate circuitry for sensory and motor functions.

118.	The coordinates homeostatic functions, including sleep and eating, to keep the body's internal environment in balance.
119.	The primary motor cortex lies just anterior to the sulcus.
120.	Give an in-depth example of how the hypothalamus works to maintain homeostasis (e.g., when someone is hungry or thirsty).
121.	Compare and contrast the benefits of monosynaptic versus polysynaptic reflexes. Give an example where each type of connection would be best.
122.	A person sustains extensive injuries to the prefrontal cortex during a car crash. Describe three activities that would be impacted by this injury.
123.	Much of what we know about human neuroanatomy comes from studying nonhumans. Give 2 reasons justifying extrapolating from nonhumans to humans and 2 reasons why we cannot learn everything about humans from studying animals.
124.	What are some pros and cons of having the vast majority of the human nervous system in a small area, instead of distributed throughout the body?
125.	Would it be more debilitating for you to lose your sensory or motor neurons?
126.	Deep brain stimulation is a technique that delivers localized electrical impulses to try to correct a malfunctioning part of the brain. How might DBS be better/worse than taking a medication aimed at treating the same behavioral deficit?

Answer Key

- 1. C
- 2. B
- 3. B
- 4. C
- 5. B
- 6. C
- 7. D
- 8. B
- 9. D
- 10. D
- 11. C
- 12. D
- 13. D
- 14. D
- 15. C
- 16. B
- 17. B
- 18. C
- 19. D
- 20. C
- 21. D
- 22. B
- 23. B
- 24. C
- 25. C
- 26. B
- 27. D
- 28. C
- 29. C
- 30. B
- 31. D
- 32. C
- 33. B
- 34. D
- 35. C
- 36. D
- 37. C
- 38. D
- 39. D 40. D
- 41. B
- 42. C
- 43. C
- 44. B

- 45. C
- 46. B
- 47. D
- 48. D
- 49. C
- 50. C
- 51. D
- 52. B
- 53. D
- 54. B
- 55. D
- 56. C
- 57. B
- 58. D
- 59. D
- 60. D
- 61. C
- 62. D
- 63. C
- 64. B
- 65. D
- 66. C
- 67. C
- 68. B
- 69. D
- 70. D
- 71. C
- 72. B
- 73. C
- 74. C 75. B
- 76. D
- 77. C
- 78. D
- 79. D
- 80. B
- 81. B
- 82. C
- 83. C
- 84. C
- 85. D
- 86. B
- 87. B
- 88. D
- 89. C
- 90. A

- 91. A
- 92. A
- 93. A
- 94. B
- 95. A
- 96. A
- 97. A
- 98. B 99. A
- 100. A
- 101. B
- 102. B
- 103. A
- 104. B
- 105. A
- 106. B
- 107. B
- 108. A
- 109. A
- 110. neurons
- 111. internal organs
- 112. cerebellum
- 113. hypothalamus
- 114. occipital
- 115. dopamine
- 116. limbic
- 117. cerebral
- 118. hypothalamus
- 119. central
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.