https://selldocx.com/products

/test-bank-brain-and-behavior-an-introduction-to-behavioral-neuroscience-4e-garrett

Chapter 2

Μι	Multiple Choice		
1.	are one of the cell types composing the nervous system. A) Soma B) Neurons (*) C) Mitochondria D) Myelin		
2.	William, a philosophy major, asked Ian the psychology major what type of cell contributes the most to Ian's "being" who he is. Without hesitation, Ian replied: A) Nerves B) Brain cells C) Neurons (*) D) Somatic cells		
3.	Cells that convey environmental information; carry out the functions underlying thought, emotion, and movements; and transmit commands out to the body's organs and muscles are called: A) Neurons (*) B) Dendrites C) Supporting cells D) Phagocytes		
4.	neurons control movements and actions of organs. A) Phasic B) Inter- C) Motor (*) D) Sensory		
5.	Neurons make up only about% of the cells in the brain and about of its volume. A) 25, one-third B) 10, one-half (*) C) 90, three-quarters D) 33, one-third		
6.	Ninety percent of the cells in the brain are: A) Neurons B) Glial cells (*) C) Axonic cells D) Dendritic cells		
7.	The most important supporting cells of the brain are the: A) Neurons B) Glia (*) C) Neurofilaments D) Schwann cells		
8.	About how many neurons are found in the human brain? A) 10 million B) 1 billion C) 100 billion (*) D) 10 trillion		

9. ___ have a branched structure and receive stimulation from other neurons.

	A)	Dendrites (*)
	B)	Axons
	C)	Glial cells
	/	Soma
	,	
0.	The den	drites of a neuron:
٠.		Transmit information to the cell body (*)
		Provide the life processes of the cell
		Transmit neural impulses to the terminal buttons
	D)	Release neurotransmitters
11.		t of a neuron that contains the nucleus is called the:
	A)	Axon
	B)	Soma (*)
	C)	Dendrite
	/	Mitochondrion
	,	
12.	The larg	gest part of a neuron is the:
		Soma (*)
		Axon
		Terminal
		Dendritic process
	D)	Dendrine process
13	The som	na of a neuron contains the:
١).		Glial material
		Neurotransporters
		Neural receptors
	D)	Nucleus (*)
	TTI .	
14.	-	t of a neuron that transmits information over long distances is the:
		Soma
	B)	Axon (*)
	C)	Dendrite
	D)	Synapse
15.	Axons i	n a human can be anywhere from to more than in length.
	A)	3 centimeters, 1 meter
	B)	1 meter, 2 meters
	/	1 millimeter, 50 meters
		0.1 millimeter, 1 meter (*)
	-,	V()
16.	can	be long enough to provide a direct connection between the spinal cord and the toes of a
	giraffe.	
	_	Interneurons
		Projection neurons
		Axons (*)
	D)	Dendrites
7	The area	n of a navnam
ι/.		n of a neuron:
		Ends in swellings known as terminals (*)
		Controls the life processes of the cell
		Insulates the brain's electrical signals
	D)	Contains the cell's nucleus
18.		nection point between two neurons is called the:
	A)	Terminal

	B) Axon C) Soma D) Synapse (*)
19.	If you could surgically remove a single neuron from the brain and place it on a slide, what structure(s) would you have to destroy? A) Soma B) Axon C) Synapses (*) D) Dendrites
20.	Sensory neurons: A) Control muscles and produce movement B) Send messages away from the brain toward the periphery C) Gather information from the environment and convey it into the central nervous system (*) D) Have cell bodies covered with myelin
21.	In motor neurons, the axon and the dendrites branch out from the soma in many directions, giving this type of neuron the designation of a neuron. A) multi-fibered motor B) unipolar C) bipolar D) multipolar (*)
22.	A neuron gives rise to an axon and to the dendritic processes from opposite ends of the soma. A) motor B) unipolar C) bipolar (*) D) multipolar
23.	A neuron's soma gives rise to a short stalk that divides into two branches. A) unifibered B) unipolar (*) C) bipolar D) multipolar
24.	Motor neurons are typically while sensory neurons are typically either or neurons. A) unipolar; multipolar, bipolar B) multipolar; unipolar, bipolar (*) C) bipolar; unipolar, bipolar D) bipolar; multipolar, unipolar
25.	 A(n) would be found bridging between a sensory neuron and a motor neuron in the spinal cord. A) glial neuron B) projection C) interneuron (*) D) multipolar
26.	Many business deals involve a "middle man" who communicates between buyer and seller. The "middle man" between a sensory neuron and a motor neuron is a(n): A) Synapse B) Projection neuron C) Glial cell D) Interneuron (*)
27.	The most common type of neuron in the brain is the

- A) motor neuron
 B) unipolar neuron
 C) interneuron (*)
 D) multipolar neuron
 The cell membrane of a neuron
- 28. The cell membrane of a neuron is a double layer made up of:
 - A) Protein and connective tissue
 - B) Protein and lipid (fat) (*)
 - C) Lipid (fat) and connective tissue
 - D) Intracellular material and extracellular material
- 29. Which of the statements about cell membranes is *not* correct?
 - A) They contain specialized protein channels
 - B) They are made of two layers of lipids
 - C) Many millennia ago they were free-living single-celled organisms (*)
 - D) They define cell boundaries
- 30. The lipids that compose the cell membrane are arranged with "heads" and "tails" such that:
 - A) The "heads" are in contact with extracellular and intracellular fluid and the "tails" oriented away from these fluids (*)
 - B) The "tails" are in contact with extracellular and intracellular fluid and the "heads" oriented away from these fluids
 - C) Half of all "heads" and "tails" are in contact with extracellular fluid
 - D) Both "heads" and "tails" are in contact with intracellular fluid
- 31. The seawater-like solution inside neurons and bathing their outside are known respectively as:
 - A) Extracellular and intracellular fluid
 - B) Intracellular and extracellular fluid (*)
 - C) Cellular and extracellular fluid
 - D) Intramembrane and extramembrane fluid
- 32. The fact that the cell membrane is highly permeable to some substances and much less so to other substances is one variable underlying the cell being ____.
 - A) potentialized
 - B) polarized (*)
 - C) hyperpolarized
 - D) viable
- 33. One function of the specialized protein channels in a cell membrane is to:
 - A) Selectively allow substances to enter or leave the cell (*)
 - B) Provide oxygen and nutrients for the cell
 - C) Package neurotransmitters
 - D) Form an impermeable barrier to all substances foreign to the cell
- 34. When it is said that the cell membrane has a difference in electrical charge between its inside and the outside, this means the membrane is:
 - A) Potentialized
 - B) Polarized (*)
 - C) Hyperpolarized
 - D) Viable
- 35. When a neuron is at rest, the inside of the neuron:
 - A) Is negatively charged with respect to the outside (*)
 - B) Is positively charged with respect to the outside
 - C) Is not charged
 - D) Converts potential energy into chemical energy

36.	The is the difference in electrical potential between the inside and outside of an inactive neuron. A) action potential B) resting potential (*) C) threshold of excitation D) reaction potential
37.	The resting membrane potential is: A) A function of anions concentrated inside the cell B) Positive inside with respect to outside C) The result of a freely permeable membrane D) The difference in electrical charge inside and outside the inactive neuron (*)
38.	are charged atoms that have gained or lost one or more electrons. A) Ions (*) B) Polarizations C) Electrolytes D) Positrons
39.	Sodium ions are most concentrated in the fluid. A) intracellular B) extracellular (*) C) intracellular and extracellular D) polarized
40.	Potassium ions are most concentrated in the fluid. A) intracellular (*) B) extracellular C) intracellular and extracellular D) non-polarized
41.	Chloride ions and anions are most concentrated in the: A) Intracellular fluid B) Extracellular fluid C) Extracellular and intracellular fluid, respectively (*) D) Depolarized fluid
42.	The condition in which ions of a similar charge repel each other and thus spread evenly through a solution is called: A) Electrostatic pressure (*) B) The resting potential C) Repulsion D) The rate of diffusion
43.	The force by which high concentrations of ions disperse away from each other and thus spread evenly through a solution is called: A) Electrostatic pressure B) Force of diffusion (*) C) Repulsion D) The law of electrostatic repulsion
44.	tend to exit a neuron based on weaker electrostatic pressure than their force of diffusion. A) Chloride ions B) Sodium ions C) Potassium ions (*) D) Protein anions

45.	would tend to move into the neuron based on both their electrostatic pressure and force of diffusion.
	A) Chloride ions
	B) Sodium ions (*)
	C) Potassium ions
	D) Protein anions
46.	Much to your delight, your family puts in a backyard swimming pool and your dog sips from it as it is filled with fresh water. However, much to his dismay, you throw a blue dye tablet in the deep end. As the blue dye slowly disperses from the deep end, your dog drinks farther and farther from where the dye is being introduced. Your dog changes his drinking places because of the blue dye's: A) Electrostatic pressure. B) Diffusion gradient C) Force of diffusion (*) D) Different polarization of dye versus water
47.	The sodium-potassium pump forces sodium ions the cell and potassium ions the cell.
	A) into, into
	B) into, out of
	C) out of; out of D) out of, into (*)
	b) out of, into ()
48.	In a resting neuron, which force pushes potassium ions into the cell?
	A) The sodium-potassium pump (*)
	B) DiffusionC) The action potential
	D) Saltatory conduction
	b) Sultatory Conduction
49.	The sodium-potassium pump forcessodium ions the cell for every potassium ions the cell.
	A) 3; into; 2; into
	B) 2; into; 3; out of (*)
	C) 3; out of; 1; out of D) 3; out of; 2; into
	b) 3, out 61, 2, into
50.	The sodium-potassium pump accounts for of the neuron's energy expenditure.
	A) 75%
	B) 40% (*)
	C) 25% D) 10%
51.	While taking her GRE exam, LaFawnduh was concentrating so hard it almost hurt and the test left her
	feeling exhausted. A very large share of the energy LaFawnduh expended in her "mental efforts" was
	consumed by the in her nervous system. A) neurons (*)
	B) stress hormones
	C) sodium-potassium pump
	D) mitochondria
52	The is the neuron's means of transmitting information over long distances.
52.	A) depolarizing potential
	B) repolarization
	C) action potential (*)
	D) graded potential

53.	The term <i>depolarization</i> refers to: A) A change in the resting neuron's polarity away from zero B) A change in the resting neuron's polarity toward zero (*) C) Conduction of the graded potential D) Changes in conduction capability in myelinated axons
54.	The depolarization arriving at an axon from a dendrite is called a potential because it can A) action; transmit information B) graded; vary in speed C) graded; vary in magnitude (*) D) ionic; trigger an action potential
55.	If the partial depolarization arriving at an axon is sufficiently large, typically or more, it can cause normally closed sodium ion channels to open. A) 5mV B) 40mV C) 30mV D) 10mV (*)
56.	 When depolarization of the cell membrane reaches threshold, which of the following occurs? A) Opening of sodium ion channels (*) B) Opening of chloride ion channels C) A negative shift in the resting potential D) Opening of potassium ion channels
57.	A brief, rapid reversal of the neuron's potential from -70mV to +30 or +40 mV and back indicates: A) Sustained membrane reversal B) A hyperpolarization C) An action potential (*) D) A refractory period
58.	The change in electrical charge from -70 mV to the peak of the action potential is due to and the change in electrical charge from the peak of +30 or +40 mV back to -70 mV is due to A) inflow of chloride ions, outflow of sodium ions B) inflow of potassium ions, outflow of sodium ions C) inflow of sodium ions, outflow of sodium ions D) inflow of sodium ions, outflow of potassium ions (*)
59.	What ionic movement is responsible for pulling the membrane potential back to a negative voltage during an action potential? A) Sodium ions move into the cell. B) Potassium ions move into the cell. C) Protein anions move out of the cell. D) Potassium ions move out of the cell. (*)
60.	An action potential from beginning to end lasts about: A) 1 second B) 1 millisecond (*) C) 1 microsecond D) 10 milliseconds
61.	The action potential spreads through an axon by: A) Depolarizing adjacent membrane to threshold, triggering another action potential (*) B) Inflow of potassium ions and outflow of sodium ions C) A non-decremental of graded potential D) A decremental of graded potential

	 A) Nothing physically moves down the axon (*) B) Electricity flows from one end of the axon to the other C) Neurochemicals flow from one end of the axon to the other D) The sodium-potassium pump pushes ions down the axon
63.	Graded potentials decrease in size as they spread; the term for this is: A) Non-decremental B) All or none C) Decremental (*) D) Graded polarization
64.	Partial depolarizations fade in intensity the farther they are from the point of maximal voltage change; these depolarizations are known as: A) Small scale potentials B) Micro potentials C) Graded potentials (*) D) Nano potentials
65.	Sarah threw rocks of different sizes into a pond. Just as ripple size was a function of size of rock, graded potentials as a function of stimulus intensity. A) vary in inverse magnitude B) vary along an exponential continuum C) vary in magnitude (*) D) are a graded percentage
66.	Electricity flowing in power lines drops in voltage over distance, requiring your power company to use transformers to boost the voltage back to the original amplitude. This loss over distance is similar to the behavior of potentials. A) hyperpolarizing B) non-decremental C) action D) graded (*)
67.	An action potential occurs at a specific amplitude for that neuron, regardless of the stimulus intensity or how much higher than threshold the stimulus is; this is known as the: A) Principle of mass action B) All-or-none law (*) C) Rate law D) Law of equipotentiality
68.	 Which of the following concepts does the all-or-none law describe? A) All dendrites must be hyperpolarized before a neuron fires. B) All neurons in a nerve fire or none of them fires. C) The size of an action potential does not depend on the amplitude of the stimulus that started it. (*) D) The frequency at which a neuron fires is independent of the intensity of the stimulus.
69.	Local anesthetics work via, while general anesthetics have the effect of A) attaching to and blocking potassium ion channels, opening sodium ion channels B) attaching to and blocking sodium ion channels, opening potassium ion channels (*) C) opening TDT channels, blocking TDT channels D) opening chloride ion channels, blocking potassium ion channels
70.	When you feel the lingering numbness of the "local" the dentist gave you, the biopsychology student

62. When an axon transmits action potentials:

	knows the effects are due to the chemical anesthetic effects of: A) Blocking sodium ion channels (*) B) Preventing neurotransmitter release C) Producing hyperpolarizations on an afferent neuron D) Producing prolonged refractory periods
71.	Most local anesthetics work by; some general anesthetics have the effect of A) preventing neurons from depolarizing, increasing the hyperpolarization of neurons (*) B) putting axons to sleep, putting the brain to sleep C) preventing concentration gradients, increasing electrical gradients D) increasing the polarization of neurons, preventing depolarizing
72.	Bob was given a general anesthetic; he knew that while most local anesthetics work by, this general anesthetic possibly A) opening chloride ion channels, opened potassium ion channels B) blocking sodium ion channels, blocked potassium ion channels C) blocking sodium ion channels, opened chloride ion channels D) blocking sodium ion channels, opened potassium ion channels (*)
73.	Tetrodotoxin is a deadly poison because it blocks: A) Sodium ion channels (*) B) Potassium ion channels C) TDT channels D) Chloride ion channels
74.	Various toxins from snakes, scorpions, and fish are called because of their sites of action in the nervous system. A) neural blockers B) neuroantagonists C) neurotoxins (*) D) nociceptors
75.	As the snake that bit him slithered away, Captain Jones remembered that a poisonous species could kill by blocking either his or his A) sodium ion channels, calcium ion channels B) potassium ion channels, chloride ion channels C) calcium ion channels, chloride ion channels D) sodium ion channels, potassium ion channels (*)
76.	Medical researchers are interested in the toxins of cone snails for potential new treatments for as well as A) pain, cancer B) addictions, pain relief C) pain, epilepsy (*) D) epilepsy, addictions
77.	Medical researchers are focusing on the toxins of cone snails for several novel treatments because of the toxin's effects on: A) Sodium ion channels B) Potassium ion channels C) Neurotransmitter receptors D) All of the above (*)
78.	After learning about the suffering of people with untreatable chronic pain, Amanda was encouraged by what researchers are learning about: A) New alternative mind-body interventions

- B) Neuro-feedbackC) Cone snail toxins (*)
- D) Genetically modified botulinum toxin
- 79. You will find very few sushi bars that will serve fugu because:
 - A) Few non-Japanese diners like the taste
 - B) It is far too expensive for most sushi shops to offer as regular fare
 - C) It can kill if carelessly prepared (*)
 - D) It is a source of botulinum toxin
- 80. Next time you are enjoying your sushi, try to avoid thinking about the ____ diners who have died from eating fugu.
 - A) few dozen
 - B) urban legends of
 - C) few thousand (*)
 - D) few million
- 81. The gourmet diner who wants to play Russian roulette with his or her dinner might choose to dine on ____, which if improperly prepared might contain a powerful and fatal neurotoxin called tetrodotoxin.
 - A) fugu (*)
 - B) sushi
 - C) umami
 - D) focaccia
- 82. Which statement characterizes the absolute refractory period?
 - A) The neuron cannot fire again because the potassium channels are unable to open
 - B) The neuron cannot fire again because the sodium channels are unable to open (*)
 - C) The neuron can fire again but only to a stronger than threshold stimulus
 - D) The neuron can fire again but only at a much slower rate
- 83. Which statement characterizes the relative refractory period?
 - A) The neuron cannot fire again because the potassium channels are unable to open
 - B) The neuron cannot fire again because the sodium channels are unable to open
 - C) The neuron can fire again but only to a stronger than threshold stimulus (*)
 - D) The neuron can fire again but only at a much slower rate
- 84. Implication(s) of the absolute refractory period:
 - A) A limit on how frequently action potentials can occur
 - B) An action potential will produce additional action potentials only in front of it
 - C) A narrow range of rates of firing for neurons
 - D) All of the above (*)
- 85. Which of the following explains a neuron's means of encoding various intensities of stimuli?
 - A) Passive conduction
 - B) Decremental conduction
 - C) All-or-none law
 - D) Rate law (*)
- 86. After Debbie's car accident, as the doctor asked her if it hurt here or if it hurt when he pressed this hard, Debbie understood why she could tell the differences in amount of pressure the doctor used; her sensory neurons coded the different pressures via:
 - A) Different magnitude action potentials
 - B) Differences in threshold
 - C) Different neurotransmitters
 - D) Different rates of firing in neurons (*)

- 87. When you call your sleeping dog, his eyelids flutter; you call louder and his ears perk up; you call even louder and he wakes up. This is because:
 - A) Different types of stimuli produce responses in different neurons
 - B) Different stimulus intensities activate different neurons
 - C) Greater stimulus intensities activate glial cells as well as neurons
 - D) Greater stimulus intensities produce higher rates of action potentials (*)
- 88. In the psychology office, the more urgent the memorandum, the more likely it will be assigned to the secretary who can type the fastest. As urgency of memo relates to the work being done by the person who types the fastest rate of words per minute, so does stimulus intensity relate to:
 - A) Rate of neurotransmitter release
 - B) Rate of neuronal firing per second (*)
 - C) Speed of action potential
 - D) Magnitude of action potential
- 89. The speed of neural conduction is most similar to the speed of:
 - A) Light
 - B) Sound (*)
 - C) Electrical current
 - D) A person walking or running
- 90. Just as many people want to mistakenly compare the brain's "information processing" capability and speed to that of a computer, the speed of neural impulses is often erroneously compared to the:
 - A) Speed of light
 - B) Speed of sound
 - C) Speed of electrical current (*)
 - D) The average reaction time for an average adult human
- 91. The conduction speed of neurons is largely a function of:
 - A) Axon length and axon diameter
 - B) Axon diameter and number of ion channels
 - C) Axon diameter and myelination (*)
 - D) Axon length and myelination
- 92. With a bigger fire, a larger diameter water hose will be needed to put out more water per second. Likewise, axons have evolved to provide less resistance to the conduction of neural potentials.
 - A) shorter
 - B) thinner
 - C) thicker (*)
 - D) denser
- 93. The cells that produce myelin in the central nervous system are called:
 - A) Ranvier cells
 - B) Astrocytes
 - C) Oligodendrocytes (*)
 - D) Schwann cells
- 94. The cells that produce myelin in the peripheral nervous system are called:
 - A) Ranvier cells
 - B) Node cells
 - C) Oligodendrocytes
 - D) Schwann cells (*)
- 95. The gaps in the myelin sheaths on axons are known as:
 - A) Synapses of myelin
 - B) Nodes of Schwann

C)	Oligodendrocytes
	Nodes of Ranvier (*)
96 Which o	of the following statements about neuronal conduction in myelinated neurons is <i>not</i> correct
	Energy is saved by myelination.
	Thicker myelination on axons results in a slower conduction of action potentials. (*)
	Conduction speed is much faster in myelinated axons.
D)	Myelinated axons use saltatory conduction.
97. In a my	elinated neuron, the action potential:
	Travels more slowly than in an unmyelinated neuron
	Jumps from synapse to synapse
	Is conducted down the uninsulated parts of the dendrites
D)	Travels faster than in an unmyelinated neuron (*)
	ect of myelination on an axon's conduction speed is the equivalent of increasing an axon's
diamete	10 times
	25 times
/	100 times (*)
	2.5 times
99. Saltator	y conduction occurs only in:
	Myelinated dendrites
B)	Myelinated axons (*)
	Unmyelinated dendrites
D)	Unmyelinated neurons
	can sodium ions enter a myelinated axon?
/	At the soma
	Through the myelin sheath
	At the nodes of Ranvier (*)
D)	At the point at which the axon divides and branches
	that action potentials occur only at the nodes of Ranvier is the basis for:
	Increased energy consumption in myelinated neurons
	Saltatory conduction (*)
	Slower conduction speed in myelinated neurons Faster conduction speeds in unmyelinated neurons
D)	raster conduction speeds in uninyelmated neurons
	cine slowly lost motor function and suffered increasing sensory deficits, she could almost
	her being destroyed by the
	glial cells; antibodies
	myelin; macrophages
	myelin; multiple sclerosis (*) axons; multiple sclerosis
D)	axons, murupie scierosis
	action potential is conducted down the axon it:
,	Increases in size
,	Decreases in size Remains constant in size (*)
	Decreases conduction velocity
,	
	ment of the resting membrane potential from -70 mV to -65 mV would be termed a(n):
	Hyperpolarization Hypopolarization (*)
رم	11) Popolimication ()

	Action potential Superthreshold depolarization
105.A move	ement of the resting membrane potential from -70 mV to -90 mV would be termed a(n):
	Hyperpolarization (*)
	Hypopolarization
	Action potential
D)	Threshold depolarization
	ated axons consume less energy than unmyelinated axons because:
	Action potentials occur faster
	The sodium potassium pumps have less work to do (*)
	Graded potentials do not consume energy
D)	The sodium potassium pumps are more efficient on these neurons
	se that destroys myelin is:
	Alzheimer's disease
	Multiple sclerosis (*)
	Parkinson's disease
D)	Neuropathy
	myelin from neurons would be expected to:
	Speed up neuronal conduction
	Greatly impair neuronal conduction (*)
	Increase the amplitude of the action potential
D)	Prevent the removal of dead nerve cells in the brain
109.Glial ce	ells:
A)	Guide new neurons in fetal development
	Stimulate the development of synapses
	Clean up cellular debris
D)	All of the above (*)
	ells are now known to release neurotransmitters such asas part of a modulating effect upon
	ivity.
	glutamate; presynaptic (*)
	glutamate; postsynaptic
	GABA; presynaptic
D)	GABA; postsynaptic
	he following are functions of glial cells except:
	Insulating axons
	Removing debris
	Supplying neurons with protein production sites (*)
D)	Guiding the movement of neurons during prenatal development
112.Who fin	est observed that individual neurons were in chemical contact with each other?
	Golgi
	Loewi (*)
	Cajal
D)	Ranvier
113.The gap	between two adjacent neurons was first observed by Later, this gap was named the
A)	Golgi, synapse
	Loewi, synaptic cleft
C)	Cajal, synaptic cleft (*)

D)	Ranvier, synapse
114.Who fir	st observed that neurons communicate at the synapse via chemicals?
A)	Golgi
B)	Loewi (*)
C)	Cajal
D)	Fugu
	ave ever awoken from sleep to scribble down a brilliant idea, you can probably relate to, own sleep was interrupted with notes with an insight about .
	Cajal; synaptic structures
	Golgi; chemical transmission at the synapse
	Loewi; chemical transmission at the synapse (*)
	Cajal; chemical transmission at the synapse
116.Where	are vesicles stored?
A)	The soma
	The axon terminals (*)
	The synapse
	The synaptic cleft
meaning	few too many cups of coffee and having to find a restroom, Sal ironically remembered the g of the term <i>vesicle</i> , as in:
	"Need to urinate"
	"Full bladder"
	"Little bladder" (*)
D)	"Need to release"
	on terminals of neurons:
	Supply the cell with nutrients and oxygen
/	Provide insulation
	Send electrical impulses
D)	Release neurotransmitters from vesicles (*)
	released from axon terminals and are detected by protein receptors on an adjacent neuron.
	Hormones
/	Neurotransmitters (*)
/	Neurotoxins Pheromones
Ź	
	ease of neurotransmitter from axon terminals into the synaptic cleft depends on:
,	The inflow of chloride ions
	The opening of nodes of Ranvier
	Reversal of the sodium-potassium pump The entry of calcium ions from the extracellular fluid (*)
ŕ	
	viping away a "milk moustache," Nathan thought that not only does milk do a body good, but
	ecessary for calcium ion intake; neurotransmitter release (*)
	calcium ion outflow; neurotransmitter release
	calcium ion intake; neurotransmitter docking
	calcium ion intake; neurotransmitter docking
	arotransmitter fits into a very precisely shaped location on the postsynaptic neuron called a:
	Ion channel Receptor (*)
رط	Receptor ()

D) S	Synaptic cleft	
123. The relationship between a neurotransmitter and its receptor is akin to a:		
	Hand and a glove	
	Hammer hitting a nail	
	Bug hitting a windshield	
D) 1	Key fitting into a lock (*)	
	otransmitter docks with a receptor site and:	
	Opens ion channels directly or indirectly (*)	
,	Opens ion channels directly	
	Induces ionic exchange between neurons	
D) 1	Initiates an action potential	
	nsmitters that open ion channels do so by docking on	
,	the ion channel	
	a chemical receptor (*)	
	an electrical receptor	
D) a	a protein	
	ge in a neuron's potential caused by the arrival of neurotransmitter is called:	
	The postsynaptic potential (*)	
	The presynaptic reversal potential	
	Axonic integration	
D) 1	Neural potentiation	
	y is to inhibitory as is to	
	potassium; chloride	
	hypopolarizing; hyperpolarizing (*)	
	potassium; sodium	
D) (diffusion; electrical gradient	
	of postsynaptic potential produced by a neurotransmitter depends on which neurotransmitter	
is release		
	The type of receptor (*)	
	Whether the receptor is chemical or electrical	
	The number of receptors	
D)	The amount of neurotransmitter present in the synapse	
•	ur Aunt Desirae skeptically asks you how a stimulant can slow down and calm a hyperactive	
	a try not to be too smug when you answer that stimulants:	
	Act as depressants on hyperactive children	
	Act to stimulate underactive frontal areas of the brain (*)	
	Exert placebo effects	
ו (ע	Have no such effect	
	ting potential changed from -70 mV to -75 mV this would be termed a(n); this would	
occur as p	part of an	
	hyperpolarization; IPSP (*)	
	hypopolarization; EPSP	
	action potential; EPSP	
ט) 1	threshold depolarization; IPSP	
131.If the rest	ting potential were to change from -70 mV to -65 mV, this would be termed a(n); this	
	cur as part of an	

C) Neurotransmitter cleft

B) C)	hyperpolarization, EPSP hypopolarization, EPSP (*) action potential, IPSP threshold depolarization, EPSP
132.During a	n EPSP:
_	Sodium ions enter the cell (*)
B)	Sodium ions leave the cell
	Potassium ions enter the cell
D)	Chloride ions leave the cell
133.During a	n IPSP:
	Sodium ions enter the cell
/	Sodium ions leave the cell
	Potassium ions exit the cell (*)
D)	None of the above
	arons fire spontaneously. EPSPs the rate of firing and IPSPs the rate of firing.
,	decrease; increase
	increase; decrease (*)
	increase; have no effect upon
D)	have no effect upon; have no effect upon
	at which a neuron fires depends on the:
	number of terminals of nearby interneurons
	relative strength of excitatory and inhibitory inputs it receives (*)
	number of postsynaptic receptors on this neuron
D)	number of autoreceptors on this neuron
	atory synapse will produce hypopolarization potentials of as little as:
	10–12 mV
/	1–2 mV
	0.2–0.4 mV (*) 0.01–0.02 mV
(ט	0.01–0.02 mv
• •	neuron in the brain receives input from how many other neurons?
	1,000,000
,	100,000
	10,000 1,000 (*)
(ט	1,000 (*)
	o graded potentials get converted into action potentials on the neuron?
	Dendritic spines
,	Soma
	Synaptic cleft Arrow hillorly (*)
D)	Axon hillock (*)
	nt postsynaptic potentials occur at the same time but from different inputs, will occur
A)	temporal summation
,	simultaneous summation
C)	spatial summation (*)
	synaptic summation

A)	temporal summation
	spatial summation (*)
C)	spatial integration
D)	temporal integration
141.If postsy	naptic potentials arrive from the same input and a short time apart, will occur.
A)	temporal summation (*)
B)	simultaneous summation
C)	synaptic summation
D)	neural summation
142.Kerry w	anted her son Alex to clean up his room for several days. Frustrated from the lack of response
	ex, she started asking him to clean his room every 3 minutes. Finally, he cleaned up his room
because	he didn't want to hear his mother's repeated requests anymore. His response is analogous to
the proc	ess of at axon hillocks.
A)	Temporal summation
B)	Spatial summation (*)
C)	Neural propagation
D)	Inhibitory recovery
143.Since ne	eurons algebraically summate IPSPs and EPSPs to "decide" whether to fire, neurons have been
referred	to as:
,	Summators
	Integrators (*)
	Information processors
D)	Data analysis cells
144. Which o	f the following mechanisms of terminating transmitter action involves the reabsorption of a
neurotra	nsmitter by the axon terminals?
A)	Deactivation
,	Diffusion
	Reuptake (*)
D)	Active recycling by glial cells
145.Neurotra	ansmitter action can be terminated by:
A)	Deactivation of the transmitter by an enzyme
	Reuptake into the axon terminal
C)	Absorption of the neurotransmitter by glial cells
D)	All of the above (*)
146. While li	stening to drug users describe the subjective effects of cocaine, BJ took a few notes to himself
	nber that cocaine's effects are due to blocking the:
,	Effects of serotonin
	Reuptake of norepinephrine and dopamine
	Reuptake of dopamine (*)
D)	Degradation of dopamine

147. The muscle disorder myasthenia gravis can be treated by:

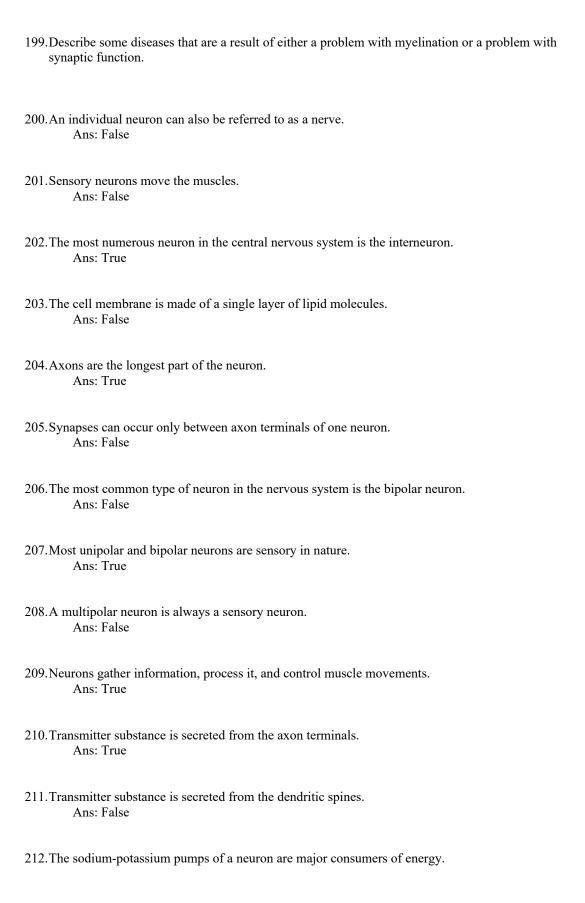
B) Reducing acetylcholine function in the brainC) Removing acetylcholine receptors on muscles

A) Reducing the activity of acetylcholinesterase (AchE) (*)

D) Growing additional acetylcholine receptors on muscles

148. Elizabeth was hit hard by the news of her mother's diagnosis with myasthenia gravis. Although a very serious and progressive disease, the good news is that her mother can be treated with drugs that ____

hillocks.


the a	ction of
	A) facilitate, monoamine oxidase
	B) facilitate, acetylcholinesterase
	C) inhibit, acetylcholinesterase (*)
	D) inhibit, monoamine oxidase
149.Whi	ch of the following is true of autoreceptors?
	A) Autoreceptors are located on postsynaptic membranes.
	B) Autoreceptors detect the amount of neurotransmitter in the synaptic cleft. (*)
	C) Autoreceptors typically produce EPSPs.
	D) Autoreceptors are cell receptors that facilitate enzymes.
150.	alters the output of
	A) The presynaptic neuron; the postsynaptic neuron
	B) An autoreceptor; the presynaptic neuron (*)
	C) An autoreceptor; postsynaptic neuron
	D) An autoreceptor; the sodium-potassium pump
151.Nico	tinic and muscarinic receptors are two types of receptors.
	A) tobacco
	B) serotonin
	C) acetylcholine (*)
	D) dopamine
152.Mus	cles contain receptors.
	A) nicotinic
	B) muscarinic (*)
	C) dopamine
	D) serotonin
153.Nico	tinic receptors are and are found; muscarinic receptors are and are found
	A) excitatory; in muscles and the brain; excitatory or inhibitory;, more frequently in the digestive
	system
	B) excitatory; in muscles and the brain; excitatory or inhibitory; more frequently in the brain (*)
	C) inhibitory; in muscles and the brain; excitatory or inhibitory; more frequently in the muscles
	D) excitatory or inhibitory; in muscles and the brain; excitatory; more frequently in the digestive system
	system
	is a hormone that is involved in stress, attention, and arousal.
	A) Acetylcholine
	B) Serotonin
	C) Norepinephrine (*)
	D) Substance P
	one who carries an emergency bee sting kit might be surprised to learn it dispenses, which is a
	or brain neurotransmitter as well as a hormone related to bodily stress.
	A) endorphins
	B) norepinephrine
	C) epinephrine (*)
	D) noradrenalin
	ch transmitter is implicated in schizophrenia and Parkinson's disease?
	A) Epinephrine
	B) Acetylcholine
	C) Dopamine (*)
	D) Serotonin

157 The pri	mary function of an axoaxonic synapse is to:
	Block the opening of sodium ion channels during an EPSP
	Modulate the amount of transmitter released from the axon terminals (*)
	Block the opening of potassium ion channels during an IPSP
	Modify the synthesis of presynaptic neurotransmitters
	of the following neurotransmitters has been related to the reinforcing action of food, sex, and
abused	
	Epinephrine
	Acetylcholine
	Dopamine (*) Serotonin
Ź	
	sease conditions associated with dopamine are:
	Depression and Parkinson's disease
	Parkinson's disease and Huntington's chorea
	Alzheimer's disease and schizophrenia Schizophrenia and Parkinson's disease (*)
	of the following is the principal excitatory neurotransmitter in the brain?
	Norepinephrine
,	GABA
	Dopamine
D)	Glutamate (*)
	of the following is an inhibitory neurotransmitter in the spinal cord and lower brain?
	Glycine
	GABA (*)
	Dopamine
D)	Glutamate
	principle, a recently discounted theory about synaptic function, stated that a neuron:
	Released multiple neurotransmitters
	Only released a single neurotransmitter (*)
	Never responded to its own autoreceptors
D)	Could be either electrical or chemical at its synapses
	that mimics the effects of a neurotransmitter is called a(n):
	Agonist (*)
,	Antagonist
	Synergist
D)	Receptor blocker
	that blocks the effects of a neurotransmitter is called a(n):
	Agonist
	Antagonist (*)
	Synergist
D)	Receptor blocker
165.The effe	ect of acetylcholine on muscles can be prevented by the antagonist
A)	curare (*)
	tetanus
	nicotine
D)	muscarine

166.An antagonist for opiates is: A) Curare B) Tetanus	
C) Nicotine D) Naloxone (*)	
167. Which of the following drugs is an agonist for acetylcholine? A) Black widow spider venom	
B) Botulinum toxin	
C) Nicotine (*)	
D) Acetylcholinterase	
168. In the nervous system, which of the following types of cells is most numerous? A) Glia (*)	
B) Motor neurons	
C) Sensory neurons	
D) Interneurons	
169.A neuron that transmits information between the central nervous system and a muscle is a A) Motor neuron (*)	called a(n):
B) Sensory neuron	
C) Interneuron	
D) Projection neuron	
170. The <i>typical</i> resting potential of a neuron is about: A) -70 V	
B) -35 mV	
C) $+70 \text{ mV}$	
D) -70 mV (*)	
171. Which of the following statements regarding the sodium-potassium pump is <i>false</i> ?	
A) It requires a lot of energy	
B) It works against the concentration gradient	
C) It pumps sodium into the cell (*)	
D) It helps maintain the resting potential	
172. Depolarization means the same thing as:	
A) Hypopolarization (*)	
B) Hyperpolarization	
C) Action potentialD) Electrical gradient	
173. The outflow of potassium ions during an action potential results in:	
A) Hypopolarization D) Hypopolarization (*)	
B) Hyperpolarization (*)C) Depolarization	
D) Another action potential	
174. Which of the following statements regarding the absolute refractory period is <i>false</i> ?	
A) The potassium channels are closed and cannot be opened. (*)	
B) The sodium channels are closed and cannot be opened.	
C) An action potential cannot be generated.D) It ensures that the action potential will travel only in one direction.	
175.The the axon, the is the conduction rate. A) thicker; slower	
A) HIEREI, SIUWEI	

C)	thicker; faster (*) longer; slower thinner; faster
	n action potential reaches an axon terminal, enters the cell and triggers the release of ansmitter from presynaptic vesicles.
/	sodium
	potassium
,	chloride calcium (*)
D)	Calcium ()
177.An IPSI	P will occur if:
	Sodium channels open
	Potassium channels open
	Calcium channels open
D)	Iodine channels open
	holine ceases to stimulate the post-synaptic cell by:
	Reuptake by the presynaptic neuron
	Absorption by the postsynaptic neuron Enzymatic deactivation (*)
	Absorption by glial cells
ŕ	
	of the following statements regarding nicotinic receptors is <i>false</i> ?
	They are stimulated by controls alice
	They are stimulated by acetylcholine They are found in the brain
	They are found in muscles
180. The dep	polarization of the cell membrane produced when the threshold is reached results in which of
the follo	
A)	Sodium ions entering the axon 500 times faster than normal (*)
	Potassium ions exiting the axon 500 times faster than normal
	Sodium ions entering the axon 1,000 times faster than normal
D)	Sodium ions entering the axon 700 times faster than normal
181.As mye	lin is lost from axons:
	The capacitance increases
	The distance that graded potentials can spread before dying out is reduced
	Action potentials become less likely
D)	All of the above (*)
182 Glial ce	ells contribute to the development and maintenance of neuronal connections; neurons form
	s many connections in the presence of glial cells.
A)	
	7 (*)
	30
D)	100
183.Identify	the principal structures of a neuron and describe the functions of each.
184.Explain	the two forces that produce the resting membrane potential.

185.Describe the electrical and chemical events that underlie an action potential.
186. What is a graded potential? Contrast its role in myelinated and unmyelinated neurons.
187. Who was Otto Loewi? Describe the experiment he ran to prove that the synapse was a chemical connection. What were his major findings?
188.Explain the all-or-none law in the generation of an action potential.
189. How do neurons encode the intensity of a stimulus.
190. What are the advantages of saltatory conduction and how myelin contributes to it.
191.Name and describe the functions of different types of glial cells.
192. Explain the events that occur at a synapse, both in the presynaptic neuron and the postsynaptic neuron.
193.Compare and contrast EPSPs and IPSPs. How do they contribute to triggering an action potential?
194.Describe temporal and spatial summation in neurons.
195. Explain how neural excitation and or inhibition translate into effects on behavior.
196.Describe how the effects of a neurotransmitter are terminated.
197. Explain the different types of synapses and presynaptic excitation and inhibition.
198. Explain the terms <i>agonist</i> and <i>antagonist</i> using acetylcholine as an example.

Ans: True
213. The relative refractory period precedes the absolute refractory period. Ans: False
214.Local potentials decay as they spread. Ans: True
215.Fugu contains a sodium channel blocker. Ans: True
216.Local anesthetics produce their effects via blockade of potassium ion channels. Ans: False
217.Cone snail toxins are looking like promising new treatments for schizophrenia. Ans: False
218. The most important supporting cells in the nervous system are the neurons. Ans: False
219.One function of glial cells is to clean up the debris in the nervous system. Ans: True
220. The myelin sheath is formed by either oligodendrocytes or Schwann cells. Ans: True
221. Myelinated axons require more energy to transmit action potentials at faster rates of conduction. Ans: False
222. An excitatory message received by a neuron decreases the likelihood that it will send a message down its axon. Ans: False
223. The activity of excitatory synapses can be canceled by activity in inhibitory synapses. Ans: True
224. Temporal summation and spatial summation always occur together. Ans: False

225. Spatial summation, by definition, can only occur on a multipolar neuron. Ans: True

226.Neurons gather information, process it, and control other neurons. Ans: True
227.Axon terminals have never been observed to form synapses on the membranes of dendrites or soma. Ans: False
228. Neurotransmitters are carried across the synaptic cleft by the sodium potassium pump. Ans: False
229.Glycine is an inhibitory transmitter in the brain stem and spinal cord. Ans: True
230.Dopamine plays a key role in drug abuse. Ans: True
231.Substance P is an inhibitory neurotransmitter in the lower brain. Ans: False
232. Autoreceptors are located on the presynaptic membrane. Ans: True
233.Reuptake and inactivation are two mechanisms that prolong synaptic responses. Ans: False
234. The IPSP produced by acetylcholine is terminated by reuptake. Ans: False
235.Myasthenia gravis is the result of the loss of myelin. Ans: False
236.Myasthenia gravis can be treated with the enzyme monoamine oxidase. Ans: False
237. The effects of curare and myasthenia gravis are the same in symptoms as well as involving acetylcholine synapses. Ans: True
238.Conduction underneath the portions of axons covered by myelin is by graded potentials. Ans: True
239. Neural networks are a group of neurons that function together to carry out a process. Ans: True

240. Detecting cancer cells in a biopsy is one use for artificial neural networks.

Ans: False