/test-bank-business-analytics-data-an@lesis-and-decision-making-5ePathright

chapter 2

Indicate whether the statement is true or false.

- 1. There are four quartiles that divide the values in a data set into four equal parts.
 - True
 - b. False
- 2. A histogram is based on binning the variable, which means putting the variable into discrete categories. True

 - h. False
- 3. The median is one of the most frequently used measures of variability.
 - True a.
 - b. False
- 4. The mean is a measure of central tendency.
 - True a.
 - False b.
- 5. A population includes all elements or objects of interest in a study, whereas a sample is a subset of the population used to gain insights into the characteristics of the population.
 - True
 - b. False
- 6. Mean absolute deviation (MAD) is the average of the squared deviations.
 - True a.
 - b. False
- 7. A distribution of a numerical variable with no skewness is said to be symmetric.

 - False b.
- 8. Data can be categorized as cross-sectional or time series.
 - True
 - b. False
- 9. The count of categories is the only meaningful way to summarize categorical data.
 - True a.
 - b. False
- 10. A variable (or field or attribute) is a characteristic of members of a population, whereas an observation (or case or record) is a list of all variable values for a single member of a population.
 - True a.
 - False b.
- 11. Because they represent such extreme values, outliers should be eliminated from statistical analyses.

Name :		Class :	Dat e:
chapter 2			
	a.	True	
	b.	False	
12. Categorical variables ca	an be classified a	as either discrete or continuous.	
caregorious variables of	a.	True	
	b.	False	
13. The core purpose of tin	ne series graphs	is to detect historical patterns in the dat	ta.
1 1	a.	True	
	b.	False	
14. The number of car insu	rance policy hol	ders is an example of a discrete numeri	ical variable.
	a.	True	
	b.	False	
15. All nominal data may b	oe treated as ordi	nal data.	
•	a.	True	
	b.	False	
16. A frequency table indic	cates how many	observations fall within each category,	and a histogram is its graphical analog.
• •	a.	True	
	b.	False	
17. The value of the mean	times the numbe	er of observations equals the sum of all	of the data values.
	a.	True	
	b.	False	
18. Unlike histograms, box	plots depict onl	y one aspect of a variable.	
	a.	True	
	b.	False	
19. Assume that the histogramment, approximately 95% of			nean of 75 and standard deviation of 10.
, 11 J	a.	True	
	b.	False	
20. As a graphical tool, the skewed.	histogram is ide	eal for showing whether the distribution	n of a numerical variable is symmetric or
	a.	True	
	b.	False	
21. Both ordinal and nomin	nal variables are	categorical.	
	a.	True	
	b.	False	

Name :		Class :	Dat e:
chapter 2			
22. The difference betwe	en the largest and	smallest values in a data set is called	the range.
	a.	True	-
	b.	False	
		he spends to rent movies. The last sevabby spends on renting movies is \$7.	ven week's expenditures, in dollars, were
	a.	True	
	b.	False	
24. Suppose that a sample the sample mean is 17.50		s has a standard deviation of 2.50, the	en the sum of the squared deviations fron
	a.	True	
	b.	False	
25. In an extremely right-	-skewed distributi	on, the mean is much smaller than the	e median.
	a.	True	
	b.	False	
26. Phone numbers, Soci	•	ers, and zip codes are examples of nur	merical variables.
	a.	True	
	b.	False	
27. Using dummy variab	les is an efficient	way of determining counts of categori	ical variables.
	a.	True	
	b.	False	
28. Cross-sectional data over time.	are data on a popı	ulation at a distinct point in time, when	reas time series data are data collected
	a.	True	
	b.	False	
29. In the term "frequenc	y table," frequenc	ey refers to the counts of observations	in specified categories.
	a.	True	
	b.	False	
30. Time series graphs ch	nart the values of	one or more time series, using time or	the vertical axis.
	a.	True	
	b.	False	
31. A data set is typically	a rectangular arr	ay of data, with observations in colum	nns and variables in rows.
	a.	True	
	b.	False	
32. Suppose that a sample the sample mean is 30.	e of 10 observation	ons has a standard deviation of 3, then	the sum of the squared deviations from

Name :		Class :		Dat e:
chapter 2				
	a.	True		
	b.	False		
33. Age, height, and v	veight are examples of nun	nerical data.		
	a.	True		
	b.	False		
34. A distribution with	h a high kurtosis has almos	t all of its observa	tions within th	ree standard deviations of the mean.
	a.	True		
	b.	False		
35. The median of a darranged in ascending		ld be the average o	of the 15 th and	the 16 th values when the data values are
	a.	True		
	b.	False		
Indicate the answer	choice that best complet	es the statement	or answers th	e question.
36. A sample of 20 ob			sum of the squ	uared deviations from the sample mean is
	a. 1.	400		
	b.	320		
	c.	304		
	d. e.	288 180		
	C.	100		
	common type of chart for s	howing the distrib		
a. tım c. bin	e series graph		b. d.	histogram box plot
c. om			u.	ook plot
38. Where will you fir	nd "time" on a time series g	graph?		
	horizontal axis			
	o. first column			
	e. vertical axis			
C	l. last column			
39. The difference bet	ween the first and third qu	artile is called the		
a.	interquartile range			
b.	interdependent range			
c.	unimodal range			
d.	bimodal range			
e.	mid range			
40. A histogram that i	s positively skewed is also	called		
-	d to the right		b. skewed	to the left

Name		Class :		Dat e:
chapter 2				
c. balanced		d. s	ymmetrio	;
11. The average score for a classtudents in the class averaged	ss of 30 students was 75	5. The 20 male stude	ents in the	e class averaged 70. The 10 female
	a.	75		
	b.	85		
	c.	60		
	d.	70		
	e.	80		
b.	middle 50%			
b. c. d. e.	middle 50% upper 75% upper 90% 100%			
c. d. e.	upper 75% upper 90% 100%	ents, such as a stock	c market o	crash?
c. d. e. 3. What measure of distribution a. asymmetric	upper 75% upper 90% 100% on relates to extreme even	ents, such as a stock	b.	erash? kurtosis
c. d. e. 3. What measure of distribution	upper 75% upper 90% 100% on relates to extreme even	ents, such as a stock		
c. d. e. 3. What measure of distribution a. asymmetric c. negatively sk	upper 75% upper 90% 100% on relates to extreme even		b. d.	kurtosis skewness
c. d. e. 3. What measure of distribution as asymmetric c. negatively sk	upper 75% upper 90% 100% on relates to extreme even		b. d.	kurtosis skewness
c. d. e. 3. What measure of distribution and asymmetric contegratively sk 4. In a generic box plot, the versa.	upper 75% upper 90% 100% on relates to extreme even tewed ertical line inside the bo		b. d.	kurtosis skewness
c. d. e. 3. What measure of distribution and asymmetric contegratively sk 4. In a generic box plot, the versa. b. c.	upper 75% upper 90% 100% on relates to extreme everewed ertical line inside the bomean median mode		b. d.	kurtosis skewness
c. d. e. 3. What measure of distribution a. asymmetric c. negatively skew. 4. In a generic box plot, the vera a. b. c. d.	upper 75% upper 90% 100% on relates to extreme even where the description is a second control of the bold of the b		b. d.	kurtosis skewness

- - 95% of all values are above this value
 - 95% of the time you will observe this value
 - d. there is a 5% chance that this value is incorrect
 - there is a 95% chance that this value is correct
- 46. The median can also be described as the
 - a. middle observation when the data values are arranged in ascending order
 - b. population mean
 - c. second percentile
 - d. the average of all values
- 47. A variable is classified as ordinal if
 - there is a natural ordering of categories

Name	Class	Dat
		۵.
•		℧.

- b. there is no natural ordering of categories
- c. the data arise from continuous measurements
- d. we track the variable through a period of time
- 48. If the mean is 75 and two observations have values of 65 and 85, what is the squared deviation of each?

a. 100
b. 20
c. 400
d. 10

- 49. Coding males as 1 and females as 0 in a data set illustrates the use of
 - a. nominal variables

b. dummy variables

c. numerical variables

- d. ordinal variables
- 50. In order for the characteristics of a sample to be generalized to the entire population, it should be:
 - a. symbolic of the population

b. atypical of the population

c. representative of the population

- d. illustrative of the population
- 51. Categorizing age variables as "young," "middle-aged," and "elderly" is an example of

a. counting

b. ordering

c. value adding

d. binning

e. categorizing

- 52. How is the median defined if the number of observations is even?
 - a. the average of the two middle observations
 - b. the difference between the two middle observations
 - c. the most frequent observation
 - d. the difference between the highest and smallest observation
- 53. The mode is best described as the
 - a. middle observation
 - b. same as the average
 - c. 50th percentile
 - d. most frequently occurring value
 - e. third quartile
- 54. The length of the box in the box plot portrays the
 - a. mean
 - b. median
 - c. range
 - d. interquartile range

Name :				Class				Dat e:
chapter 2								
		e.	third quartile					
55. Data t	hat ar	rise from c	ounts are called					
oo. Bata t	a.		ous data		b	٠.	nominal data	
	c.	counted	l data		d		discrete data	
56 Gende	r and	l <i>State</i> are	examples of which	ch type of data?				
so. Genue	a.	Discrete	_	b	٠.	Con	tinuous data	
	c.	Categorie		d			inal data	
57 In 2 04	onorio	hov plot	the r incide the h	oox indicates the location	of th	10		
Ji. III a go	a.	mean	the x mside the t	box marcates the location by		medi	ian	
	c.	minimun	n value	d			imum value	
50 A	1	C 1 .		. 1			1	
58. A sam	ipie o a.	i a populai catego		particular point in time is	cate	egoriz b.	zed as: discrete	
	с.	•	sectional			d.	time-series	
	О.	Closs	Cotional			u.	time series	
59. As a n	neasu	re of varia	-	fined as the maximum val	lue r	ninus	s the minimum valu	ae?
		a.	variance					
		b.	standard devi	ation				
		c.	mean					
		d.	range					
		e.	median					
60. Which	n of th	ne followin	ng statements is to	rue for the following data	valı	ies: 7	, 5, 6, 4, 7, 8, and	12?
	a.	The mean	n, median and mo	ode are all equal				
	b.	Only the	mean and mediar	n are equal				
	c.	Only the	mean and mode	are equal				
	d.	Only the	median and mod	e are equal				
61. Which	n of th	ne followin	ng are the three m	nost common measures of	cen	tral te	endency?	
8	a. 1	Mean, med	lian, and mode				•	
ł	o. I	Mean, vari	ance, and standar	rd deviation				
(e. 1	Mean, med	lian, and variance	e				
(d. 1	Mean, med	lian, and standard	d deviation				
6	e. I	First quarti	le, second quarti	le, and third quartile				
62. With s			l-shaped" distribi	utions, approximately wha	at pe	rcent	of the observation	ns are within two standard
ue viatiofis	5 OI II	ic ilicali!	a.	50%				
			ъ. b.	68%				
			c.	95%				

99.7%

d.

e. 100%

- 63. Researchers may gain insight into the characteristics of a population by examining a
 - a. mathematical model describing the population
 - b. sample of the population
 - c. description of the population
 - d. replica
- 64. Excel stores dates as
 - a. numbers

b. variables

c. records

- d. text
- 65. Expressed in percentiles, the interquartile range is the difference between the
 - a. 10th and 60th percentiles
 - b. 15th and 65th percentiles
 - c. 20^{th} and 70^{th} percentiles
 - d. 25th and 75th percentiles
 - e. 35th and 85th percentiles
- 66. The daily closing values of the Dow Jones Industrial Average are examples of
 - a. cross-sectional data

o. discrete data

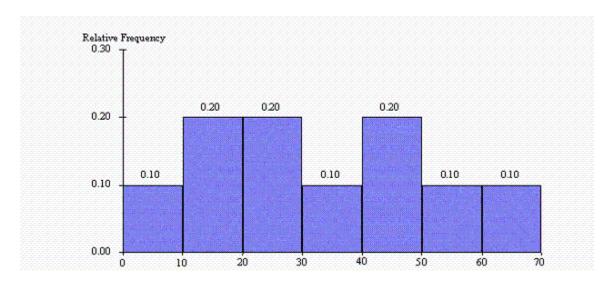
c. time-series data

d. continuous data

Below you will find summary measures on starting salaries for classroom teachers across the United States. You will also find a list of selected states and their average starting teacher salary. All values are in thousands of dollars.

Starting salaries for classroom teachers across the United States

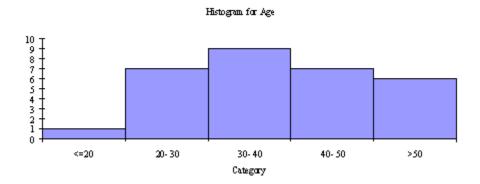
	Salary
Count	51.000
Mean	35.890
Median	35.000
Standard deviation	6.226
Minimum	26.300
Maximum	50.300
Variance	38.763
First quartile	31.550
Third quartile	40.050


Selected states and their average starting teacher salary

State	Salary
Alabama	31.3
Colorado	35.4

Connecticut	50.3
Delaware	40.5
Nebraska	31.5
Nevada	36.2
New Hampshire	35.8
New Jersey	47.9
New Mexico	29.6
South Carolina	31.6
South Dakota	26.3
Tennessee	33.1
Texas	32.0
Utah	30.6
Vermont	36.3
Virginia	35.0
Wyoming	31.6

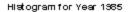
67. Which of the states listed paid their teachers average salaries that are below 75% of all average salaries?

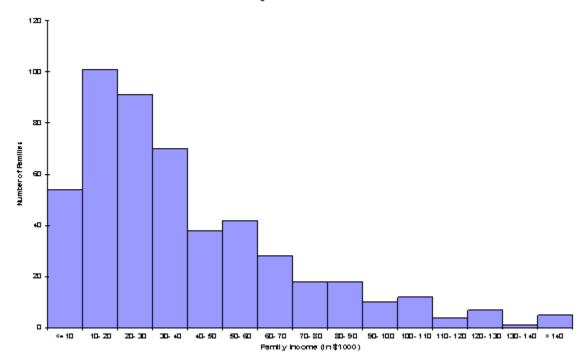

The histogram below represents scores achieved by 250 job applicants on a personality profile.

- 68. Seventy percent of the job applicants scored above what value?
- 69. Half of the job applicants scored below what value?

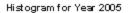
A financial analyst collected useful information for 30 employees at Gamma Technologies, Inc. These data include each selected employees' gender, age, number of years of relevant work experience prior to employment at Gamma, number of years of employment at Gamma, number of years of post-secondary education, and annual salary.

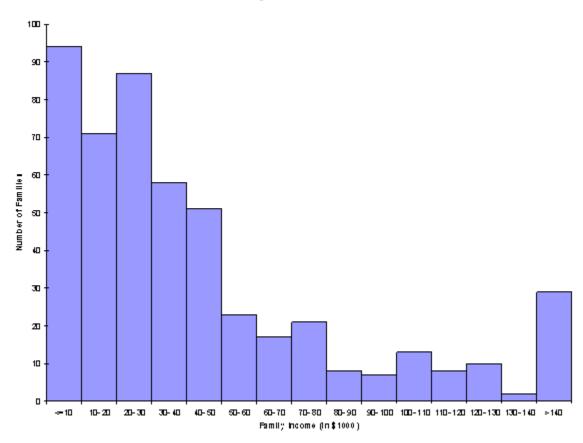
70. Based on the histogram shown below, how would you describe the age distribution for these data?



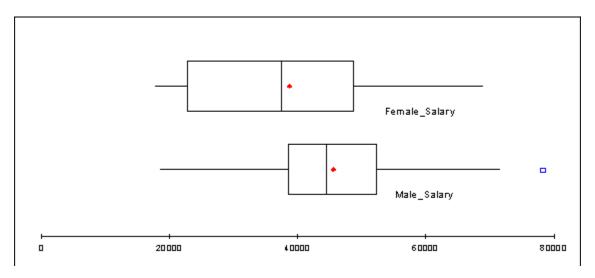

71. A question of great interest to economists is how the distribution of family income has changed in the United States during the last 20 years. The summary measures and histograms shown below are generated for a sample of 500 family incomes, using the 1985 and 2005 income for each family in the sample.

Summary Measures:


	Year 1985	Year 2005
Mean	40.216	45.916
Median	32.000	30.000
Standard deviation	31.530	46.992
First quartile	17.000	16.000
Third quartile	54.000	56.000
5th percentile	9.000	6.000
95th percentile	102.100	151.100


Name	Class	Dat
		Δ.

Name	Class	Dat
	·	۵.
		ᠸ.


Based on these results, discuss as completely as possible how the distribution of family income in the United States changed from 1985 to 2005.

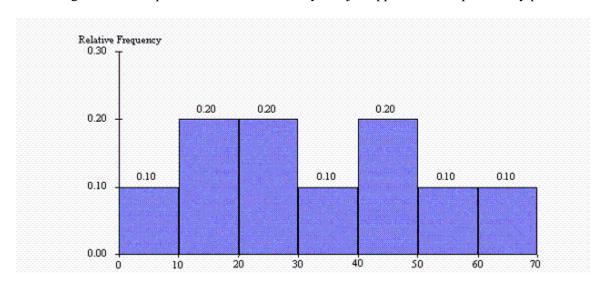
In an effort to provide more consistent customer service, the manager of a local fast-food restaurant would like to know the dispersion of customer service times in relation to their average value for the facility's drive-up window. The table below provides summary measures for the customer service times (in minutes) for a sample of 50 customers collected over the past week.

Count	50.000
Mean	0.873
Median	0.885
Standard deviation	0.432
Minimum	0.077
Maximum	1.608
Variance	0.187
Skewness	-0.003

72. Explain why the mean is slightly lower than the median in this case.

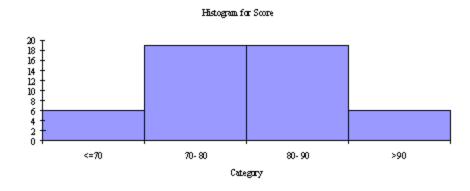
A manager for Marko Manufacturing, Inc. has recently been hearing some complaints that women are being paid less than men for the same type of work in one of their manufacturing plants. The box plots shown below represent the annual salaries for all salaried workers in that facility (40 men and 34 women).

- 73. What can you say about the shape of the distributions given the accompanying box plots?
- 74. Would you conclude that there is a difference between the salaries of women and men in this plant? Justify your answer.


The data shown below contains family incomes (in thousands of dollars) for a set of 50 families sampled in 2000 and 2010. Assume that these families are good representatives of the entire United States.

2000	2010	2000	2010	2000	2010
58	54	33	29	73	69
6	2	14	10	26	22
59	55	48	44	64	70
71	57	20	16	59	55
30	26	24	20	11	7
38	34	82	78	70	66
36	32	95	97	31	27
33	29	12	8	92	88
72	68	93	89	115	111
100	96	100	102	62	58
1	0	51	47	23	19
27	23	22	18	34	30
22	47	50	75	36	61
141	166	124	149	125	150
72	97	113	138	121	146
165	190	118	143	88	113
79	104	96	121		

75. Generate a box plot to summarize the data. What does the box plot indicate?


76. A political figure running for re-election claimed that the country was better off in 2010 than in 2000, because the average income increased. Do you agree?

The histogram below represents scores achieved by 250 job applicants on a personality profile.

77. How many job applicants scored between 10 and 30?

78. An operations management professor is interested in how her students performed on her midterm exam. The histogram shown below represents the distribution of exam scores (where the maximum score is 100) for 50 students.

Based on this histogram, how would you characterize the students' performance on this exam?

Statistics professor has just given a final examination in his statistical inference course. He is particularly interested in learning how his class of 40 students performed on this exam. The scores are shown below.

77 81 74 77 79 73 80 85 86 73 84 81 73 91 76 77 95 76 83 75

79. Explain why the mean and median are different.

The data shown below contains family incomes (in thousands of dollars) for a set of 50 families sampled in 2000 and 2010. Assume that these families are good representatives of the entire United States.

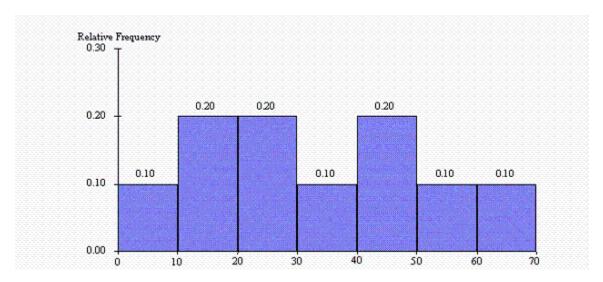
2000	2010	2000	2010	2000	2010
58	54	33	29	73	69
6	2	14	10	26	22
59	55	48	44	64	70
71	57	20	16	59	55
30	26	24	20	11	7
38	34	82	78	70	66
36	32	95	97	31	27
33	29	12	8	92	88
72	68	93	89	115	111
100	96	100	102	62	58
1	0	51	47	23	19
27	23	22	18	34	30
22	47	50	75	36	61
141	166	124	149	125	150
72	97	113	138	121	146
165	190	118	143	88	113
79	104	96	121		

80. Find the mean, median, standard deviation, first and third quartiles, and the 95th percentile for family incomes in both years.

Statistics professor has just given a final examination in his statistical inference course. He is particularly interested in learning how his class of 40 students performed on this exam. The scores are shown below.

77	81	74	77	79	73	80	85	86	73
83	84	81	73	75	91	76	77	95	76
90	85	92	84	81	64	75	90	78	78
82	78	86	86	82	70	76	78	72	93

81. What are the mean and median scores on this exam?


A financial analyst collected useful information for 30 employees at Gamma Technologies, Inc. These data include each selected employees' gender, age, number of years of relevant work experience prior to employment at Gamma, number of years of employment at Gamma, number of years of post-secondary education, and annual salary.

82. Indicate the type of data for each of the six variables included in this set.

The following data represent the number of children in a sample of 10 families from Chicago: 4, 2, 1, 1, 5, 3, 0, 1, 0, and 2.

83. Compute the mean number of children.

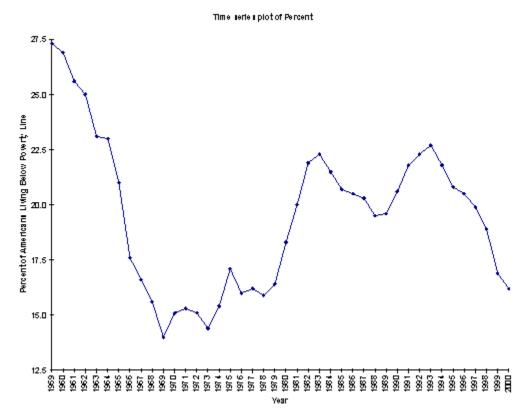
The histogram below represents scores achieved by 250 job applicants on a personality profile.

84. How many job applicants scored above 50?

Suppose that an analysis of a set of test scores reveals that: $Q_1 = 45$, $Q_2 = 85$, $Q_3 = 105$

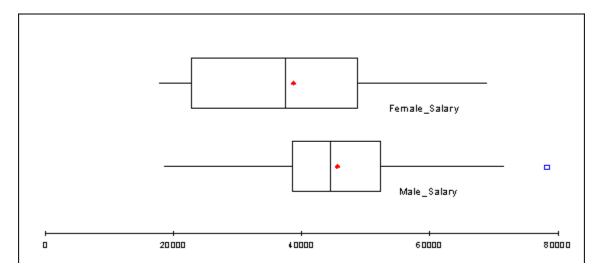
85. Calculate the interquartile range. What does this tell you about the data?

The following data represent the number of children in a sample of 10 families from Chicago: 4, 2, 1, 1, 5, 3, 0, 1, 0, and 2.


86. Is the distribution of the number of children symmetrical or skewed? Why?

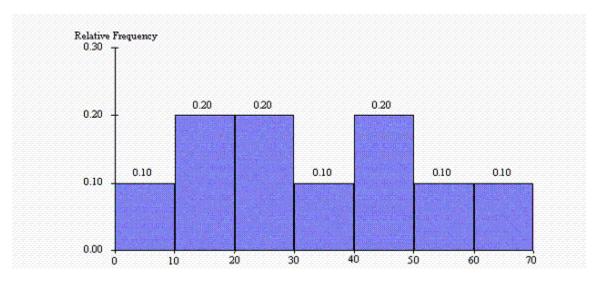
Suppose that an analysis of a set of test scores reveals that: $Q_1 = 45$, $Q_2 = 85$, $Q_3 = 105$

87. What can you say about the relative position of each of the observations 34, 84, and 104?


88. The proportion of Americans under the age of 18 who are living below the poverty line for each of the years 1959 through 2000 is used to generate the following time series plot.

Name	Class	Dat
•	•	e:

How successful have Americans been recently in their efforts to win "the war against poverty" for the nation's children?


A manager for Marko Manufacturing, Inc. has recently been hearing some complaints that women are being paid less than men for the same type of work in one of their manufacturing plants. The box plots shown below represent the annual salaries for all salaried workers in that facility (40 men and 34 women).

Name	Class	Dat
	i	۵.
		ᠸ.

89. How large must a person's salary should be to qualify as an outlier on the high side? How many outliers are there in these data?

The histogram below represents scores achieved by 250 job applicants on a personality profile.

90. What percentage of the job applicants scored between 30 and 40?

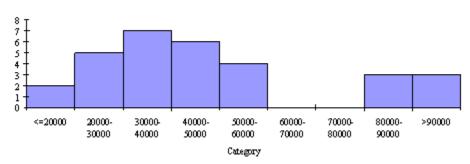
Below you will find summary measures on starting salaries for classroom teachers across the United States. You will also find a list of selected states and their average starting teacher salary. All values are in thousands of dollars.

Starting salaries for classroom teachers across the United States

	Salary
Count	51.000
Mean	35.890
Median	35.000
Standard deviation	6.226
Minimum	26.300
Maximum	50.300
Variance	38.763
First quartile	31.550
Third quartile	40.050

Selected states and their average starting teacher salary

State	Salary
Alabama	31.3
Colorado	35.4
Connecticut	50.3
Delaware	40.5
Nebraska	31.5
Nevada	36.2
New Hampshire	35.8
New Jersey	47.9
New Mexico	29.6


South Carolina	31.6
South Dakota	26.3
Tennessee	33.1
Texas	32.0
Utah	30.6
Vermont	36.3
Virginia	35.0
Wyoming	31.6

91. Which of the states listed paid their teachers average salaries that exceed at least 75% of all average salaries?

A financial analyst collected useful information for 30 employees at Gamma Technologies, Inc. These data include each selected employees' gender, age, number of years of relevant work experience prior to employment at Gamma, number of years of employment at Gamma, number of years of post-secondary education, and annual salary.

92. Based on the histogram shown below, how would you describe the salary distribution for these data?

Histogram for Armual Salary

In an effort to provide more consistent customer service, the manager of a local fast-food restaurant would like to know the dispersion of customer service times in relation to their average value for the facility's drive-up window. The table below provides summary measures for the customer service times (in minutes) for a sample of 50 customers collected over the past week.

Count	50.000
Mean	0.873
Median	0.885
Standard deviation	0.432
Minimum	0.077
Maximum	1.608
Variance	0.187
Skewness	-0.003

93. Are the empirical rules applicable in this case? If so, apply them and interpret your results. If not, explain why the empirical rules are not applicable here.

Name	Class	Dat
		e:

94. What do these statistics tell you about the shape of the distribution?

In an effort to provide more consistent customer service, the manager of a local fast-food restaurant would like to know the dispersion of customer service times in relation to their average value for the facility's drive-up window. The table below provides summary measures for the customer service times (in minutes) for a sample of 50 customers collected over the past week.

Count	50.000
Mean	0.873
Median	0.885
Standard deviation	0.432
Minimum	0.077
Maximum	1.608
Variance	0.187
Skewness	-0.003

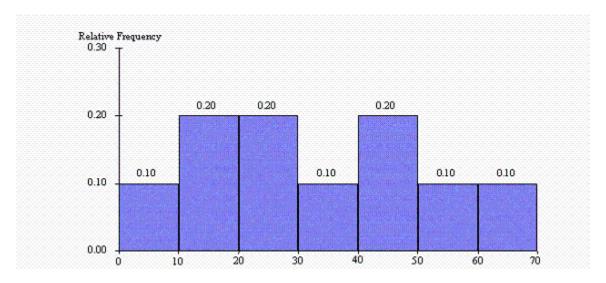
95. Interpret the variance and standard deviation of this sample.

Below you will find summary measures on starting salaries for classroom teachers across the United States. You will also find a list of selected states and their average starting teacher salary. All values are in thousands of dollars.

Starting salaries for classroom teachers across the United States

	Salary
Count	51.000
Mean	35.890
Median	35.000
Standard deviation	6.226
Minimum	26.300
Maximum	50.300
Variance	38.763
First quartile	31.550
Third quartile	40.050

Selected states and their average starting teacher salary


State	Salary
Alabama	31.3
Colorado	35.4
Connecticut	50.3
Delaware	40.5
Nebraska	31.5
Nevada	36.2
New Hampshire	35.8
New Jersey	47.9
New Mexico	29.6
South Carolina	31.6
South Dakota	26.3

Tennessee	33.1	
Texas	32.0	
Utah	30.6	
Vermont	36.3	
Virginia	35.0	
Wyoming	31.6	

96. How would you describe the salary of Virginia's teachers compared to those across the entire United States? Justify your answer.

97. What salary amount represents the second quartile?

The histogram below represents scores achieved by 250 job applicants on a personality profile.

98. What percentage of the job applicants scored below 60?

99. The data below represents monthly sales for two years of beanbag animals at a local retail store (Month 1 represents January and Month 12 represents December). Given the time series plot below, do you see any obvious patterns in the data? Explain.

Name	Class	Dat
•	•	Δ'

The following data represent the number of children in a sample of 10 families from Chicago: 4, 2, 1, 1, 5, 3, 0, 1, 0, and 2.

100. Compute the median number of children.

Name	Class	Dat
		e:

Answer Key

- 1. False
- 2. True
- 3. False
- 4. True
- 5. True
- 6. False
- 7. True
- 8. True
- 9. True
- 10. True
- 11. False
- 12. False
- 13. True
- 14. True
- 15. False
- 16. True
- 17. True
- 18. False
- 19. True
- 20. True
- 21. True
- 22. True
- 23. True
- 24. False

Name	Class	Dat
chapter 2	·	e:
25. False		
26. False		
27. True		
28. True		
29. True		
30. False		
31. False		
32. False		
33. True		
34. False		
35. True		
36. c		
37. b		
38. a		
39. a		
40. a		
41. b		
42. b		
43. b		
44. b		
45. a		
46. a		
47. a		

48. a

49. b

:	<u></u> :	e:
<u>chapter 2</u>		
50. c		
51. d		
52. a		
53. d		
54. d		
55. d		
56. c		
57. a		
58. c		
59. d		
60. a		
61. a		
62. c		
63. b		
64. a		
65. d		
66. c		
67. Alabama at 31.3; Nebraska at 31.5; New Mexico at 29.6; S	South Dakota at 26.3; and Utah at 30.6 (a	all those < 31.55).
68. 20		
69. 30		
70. The age distribution is skewed slightly to the right. Largest are above the age of 30 years and only one worker is 20 y	grouping is in the 30-40 range. This mea	ans that most workers

Class

Name

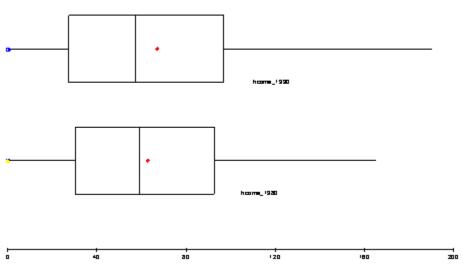
71.

Dat

These summary measures say quite a lot. The mean has increased for 2005 when compared with 1985, although the median has decreased. There is also more variation. In fact, the 5th percentile has decreased Copyright Cengage Learning. Powered by Cognero.

Page 25

slightly for 2005 when compared with 1985, whereas the 95th percentile is much larger -- indicating that the rich people are getting richer. This behavior is also evident in the two histograms, which use the same categories for ease of comparison.


72.

The data is slightly skewed to the left. This causes the mean to be slightly lower than the median. It is important to understand that service times are bounded on the lower end by zero (it is impossible for the service time to be negative). However, there is no boundary on the maximum service time. Therefore, the smaller service times cause the mean to be somewhat lower than the median.

73.

They both appear to be slightly skewed to the right (both have a mean > median). The total variation seems to be close for both distributions (with one outlier for the male salaries), but there seems to be more variation in the middle 50% for the women than for the men. There seem to be more men's salaries clustered more closely around the mean than for the women.

74. Yes. The men seem to have higher salaries than the women do in many cases. We can see from the box plots that the mean and median values for the men are both higher than for the women. You can also see from the box plots that the middle 50% of salaries for men is above the median for women. This means that if you were in the 25th percentile for men, you would be above the 50th percentile for women. You can also see that the mean and median salaries for the men are about \$10,000 above those for the women.

75. The box plot shows that there is not much difference between the two populations.

76.

It is true that the mean increased slightly, but the median decreased and the standard deviation increased. The 95th percentile shows that the mean increase might be because the rich got richer.

Name	Class	Dat
		Δ.
		C.

77.

100

78.

Exam scores are fairly normally distributed. Majority of scores (76%) are between 70 and 90 points, while 12% of scores are above 90 and 12% of scores are 70 or below.

79. There are few higher exam scores that tend to pull the mean away from the middle of the distribution. While there is a slight amount of positive skewness in the distribution (skewness = 0.182), the mean and the median are essentially equivalent in this case.

80.	Income 2000	Income 2010	
Mean		62.820	67.120
Median		59.000	57.500
Standard deviation		39.786	48.087
First quartile		30.250	27.500
Third quartile		92.750	97.000
95 th percentile		124.550	149.55
po porcorruio			

81. Mean = 80.40, Median = 79.50

82.

Gender – categorical, nominal Age – numerical, continuous Prior experience – numerical, discrete Gamma experience – numerical, discrete Education – numerical, discrete Annual salary – numerical, continuous

83.

Mean = 1.90

84.

50

85.

IQR = $Q_3 - Q_1 = 60$. This means that the middle 50% of the test scores are between 45 and 105.

86.

The distribution is positively skewed because the mean is larger than the median.

87.

Since 34 is less than Q_1 , the observation 34 is among the lowest 25% of the values. The value 84 is a bit smaller than the middle value, which is $Q_2 = 85$. Since $Q_3 = 105$, the value 104 is larger than about 75% of the values.

88.

Americans have been relatively unsuccessful in winning the war on poverty in the 1990s. This is especially true when you compare recent poverty rates with those of the years from 1969 through 1979. However, at least the curve is trending downward in the more recent years.

89. A person's salary should be somewhere above \$70,000. There is one male salary that would be considered an outlier (at approximately \$80,000)

90. 10%

91.

Connecticut at 50.3; Delaware at 40.5; and New Jersey at 47.9 (all those \$\infty\$40.05).

92.

The salary distribution is skewed to the right. There appears to be several workers who are being paid substantially more than the others. If you eliminate those above \$80,000, the salaries are fairly normally distributed around \$35,000.

93.

Considering that this distribution is only very slightly skewed to the left, it is acceptable to apply the empirical rules as follows:

Approximately 68% of the customer service times will fall between 0.873 \pm 0.432, that is between 0.441 and 1.305 minutes.

Approximately 95% of the customer service times will fall between 0.873 \pm 2(0.432), that is between 0.009 and 1.737 minutes.

Approximately 99.7% of the customer service times will fall between 0.873 \pm 3(0.432), that is between 0 and 2.169 (lower end is set to zero because service times cannot assume negative values).

94.

The fact that $Q_2 - Q_1 = 40$ is greater than $Q_3 - Q_2 = 20$ indicates that the distribution is skewed to the left.

95.

The variance = 0.187 (minutes squared) and this represents the average of the squared deviations from the mean. The standard deviation = 0.432 (minutes) and is the square root of the variance. Both the variance and standard deviation measure the variation around the mean of the data. However, it is easier to interpret the standard deviation because it is expressed in the same units (minutes) as the values of the random variable (customer service time).

96.

Virginia' teacher salary = \$35,000, which is also the median. Virginia is at the 50th percentile, meaning that 50% of the teachers' salaries across the U.S. are below the Virginia teacher salary and 50% of the salaries are above.

Name :	Class	Dat e:
<u>chapter 2</u>		

97.

\$35,000 (median)

98. 90%

99.

This is a representation of seasonal data. There seems to be a small increase in months 3, 4, and 5 and a large increase at the end of the year. The sales of this item seem to peak in December and have a significant dropoff in January.

100. Median = 1.5