Chapter 2

1. The potential energy V of a pendulum of length 1 and mass 2, relative to its rest position is $V = 2g(1 - \cos\theta)$.

Compute the average rate of change of the potential energy over the angle interval

ANSWER:

2. Let S(x) denote the slope of the line segment connecting the origin to the point (x,y) on the graph of the

ANSWER:

 $T_f = \frac{2V}{g} \sin \theta$. Compute the average rate of 3. The flight time of a shell shot at an angle θ and initial velocity V is change of the flight time for θ in the interval $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ ANSWER:

4. Let S(x) denote the slope of the line segment connecting the origin to the point (x,y) on the graph of the Copyright Macmillan Learning. Powered by Cognero. Page 1

Chapter 2

equation $y = \sqrt{x-1}$. Calculate the average rate of change of S(x) for $2 \le x \le 5$.

ANSWER:

$$-\frac{1}{30}$$

5. The volume of a cone of radius R and height H is $V = \frac{\pi R^2 H}{3}$

What is the average rate of change of V if the radius increases from 1 to 3 and the height remains unchanged? ANSWER: $\frac{4\pi H}{2}$

6. The electrical field due to an infinite rod at a point at distance r from the rod is perpendicular to the rod and

 $E(r) = \frac{1}{2\pi\varepsilon_0} \cdot \frac{\lambda}{r}$ has a magnitude of ε_0 is a constant and ε_0 is the longitudinal charge density). Find the average rate of change of the field along the interval $2 \le r \le 4$.

ANSWER:

7. Let S(x) denote the slope of the line segment connecting the origin to the point (x,y) on the graph of the semiellipse $y = 2\sqrt{1 - \frac{x^2}{9}}$. Calculate the average rate of change of S(x) for $2 \le x \le 2.5$

Chapter 2

ANSWER:

-0.206 per unit length

8. The electrical field caused by an electrical charge q at a point at distance r is $E = \frac{kq}{r^2}$ (k is a constant). Find the average rate of change of the field along the interval $1 \le r \le 3$.

ANSWER: $-\frac{4kq}{9}$

9. The volume of a sphere of radius R is radius increases from R=1 to R=3?

ANSWER: $V = \frac{4\pi R^3}{3}$ What is the average rate of change of the volume when the radius increases from R=1 to R=3?

10. Let S(x) denote the slope of the line segment connecting the origin to the point (x,y) on the graph of the equation $y = \sqrt{x-1}$. Calculate the average rate of change of S(x) for $5 \le x \le 10$.

ANSWER:

$$-\frac{1}{50}$$

11. The position of a particle is given by $g(t) = 2t^2 + 5$. Compute the average velocity over the time interval [4, 6]

Chapter 2

. Estimate the instantaneous velocity at t = 4.

ANSWER:

Average velocity over [4,6]: 20

Instantaneous velocity at t = 4: 16

12. A balloon is blown up and takes the shape of a sphere. What is the average rate of change of the surface area of the balloon as the radius increases from 3 to 4 cm?

ANSWER:

 28π

13. Determine $\lim_{x\to 1^+} f(x)$ and $\lim_{x\to 1^-} f(x)$ for the function shown in the figure.

ANSWER:

- $\lim_{x \to 1} f(x) = 2 \lim_{x \to 1} f(x) = 3$
- 14. The greatest integer function is defined by [x] = n, where n is the unique integer such that $n \le x < n+1$. The graph of f(x) = x [x] is shown in the figure.
- A) For which values of c does $\lim_{x \to c^{-}} f(x)$ exist?
- B) For which values of c does $\lim_{x \to c+} f(x)$ exist?
- C) For which values of c does $\lim_{x\to c} f(x)$ exist

ANSWER:

- A) All C
- B) All C
- C) Every real number c that is not an integer
- 15. The graph of a function y = f(x) is shown in the figure.

Determine the following limits or state that the limit does not exist (if the limit is infinite, write ∞ or $-\infty$):

- A) $\lim_{x\to 0+} f(x)$ B) $\lim_{x\to 5-} f(x)$ C) $\lim_{x\to 5+} f(x)$ D) $\lim_{x\to 5} f(x)$ E) $\lim_{x\to 6-} f(x)$
- G) $\lim_{x \to 6} f(x)$ H) $\lim_{x \to 7-} f(x)$ I) $\lim_{x \to 7+} f(x)$

ANSWER:

- A) 0 B) 1 C) $\frac{1}{2}$ D) Does not exist E) ∞
- $F) \infty G) \infty H) \infty I)1$
- J) Does not exist

16. Determine the one-sided limits at c = 1,3,5 of the function f(x) shown in the figure and state whether the limit exists at these points.

ANSWER:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 3$$
; limit exists

$$\lim_{x \to 3^{-}} f(x) = 1, \lim_{x \to 3^{+}} f(x) = 4$$
; limit does not exist

$$\lim_{x \to 5^{-}} f(x) = 3, \quad \lim_{x \to 5^{+}} f(x) = 4$$
; limit does not exist

17. Consider the function $f(x) = \frac{[x]}{x}$ for x > 0. (Here, [x] denotes the greatest integer function.)

A) Write f(x) in piecewise form.

What is f(n) for positive integers n?

B) Determine $\lim_{x\to 3^-} f(x)$ and $\lim_{x\to 3^+} f(x)$

C) For which values of c does $\lim_{x \to c} f(x)$ exist?

ANSWER:

$$f(x) = \begin{cases} 0 & 0 < x < 1 \\ \frac{n}{x} & n \le x < n+1 & n = 1, 2, \dots \end{cases}$$

A)
$$f(n) = 1$$
 $n = 1, 2, ...$

B)
$$\frac{2}{3}$$
,

C) The limit exists for all positive real numbers that are not integers.

18. Determine the one-sided limits at c = 1, 2, 3, 4 of the function shown in the figure and state whether the limit exists at these points.

ANSWER:

:Left-sided:Right-sided:Limit

1:2.5:2.5:Exists (2.5)

2:3:2:Does not exist

3:1:3.5:Does not exist

4:2.5:3:Does not exist

Chapter 2

19. Consider the function f(x) = x + 1 - [x] for $x \ge 1$. (Here, [x] denotes the greatest integer function.)

A) Write f in piecewise form. What is f(n) for positive integers $n \ge 1$?

B) Find $\lim_{x\to 2^{-}} f(x)$ and $\lim_{x\to 2^{+}} f(x)$

C) For which values of c does the limit $\lim_{x\to c} f(x)$ fail to exist?

ANSWER:

A)
$$f(x) = x + 1 - n$$
 for $n \le x < n + 1$, $f(n) = 1$

 $B)^{2,1}$

C) The limit fails to exist for all positive integers.

20. Determine the one-sided limits at c = 1, 2, 3, 4 of the function shown in the figure and state whether the limit exists at these points.

ANSWER:

c:Left-sided:Right-sided:Limit

1:3:4:Does not exist

2:5:5:Exists (5)

3:3.5:5:Does not exist

4:3:1.5:Does not exist

21. Let f(x) be the following function defined for $-0.5 \le x \le 4.5$:

$$f(x) = \begin{cases} 1, & \text{if } \sin\left(\frac{\pi x}{2}\right) > 0\\ -1, & \text{if } \sin\left(\frac{\pi x}{2}\right) < 0\\ 0, & \text{if } \sin\left(\frac{\pi x}{2}\right) = 0 \end{cases}$$

Chapter 2

Write f(x) as a piecewise-defined function where the intervals are in terms of x instead of $\sin\left(\frac{\pi x}{2}\right)$, sketch its graph, and determine the points where the limit of f(x) does not exist. Find the one-sided limits at these points. *ANSWER*: $\begin{bmatrix} -1 & -0.5 \le x < 0 \end{bmatrix}$

$$f(x) = \begin{cases} -1 & -0.5 \le x < 0 \\ 0 & x = 0 \\ 1 & 0 < x < 2 \\ 0 & x = 2 \\ -1 & 2 < x < 4 \\ 0 & x = 4 \\ 1 & 4 < x \le 4.5 \end{cases}$$

$$x = -0.5, 0, 2, 4, 4.5$$

$$\lim_{x \to -0.5+} f(x) = -1 \quad \lim_{x \to 0-} f(x) = -1 \quad \lim_{x \to 0+} f(x) = 1 \quad \lim_{x \to 2-} f(x) = 1$$

$$\lim_{x \to 2+} f(x) = -1 \quad \lim_{x \to 4-} f(x) = -1 \quad \lim_{x \to 4-} f(x) = 1$$

$$f(x)$$

22. Find a real number c such that $\lim_{x\to 1} f(x)$ exists and compute the limit.

$$f(x) = \begin{cases} x - \frac{3}{x - 2} & x < 1 \\ 10 & x = 1 \\ \frac{c}{(x + 1)^2} & x > 1 \end{cases}$$

ANSWER:

$$c = 16$$
; $\lim_{x \to 1} f(x) = 4$

 $\lim_{x \to a} f(x) = L$. Determine whether each of the following statements is always true, never true, or sometimes true.

$$\lim_{x \to a^{-}} f(x) = L$$

B)
$$4f(a) = 3L$$

C)
$$\lim_{x \to a^{-}} f(x) - \lim_{x \to a^{+}} f(x) < 0$$

$$\lim_{x \to a^{-}} f(x)$$

$$\lim_{x \to a^{-}} f(x) = 1$$
D)
$$\lim_{x \to a^{-}} f(x)$$

Chapter 2

ANSWER:

- A) Always
- B) Sometimes
- C) Never
- D) Sometimes (note the case when $\lim_{x \to a} f(x) = 0$)

24. Compute the following one-sided limits:

A)
$$\lim_{x \to 2^{-}} \frac{\sqrt{2-x}}{x^2 + 5x}$$

B)
$$\lim_{\delta \to 0+} \frac{\theta^3 \cos^2 \theta}{\sin \theta}$$

$$\lim_{\theta \to \frac{\pi}{2} +} \frac{\theta^3}{\tan \theta}$$

ANSWER:

25. Evaluate the limits using the Limit Laws:

A)
$$\lim_{x \to -1} (x^3 - 2x^2 + 1)$$

$$\lim_{t \to 1} \frac{t^2 - t}{t + 1}$$

C)
$$\lim_{x\to 0} \frac{1+\cos x}{x^3+2}$$

D)
$$\lim_{t\to 0} \frac{3\sin t}{2t}$$

ANSWER:

$$A) -2$$

- B) 0
- C) 1
- D) 2

26. Which of the following functions are examples of the existence of the limit $\lim_{x\to 0} \frac{f(x)}{g(x)}$, although the limits of f(x) and g(x) as $x\to 0$ do not exist?

a.
$$f(x) = x \quad g(x) = \frac{1}{x}$$

b.
$$f(x) = \frac{\sin x}{x} \quad g(x) = \frac{1}{x}$$

c.
$$f(x) = \frac{1}{x}$$
 $g(x) = \frac{1}{x^3}$

d.
$$f(x) = x^2$$
 $g(x) = \cos x$

e.
$$f(x) = \frac{x}{\sin x} \quad g(x) = \frac{1}{x}$$

ANSWER:

c

27. Let f(x), g(x) be functions and let F(x) = f(x) - g(x). Consider the following statement: If $\lim_{x \to x_0} F(x)$ exist, then $\lim_{x \to x_0} f(x)$ also exists. To prove this statement, we should use which of the following? $\lim g(x)$

- The statement is not true. a.
- b. The Product Rule applied to g and g.
- The Quotient Rule applied to (F+g)g and g. c.
- The Sum Rule applied to F and \mathcal{E} . d.

ANSWER: d

28. Evaluate the limits using the Limit Laws:

A)
$$\lim_{t\to(-2)} (2t+1)(t^2+2)$$

B)
$$\lim_{x \to (-1)} \frac{x^2 + 3x}{x - 1}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x + \cos x}{2 \tan x}$$

$$\lim_{x \to 4} \frac{\lim_{x \to 4} \frac{2x^{-1} + x^{-\frac{1}{2}}}{x+3}}{1}$$

ANSWER:

C)
$$\frac{\sqrt{2}}{2}$$

D)
$$\frac{1}{7}$$

29. Determine whether the following statement is correct: If $\lim_{x\to 0} x g(x) = 0$, then $\lim_{x\to 0} g(x)$ exists. If yes, prove it; otherwise, give a counterexample

ANSWER:

False;
$$g(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

30. Evaluate the limits using the Limit Laws:

$$A) \lim_{t \to 3} \left(t^2 + t - 1\right) \sin \frac{\pi t}{2}$$

Chapter 2

B)
$$\lim_{x \to -1} \frac{x^3 + 5}{x^2 + 2x - 1}$$

$$\lim_{y \to 4} \frac{y^{-\frac{1}{2}} \tan\left(\frac{\pi y}{16}\right)}{\sqrt{y^2 + 9}}$$

ANSWER:

A)
$$-11$$

$$\overrightarrow{B}$$
) -2

C)
$$\frac{1}{10}$$

- 31. A) Can the Product Rule be used to compute the limit $\lim_{x\to 0} [x]x$? (Here, [x] denotes the greatest integer function.) Explain.
- B) Show that $\lim_{x\to 0} [x]x$ exists and find it. *Hint*: Compute the one-sided limits.

ANSWER:

A) No. The limit
$$\lim_{x\to 0} [x]$$
 does not exist.

- 32. Let f(x), g(x), and F(x) = f(x) + g(x). To prove that if $\lim_{x \to x_0} f(x)$ and $\lim_{x \to x_0} F(x)$ exist then also $\lim_{x \to x_0} g(x)$ exists, we should use which of the following?
 - The Product Rule applied to f and f.
 - The Quotient Rule applied to (F-f)f and f.
 - The Sum Rule applied to F and f. c.
 - The statement is not true. d.
 - Both A and C e.

ANSWER:

c

33. Evaluate the limits using the Limit Laws:

A)
$$\lim_{x \to 1} \frac{x+2}{x^3 - x - 1}$$

B)
$$\lim_{x\to 1} (x^2 - x^{-3} + x)(x+1)$$

$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x + \cos x}{x}$$

ANSWER:

A)
$$-1$$

$$4\sqrt{2}$$

C)
$$\frac{-}{\pi}$$

Chapter 2

34. Consider this statement: If $\lim_{x \to x_0} f(x) = c \neq 0$ and $\lim_{x \to x_0} g(x) = 0$, then $\frac{f(x)}{g(x)}$ does not converge to a finite limit as $x \rightarrow x_0$

To prove this statement, we assume that $\lim_{x \to x_0} \frac{f(x)}{g(x)} = M$ exists and is finite. Then, by the Quotient Rule,

$$\lim_{x \to x_0} \frac{g(x)}{f(x)} = 0$$
 and by the Product Rule,
$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \cdot \frac{g(x)}{f(x)} \right) = 0$$

Which of the following statements completes the proof?

From $\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \cdot \frac{g(x)}{f(x)} \right) = 0$, it follows that 1 = 0, which is a contradiction.

From $\lim_{x \to x_0} \frac{g(x)}{f(x)} = 0$, we can conclude that $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, which contradicts our assumption.

From $\lim_{x \to x_0} \frac{g(x)}{f(x)} = 0$, we can conclude that $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$, which contradicts our assumption.

From $\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \cdot \frac{g(x)}{f(x)} \right) = 0$, we can conclude that $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, which contradicts our assumption.

ANSWER:

35. Which of the following functions are examples of the existence of the limit $\frac{\int f(x)}{g(x)}$, although the limits $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0} g(x)$ do not exist?

a.
$$f(x) = \frac{1}{x}, g(x) = x^2$$

b.
$$f(x) = \frac{1}{x}, g(x) = \frac{1}{\sin x}$$

c. f(x) = [x], g(x) = x (Here, [x] denotes the greatest integer function.)

d.
$$f(x) = \frac{1}{x^2}, g(x) = \frac{1}{x}$$

e.
$$f(x) = \frac{1}{1-x}$$
, $g(x) = \frac{1}{1-\sin x}$

ANSWER: b

36. Assume α and L are nonzero real numbers. If $\lim_{x\to a} 2f(x) = L$ and $\lim_{x\to a} \frac{g(x)}{4} = 0$, calculate the following limits, if possible. If not, state that it is not possible.

$$\lim_{x \to a} f(x) \cdot g(x)$$

Chapter 2

$$\mathrm{B)}^{\lim_{x\to a}\frac{f(x)}{g(x)}}$$

C)
$$\lim_{x \to a} \frac{f(x) + x^2}{g(x) + a}$$

ANSWER:

- A) 0
- B) Not possible

$$\frac{\frac{L}{2} + a^2}{a}$$

37. Determine the points at which the following functions are not continuous and state the type of discontinuity: removable, jump, infinite, or none of these.

$$A) f(x) = \frac{x^2 - 1}{|x - 3|}$$

$$B) g(x) = x$$

C) h(x) = x - [x] (Here, [x] denotes the greatest integer function.)

$$D) j(x) = \left| \sin \frac{1}{x} \right|$$

$$3x^2 - 27$$

E)
$$k(x) = \frac{3x^2 - 27}{3 + x}$$

- ANSWER: A) x=3; infinite
 - B) x=0; removable
 - C) Integers; jump
 - D) x=0; none of these
 - E) x = -3; removable

38. At each point of discontinuity, state whether the function is left or right continuous:

A)
$$f(x) = \begin{cases} \sin\left(\frac{\pi x}{2}\right) + 4 & |x| \le 2\\ |x - 2| & |x| > 2 \end{cases}$$

A)
$$f(x) = \begin{cases} \sin\left(\frac{\pi x}{2}\right) + 4 & |x| \le 2 \\ |x - 2| & |x| > 2 \end{cases}$$
B)
$$f(x) = \begin{cases} \sin\left(\frac{\pi x}{2}\right) + 4 & |x| \le 2 \\ |x - 2| & |x| > 2 \end{cases}$$

$$\frac{\sin x}{x} \quad 0 < x \le \frac{\pi}{2}$$

$$\frac{2x}{\pi - x} \quad \frac{\pi}{2} < x < \pi$$

$$x - \pi \quad \pi \le x$$

ANSWER:

A) x=2; left continuous

B)
$$x = \frac{\pi}{2}$$
; left continuous

 $x = \pi$; right continuous

39. Determine real numbers a, b, and c that make the function continuous:

$$f(t) = \begin{cases} a & t < 0 \\ \frac{1}{4}t(t+8) & 0 \le t < b \\ t+3 & b \le t < 4 \\ c & 4 \le t \end{cases}$$

ANSWER:

40. Find the points of discontinuity for each of these functions and state the type of discontinuity: removable, jump, infinite, or none of these.

$$A) f(x) = \frac{|4+x|}{4+x}$$

B) $g(x) = \frac{[x]}{x}$, x > 0 (Here, [x] denotes the greatest integer function.)

C)
$$h(x) = \frac{1-x}{x^2 + 4x - 5}$$

ANSWER: A) x = -4; jump

B) x = positive integer; jump

C) x=1 removable: x=-5 infinite

41. Determine whether the function is left or right continuous at each of its points of discontinuity:

$$f(x) = \begin{cases} \cos \pi x & |x| \le \frac{1}{2} \\ x - \frac{1}{2} & |x| > \frac{1}{2} \end{cases}$$

B) $f(x) = x^2[x], x \ge 0$ (Here, [x] denotes the greatest integer function.)

ANSWER:

A) $x = -\frac{1}{2}$ right continuous

B) Right continuous at the positive integers

42. Determine real numbers a, b and c that make the following function continuous:

$$f(t) = \begin{cases} t+a & t < 0 \\ t^2 + t + b + \frac{a}{2} & 0 \le t < 1 \\ t-b & 1 \le t < 2 \\ c & 2 \le t \end{cases}$$

ANSWER:

$$a = -\frac{2}{3}, \ b = -\frac{1}{3}, \ c = \frac{7}{3}$$

Chapter 2

43. Determine the points where the function is not continuous and state the type of the discontinuity: removable, jump, infinite, or none of these.

A)
$$f(x) = \frac{x^2 + 2x - 8}{|x - 2|}$$

A)
$$f(x) = \frac{|x-2|}{x}$$
, $x \ge 1$
B) $g(x) = \frac{x}{x}$, $x \ge 1$ (Here, $[x]$ denotes the greatest integer function.)

C) $h(x) = \frac{(x^3 - 3x + 2)\sin 2x}{x}$

D) $j(x) = \frac{4}{|x| - 3}$

C)
$$h(x) = \frac{x}{4}$$

$$D) j(x) = \frac{1}{|x| - 3}$$

ANSWER: A) x = 2, jump

B) x = 2, 3, 4, ...; jump

C) x=0; removable

D) x = 3, x = -3; infinite

44. At each point of discontinuity, state whether the function is left or right continuous.

$$f(x) = \begin{cases} \sin\frac{1}{x} & x < 0\\ 1 + x^2 & 0 \le x < 2\\ (x+1)^2 - 4 & 2 \le x < 3\\ 10 & 3 \le x \end{cases}$$
A)

A)
$$f(x) = \begin{cases} |x-1| & x \le 2 \\ x^2 - 3 & 2 < x \le 4 \\ \frac{1}{x-4} & 4 < x < 5 \\ 6 & 5 \le x \end{cases}$$
B)

ANSWER: A) x = 0; right continuous x=3; right continuous

> B) x = 4; left continuous x=5; right continuous

45. Determine real numbers a, b and c that make the following function continuous:

$$f(x) = \begin{cases} a & x \le -1 \\ \frac{x}{[x]} & -1 < x < 0 \\ \frac{\sin\left(\frac{\pi x}{2}\right) + b + c}{x^2 + 1} & 0 \le x < 1 \\ b & 1 \le x \end{cases}$$

Chapter 2

(Here, [x] denotes the greatest integer function.)

ANSWER:

$$a=1$$
; $b=\frac{1}{2}$; $c=-\frac{1}{2}$

46. Determine the points where the function is not continuous and state the type of discontinuity: removable, jump, infinite, or none of these:

A)
$$f(x) = \frac{x^2 + x - x^2}{x - 2}$$

A)
$$f(x) = \frac{x^2 + x - 6}{x - 2}$$

B) $g(x) = \frac{1}{x - 2} + \sin \frac{1}{x}$

B)
$$g(x) = \overline{x-2} + \sin \overline{x}$$

C) h(x) = [x]x (Here, [x] denotes the greatest integer function.)

$$\frac{x^2 + x - 6}{x - 3}$$

ANSWER: A) x=2; removable

B) x=2; infinite

x=0; none of these

C) Nonzero integers; jump

D) x=3; infinite

47. At each point of discontinuity state whether the function is left continuous, right continuous, or neither

$$\left| \frac{1}{x-2} \right| x < 1$$

$$f(x) = \begin{cases} \cos \pi x & 1 \le x \le x \\ \frac{1+x}{(x-x)^2} & 2 < x \end{cases}$$

$$f(x) = \begin{cases} 0 & x < 0 \\ \cos \pi x & 0 \le x \le 1 \\ 2\cos \pi x & 1 < x \le 2 \end{cases}$$

B)

ANSWER: A) x=2; left continuous

x=3; none of these

B) x=0; right continuous

x=1; left continuous

48. Determine real numbers a, b, and c that make the function continuous:

$$f(x) = \begin{cases} a & t < 0 \\ x^2 + 1 & 0 \le t < b \\ 5x - c & b \le t < 7 \end{cases}$$

c

e:

Chapter 2

ANSWER:

$$a = 1$$
; $b = 6$; $c = -7$

49. Consider the function

$$f(x) = \begin{cases} -1 & x \le 0 \\ 1 & x > 0 \end{cases}$$

The function f(x) + g(x) is continuous for which of the following functions g?

a.
$$g(x) = 2$$
 if $x \neq 0$, $g(0) = 0$

b.
$$g(x) = 0$$
 if $x \neq 0$, $g(0) = 2$

c.
$$g(x) = 2_{if} x \le 0, g(x) = 0_{if} x > 0$$

d.
$$g(x) = 2_{if} x < 0, g(x) = 0_{if} x \ge 0$$

e. A and C both correct

ANSWER:

50. Let f(x) be a discontinuous function. Is it possible to find a continuous function g(x) such that f(x) + g(x) is continuous? Explain.

ANSWER: No. If F(x) = f(x) + g(x) is continuous, then f(x) = F(x) - g(x) is continuous by the continuity laws.

51. Sketch the graph of a function f(x) that satisfies all of the following conditions:

$$\lim_{x \to 2^+} f(x) = \infty, \quad \lim_{x \to 2^+} f(x) = 4, \quad \lim_{x \to 0} f(x) = -2,$$

$$\lim_{x \to \infty} f(x) = -1, \quad \lim_{x \to -\infty} f(x) = 3$$

Chapter 2

ANSWER:

52. Evaluate each limit or state that it does not exist:

A)
$$\lim_{x \to 3} \frac{x^4 - 3x^3 + x^2 - 9}{x - 3}$$

B)
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x^2 + 3x - 1} - \sqrt{2x + 1}}$$

$$\lim_{x \to 1} \frac{\sqrt{x^2 - 2x + 1}}{x - 1}$$

ANSWER:

$$\frac{2\sqrt{3}}{2}$$

- B) 3
- C) Does not exist

53. Evaluate each limit or state that it does not exist:

$$A)^{\lim_{x\to \frac{\pi}{2}} \frac{\cos^2 x}{(1+\cos 2x)(2+\cos 2x)}}$$

$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\sqrt{1 + x^2}}{x^2} \right)$$

Chapter 2

$$\text{C)} \frac{\lim_{\theta \to 0} \frac{1 + \sin \theta - \cos \theta}{\sin \theta}}{\sin \theta}$$

ANSWER:

A)
$$\frac{1}{2}$$

B)
$$-\frac{1}{2}$$

54. Evaluate the limits in terms of the constants involved:

A)
$$\lim_{x\to 0} \frac{\sqrt{(x+h)^2 + 1} - \sqrt{h^2 + 1}}{x}$$
B) $\lim_{k\to a} \frac{\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{h}}}{h-a}, a > 0$

ANSWER:

$$\frac{h}{\sqrt{1+h^2}}$$

55. Evaluate each limit or state that it does not exist:

A)
$$\lim_{x \to 2} \frac{x^4 - x^2 - 12}{x - 2}$$

B)
$$\lim_{x \to 1} \frac{\sqrt{x^2 + 1} - \sqrt{x + 1}}{x^2 + x - 2}$$

C)
$$\lim_{x \to 2} \frac{\sqrt{x^2 - 4x + 4}}{x - 2}$$

ANSWER:

A) 28
B)
$$\frac{\sqrt{2}}{12}$$

C) Does not exist

56. Evaluate the limit:

$$\lim_{x \to 1} \frac{\sqrt{x + \sqrt{x}} - \sqrt{x + 1}}{\sqrt{x} - 1}$$

ANSWER:

$$\frac{\sqrt{2}}{4}$$

57. Evaluate each limit or state that it does not exist:

A)
$$\lim_{x\to 2} \frac{x^3 - 2x^2 + 3x - 6}{x - 2}$$

Chapter 2

B)
$$\lim_{x\to -1} \frac{\sqrt{3x+4}+x}{x^2-x-2}$$

$$\lim_{x \to 1} \frac{\left| x^2 + x - 2 \right|}{x - 1}$$

ANSWER:

$$\frac{-\frac{5}{6}}{8}$$

- C) Does not exist
- 58. Determine a real number ^c for which the limit exists and then compute the limit:

$$\lim_{x\to 0+} \left(\frac{1}{\sqrt{x+c^2}} - \frac{1}{\sqrt{x^2+x}} \right)$$

ANSWER:

$$c=0$$
, the limit is 0

59. Evaluate each limit or state that it does not exist:

$$A)^{\lim_{x\to 2}} \left(\frac{x+1}{x-2} - \frac{x-5}{x^2 - 5x + 6} \right)$$

B)
$$\lim_{x\to 5} \frac{\sqrt{x^2-6}-\sqrt{4x-1}}{x-5}$$

$$\lim_{x\to 8} \frac{\sqrt{x+1}-3}{x-8}$$

ANSWER:

$$\Delta$$
) (-1)

C)
$$\frac{1}{6}$$

60. Determine a real number α for which the limit exists and then compute the limit:

$$\lim_{x \to 2} \frac{x^2 + \alpha x + 6}{\sqrt{x^2 + 2x - 4} - \sqrt{x + 2}}$$

ANSWER:

$$a=-5$$
; limit is $-\frac{4}{5}$

61. Let
$$f(x) = 2x + 3$$
. Compute $\lim_{h \to 0} \frac{f(-3+h) - f(-3)}{h}$.

ANSWER:

62. Compute
$$\lim_{\theta \to 0} \left(\cot^2 \theta - \csc^2 \theta \right)$$
.

ANSWER:

Chapter 2

63. Compute $\lim_{\theta \to \frac{7\pi}{6}} \frac{2\sin^2 \theta - 5\sin \theta - 3}{2\sin \theta + 1}$

ANSWER:

 $-\frac{7}{2}$

64. Evaluate the limits:

$$\lim_{x \to 0} \frac{\sin^2 x}{\sin x^2}$$

$$B) \lim_{x \to 0} x \cos \frac{1}{x^3}$$

$$\lim_{x \to 0} \left| \sin x \right| \left(1 - \cos \frac{1}{x} \right)$$

ANSWER:

- A) 1
- \overrightarrow{B}) 0
- C)0

65. Show that $0 \le x - [x] < 1$ for all x. (Here, [x] denotes the greatest integer function.) Then use the above inequality and the Squeeze Theorem to evaluate $\lim_{x \to 0} x(x - [x])$.

ANSWER:

66. Evaluate the limits in terms of the constants involved:

$$A) \lim_{x \to k} \frac{\sin(x-h)}{x^2 + (1-h)x - h}$$

$$\lim_{x \to a} \frac{\frac{1}{x^2} - \frac{1}{a^2}}{x}$$

ANSWER:

A)
$$\frac{1}{h+1}$$

$$\left(-\frac{2}{a^3}\right)$$

67. Evaluate the limits using the Squeeze Theorem, trigonometric identities, and trigonometric limits, as necessary:

$$\lim_{x \to 0} \frac{\sin \frac{1}{x} \sin^2 \frac{x}{2}}{x}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\pi} - x$$

B)
$$x \to \frac{\pi}{2} \frac{\pi}{2} - \chi$$

Chapter 2

$$\lim_{x \to 0} \frac{\sin^3 x}{\sin(x^3)}$$

ANSWER:

- A)0
- **B**) 1
- C) 1
- 68. Show that $0 \le x [x] < 1$ for all x. (Here, [x] denotes the greatest integer function.) Then use this inequality with the Squeeze Theorem to evaluate $\lim_{x \to x} (x [x]) \tan x$.

 ANSWER:
- 69. Determine a real number ^c such that the following limit exists, and then evaluate the limit for this value:

$$\lim_{x \to 0} \frac{3\sin\frac{x}{2} + (c-1)^2}{\sin x - \cos x + 1}$$

ANSWER:

$$c=1$$
; limit is $\frac{3}{4}$

70. Evaluate each limit or state that it does not exist:

$$A) \lim_{t \to 0} \frac{1 - \cos t}{\sqrt{t}}$$

B)
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin 2x \sin x}$$

$$\lim_{x\to 0} \frac{\sin 2x - \sin x}{x}$$

ANSWER:

- B) 4
- C) 1

71. Evaluate the limits:

$$\lim_{x\to 0} \frac{1-\cos^4 x}{x^2}$$

$$\lim_{x \to 0} \frac{\cos\left(x + \frac{\pi}{4}\right) - \sin\left(x + \frac{\pi}{4}\right)}{x}$$

ANSWER:

B)
$$-\sqrt{2}$$

72. Evaluate the limits:

A)
$$\lim_{x \to 0} \frac{\sin 5x}{x^2 - x}$$

Chapter 2

Hint: Factor the denominator.

B)
$$\lim_{x\to 0} \frac{1-\cos^2 x}{2x^2-x}$$

Hint: Factor the two expressions.

$$\lim_{x \to 0} \frac{\sin 3x \sin 8x}{x^3 + x^2}$$

ANSWER:

A)
$$-5$$

- B) 0
- C) 24

73. Use the Squeeze Theorem to evaluate the limit

$$\lim_{x \to x} (1 + \cos x) \sin \frac{1}{x}$$

ANSWER:

0

74. If $3x^2 - 4 \le f(x) \le x$ on the interval [0,4], then $\lim_{x \to 1} f(x)$ must exist.

a.

True

b.

False

ANSWER:

b

75. Calculate the limits:

A)
$$\lim_{x\to\infty} \frac{2x^5 - x^4 + 1}{8x^5 + x^3 + x - 2}$$

B)
$$\lim_{x \to -\infty} \frac{3x^2 + x - 1}{4x - 7}$$

$$\lim_{x \to \infty} \left(\frac{6x^3}{2x^2 + 1} - 3x \right)$$

ANSWER:

$$\frac{1}{4}$$

76. Calculate the limits:

A)
$$\lim_{x \to -\infty} \frac{\sqrt[3]{2x^3 - x + 1}}{\sqrt{x^2 + x - 2}}$$

B)
$$\lim_{x \to \infty} \frac{(4x+1)^{15} (3x-1)^{10}}{(9x+7)^5 (4x+11)^{20}}$$

$$\lim_{x \to -\infty} \frac{\sqrt{x^2 - 5}}{x}$$

Chapter 2

ANSWER:

- A) $-\sqrt[3]{2}$
- $\frac{1}{1024}$
- $\stackrel{-}{C}$) -1
- 77. Calculate the following limits:

$$\lim_{x \to -\infty} \frac{\lim_{x \to -\infty} \frac{x^2 + 1}{\sqrt{x^4 - 2}}$$

$$\lim_{x \to -\infty} \frac{2x - 1}{\sqrt[3]{x^3 + 1}}$$

$$\lim_{x \to \infty} \left(\sqrt{x^2 - x} - \sqrt{x^2 + 5x} \right)$$

ANSWER:

- A) 1
- B) 2
- C) -3
- 78. Compute the following limits:

A)
$$\lim_{x \to \infty} \frac{2x^2 - 6x + 1}{x^2 - 3}$$

B)
$$\lim_{x \to -\infty} \left(-x^5 + 2x^4 - x^2 + 1 \right)$$

C)
$$\lim_{x \to -\infty} \frac{x^7 - 6x^3 + 1}{2x^7 + x^2 - 2}$$

ANSWER:

- A) 2
- B) 🚥
- $C)^{\frac{1}{2}}$
- 79. Compute the following limits:

A)
$$\lim_{x \to \infty} \frac{3(x+7)^3 - (x-7)^3}{2(x+2)^3 - (x-2)^3}$$

$$B) \lim_{x \to \infty} \frac{x-1}{2x^2 + 1}$$

C)
$$\lim_{x \to -\infty} \frac{2x^2 - 6x + 1}{x - 3}$$

ANSWER:

- A) 2
- B) 0
- C) **-∞**
- 80. Compute the following limits:

$$\lim_{x \to \infty} x \left(\sqrt{4x^2 - 1} - 2x \right)$$

Hint: Multiply and divide by the conjugate expression.

$$\lim_{x \to -\infty} \frac{2x+7}{\sqrt{x^2-1}}$$

Hint: For x < 0, $\sqrt{x^2} = -x$.

$$\lim_{x \to \infty} \frac{x^{\frac{5}{3}} - 3x^{\frac{2}{3}}}{x^{\frac{18}{5}} + x}$$

ANSWER:

A)
$$-\frac{1}{4}$$

$$\overrightarrow{B}$$
) -2

81. Compute the following limits:

$$\lim_{x\to\infty} \left(\frac{1}{x-1} - \frac{2}{x^2 - 1} \right)$$

B)
$$\lim_{x \to -\infty} \frac{x^3 + x^2 - 2x + 1}{1 - 2x^3}$$

$$\lim_{x \to -\infty} \frac{x^4 + 2x - 1}{x^3 + x}$$

ANSWER:

$$\frac{1}{2}$$

82. Compute the following limits:

A)
$$\lim_{x \to -\infty} \frac{1 - \sqrt{3 + x^2}}{1 + \sqrt{4x^2 + 1}}$$

B)
$$\lim_{x \to \infty} \frac{x + 3 - \sqrt{x^2 + 2}}{\sqrt{x^2 + 1} - 5}$$

C)
$$\lim_{x \to \infty} \left(\sqrt{x^2 - 3x + 7} - x \right)$$

ANSWER:

A)
$$-\frac{1}{2}$$

83. The Intermediate Value Theorem guarantees that the equation $x \cos x - \sin x = 0$ has a solution in which of the following intervals?

Chapter 2

a.
$$(2\pi, 3\pi)$$

b.
$$\left(\frac{\pi}{2},\pi\right)$$

c.
$$\left(\frac{3\pi}{2}, 2\pi\right)$$

d.
$$\left(\frac{\pi}{4}, \pi\right)$$

e.
$$(\pi, 3\pi)$$

ANSWER:

a

84. The polynomial $P(x) = x^3 - x - 5$ must have a root in which of the following intervals?

c.
$$(0,1)$$

d.
$$\left(\frac{1}{2},1\right)$$

ANSWER:

b

85. Which of the following functions is a counterexample for the converse of the Intermediate Value Theorem, which states: If f(x) assumes all the values between f(a) and f(b) in the interval [a,b], then f is continuous on [a,b]

a.
$$f(x) = x - 1$$
 on $[0,2]$

b.
$$f(x) = \frac{1}{x-1}$$
 on $[0,2]$

c.
$$f(x) = \frac{\sin x}{x} \quad \text{on } (0,2), f(0) = 1$$

$$f(x) = \begin{cases} \frac{\sin x}{x}, & 0 < x \le 2 \\ 1, & x = 0 \end{cases}$$
 on [0,2]

d.
$$f(x) = [x]$$
 on $[0,2]$ (Here, $[x]$ denotes the greatest integer function.)

e.
$$f(x) = \frac{1}{(x-1)^2}$$
 on $[-3, 2]$

ANSWER:

e

86. Which of the following functions has a zero in the interval [-1,3]?

$$f(x) = \frac{x}{x-4}$$

e

e

e:

Chapter 2

b.
$$f(x) = x^2 - 3x + 3$$

$$f(x) = \frac{x^2}{x - 2}$$

$$f(x) = \cos \frac{x}{\pi}$$

Both A and C e.

ANSWER:

87. The Intermediate Value Theorem guarantees that the equation $\tan x = x$ has a solution in which of the following intervals?

a.
$$\left[-\frac{\pi}{8}, \frac{3\pi}{8}\right]$$

b.
$$\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$$

c.
$$\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$

d.
$$\left[\frac{\pi}{4}, \pi\right]$$

Both A and C e.

ANSWER:

88. Which of the following functions is a counterexample for the converse of the Intermediate Value Theorem, which states: If f(x) assumes all the values between f(a) and f(b) in the interval [a,b], then f is continuous on [a,b]

a.
$$f(x) = x^2$$
 for $x \in (1,3)$, $f(1) = 9$, $f(3) = 1$ on $[1,3]$

b.
$$f(x) = \frac{1}{x-2}$$
 on [1,3]

c.
$$f(x) = \frac{1 - \cos x}{x}$$
 on $\left(0, \frac{\pi}{2}\right], f(0) = 0$ on $\left[0, \frac{\pi}{2}\right]$

d.
$$f(x) = [x]$$
 on $[1,3]$ (Here, $[x]$ denotes the greatest integer function.)

e. Both A and C

ANSWER:

a

89. Which of the following functions is a counterexample for the converse of the Intermediate Value Theorem: If f assumes all the values between f(a) and f(b) in the interval [a,b], then f is continuous on [a,b].

a.
$$f(x) = \frac{1}{x-1}$$
 if $1 < x \le 3$, $f(1) = 2$ on [1,3]

b.
$$f(x) = [x]$$
 on $1 < x \le 3$ (Here, [x] denotes the greatest integer function.)

a

e:

Chapter 2

c.
$$f(x) = \frac{1}{x-4}$$
 on $1 < x \le 3$

d.
$$f(x) = x^2$$
 for $1 < x \le 3$ and $x \ne 2$, $f(2) = 1$

e. Both A and D

ANSWER:

90. Assume g(x) is continuous on [-3,9], g(-3)=14, and g(9)=72. Determine whether each of the following statements is always true, never true, or sometimes true.

- A) g(c) = 0: no solution with $c \in [-3,9]$
- B) g(c) = 60: no solution with $c \in [-2,9]$
- C) g(c) = 21: no solution with $c \in [-3,9]$
- D) g(c) = -1,000,000: exactly one solution with $c \in [-2,9]$
- E) g(c) = 49.5: a solution with $c \in [-3,9]$

ANSWER: A) Sometimes true

- B) Sometimes true
- C) Never true
- D) Sometimes true
- E) Always true

91. Draw the graph of a function g(x) on [-2,2] such that the graph does not satisfy the conclusion of the Intermediate Value Theorem.

ANSWER: Answers may vary. A sample answer is:

92. Which of the following properties can be used to prove that $f(x) = \cos x$ is continuous for all x?

a.
$$\left|\cos x\right| \le 1$$
 for all x

b.
$$|\cos x - \cos y| \le |x - y|$$
 for all x and y

c.
$$\cos x - \cos y \le x - y$$
 for all x and y

d. The limit
$$\lim_{x\to 0} \frac{1-\cos x}{x}$$
 exists

e.
$$|\cos x - \cos y| \ge |x - y|$$
 for all x and y

ANSWER: b

93. Which of the following statements imply that $\frac{1}{x}$ is not continuous at x = 0?

a.
$$\frac{1}{x}$$
 has opposite signs on the two sides of $x = 0$.

b.
$$\left| \frac{1}{x} \right| < 0.01$$
 implies that $x > 100$.

c. For any
$$\varepsilon > 0$$
, $\left| \frac{1}{x} \right| < \varepsilon$ implies that $\left| x \right| > \frac{1}{\varepsilon}$

d. If $x < \varepsilon$, then $\left| \frac{1}{x} \right| < \frac{1}{\varepsilon}$.

e. A and C are correct.

ANSWER:

c

94. To show that L is not the limit of f(x) as $x \to x_0$, we should show that:

- a. For any $\varepsilon > 0$, there exists $\delta > 0$ such that if $|x x_0| > \delta$ then $|f(x) L| < \varepsilon$
- b. For any $\varepsilon > 0$, there exists $\delta > 0$ such that if $|x x_0| > \delta$ then $|f(x) L| > \varepsilon$.
- c. There exists $\varepsilon > 0$, such that for any $\delta > 0$ the inequalities $0 < |x x_0| < \delta$ and $|f(x) L| \ge \varepsilon$ have a solution x.
- d. There exist $\varepsilon > 0$ and $\delta > 0$ such that if $0 < |x x_0| < \delta$, then $|f(x) L| > \varepsilon$.
- e. A and C are both correct.

ANSWER:

c

95. Suppose there exists a value of $\varepsilon > 0$ so that for any value of $\delta > 0$, we can find a value of x satisfying $0 < |x - x_0| < \delta$ and $|f(x) - L| > \varepsilon$. We may conclude that:

- a. L is the limit of f as $x \to x_0$.
- b. L is not the limit of f as $x \to x_0$.
- c. The limit of f as $x \to x_0$ does not exist.
- d. The limit of f as $x \to x_0$ exists but is not equal to L.

96. To show that L is not the limit of f(x) as $x \to x_0$, we should show that:

e. None of the above.

ANSWER:

b

- a. There exists $\varepsilon > 0$ such that for any $\delta > 0$ there exists a solution to the inequalities $|x x_0| < \delta$ and $|f(x) L| > \varepsilon$
- b. There exists $\varepsilon > 0$ such that for any $\delta > 0$ there exists a solution to the inequalities $|x x_0| > \delta$ and $|f(x) L| < \varepsilon$
- c. There exists $\delta > 0$ such that for any $\varepsilon > 0$, if $|f(x) L| < \varepsilon$, then $|x x_0| < \delta$.
- d. For any $\varepsilon > 0$ and $\delta > 0$, if $|x x_0| < \delta$, then $|f(x) L| > \varepsilon$.
- e. A and D are both correct.

ANSWER:

a