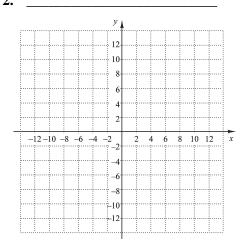
CALCULUS AND ITS APPLICATIONS

Name:

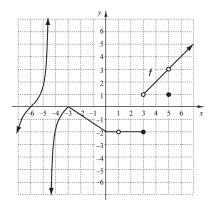
Chapter 1, Form A


For Questions 1 - 3, consider

$$\lim_{x \to -5} f(x)$$
, where $f(x) = \frac{x^2 - 25}{x + 5}$.

- 1. Numerical limits.
 - (a) Find the limit by completing the following input-output tables.

1.(a) _____


- **(b)** Find $\lim_{x \to -5^-} f(x)$, $\lim_{x \to -5^+} f(x)$, and $\lim_{x \to -5} f(x)$, if each exists.
- (b) _____
- **2.** *Graphical limits*. Find the limit by graphing the function.

- **3.** *Algebraic limits*. Find the limit algebraically. Show all work.
- 3. _____

34 CALCULUS AND ITS APPLICATIONS Chapter 1, Form A

Graphical limits. For Questions 4-12, consider f graphed below.

Find the limit, if it exists.

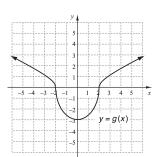
$$4. \quad \lim_{x \to -3} f(x)$$

5.
$$\lim_{x \to 4.5} f(x)$$

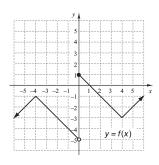
$$\mathbf{6.} \lim_{x \to 0} f(x)$$

$$7. \quad \lim_{x \to 3} f(x)$$

$$8. \quad \lim_{x \to -5} f(x)$$


$$9. \quad \lim_{x\to 2} f(x)$$

10. Find
$$f'(2)$$
.


12. State the value(s) of x for which
$$f'(x)$$
 is not defined.

Determine whether the function is continuous. If a function is discontinuous, state why.

13.

14.

13. _____

14. _____

Consider the function shown in Question 14, answer the following:

15. (a) Find $\lim_{x \to a} f(x)$.

- **(b)** Find f(4).
- (c) Is f continuous at 4?

16. Find $\lim_{x\to 0} f(x)$.

15.(a) _____

- (b) _____
- (c) _____

16. _____

Find the limit if it exists. If a limit does not exist, state why.

17.
$$\lim_{x\to 4} (x^4 - 5x^2 + 2)$$

18.
$$\lim_{x \to 5^+} \frac{x - 5}{4(x^2 - 25)}$$

19.
$$\lim_{x\to 0} -\frac{3}{x}$$

20. Find the simplified difference quotient for: $f(x) = 5x^2 - 8x$.

- **21.** Find an equation of the tangent line to the graph of $y = 4x + \left(-\frac{6}{x}\right)$ at the point (3, 10).
- **22.** Find the points on the graph of $y = x^3 2x^2$ at which the tangent line is horizontal.

17. _____

18. _____

19. _____

20. _____

21. _____

22. _____

Find dy/dx.

23. $y = x^{17}$

23. _____

24. $y = 5\sqrt[3]{x} + 6\sqrt{x}$

24. _____

25. $y = -\frac{8}{x^3}$

25. _____

26. $y = x^{3/5}$

26. _____

27. $y = 0.32x^4 - 7x^2 + 3$

27. _____

Differentiate.

28. $y = \frac{3}{4}x^4 - 5x^2 + 4x + 1$

28. _____

29. $y = (6\sqrt{x} + 2)(x^3 - x)$.

29. _____

30. $y = \frac{x+4}{4-x}$

30. _____

31. $f(x) = (x+2)^4(3-x)^2$

31. _____

32. $y = (6x^2 - 10x + 1)^{-4}$

32. _____

33. $f(x) = x\sqrt{x^6 - 2}$

33. _____

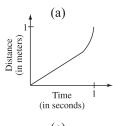
34. For $y = 4x^6 - 9x^3$, find $\frac{d^3y}{dx^3}$.

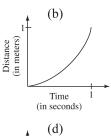
34. _____

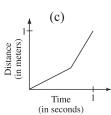
- **35.** *Volume of a scoop of ice cream.* The volume of a spherical scoop of ice cream with radius r is given by $V = \frac{4}{3}\pi r^3$, where r is measured in inches.
 - (a) Find the rate of change of the volume of the scoop of ice cream with respect to the radius.
 - **(b)** What is the volume when the radius is 0.5 in.?
 - (c) Find the rate of change of the volume of the scoop of ice cream when r = 0.5.
 - scoop of ice cream when r = 0.5.
- **36.** Business: average revenue, cost and profit. Given revenue and cost functions R(x) = 30x and $C(x) = x^{2/3} + 400$, where x is the number of items produced and R(x) and C(x) are in dollars, find:
 - (a) The average revenue, the average cost and the average profit when x items are produced.
 - **(b)** The rate at which average cost is changing when 12 items are produced.
- For Questions 37 and 38, let $f(x) = 2x^2 x$ and g(x) = x + 5.

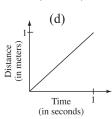
37. Find
$$\frac{d}{dx}(f \circ g)(x)$$
.

38. Find
$$\frac{d}{dx}(g \circ f)$$
 (x).


- 35. (a) _____
 - (b) _____
 - (c) _____


- 36. (a) _____
 - (b) _____


- 37. _____
- 38. _____


39. A marble rolls along a level table at a constant rate and then down an incline plane. Let y = s(t) represent the marble's distance after starting to roll. Which graph best represents s

- **40.** Differentiate $y = \sqrt{(2-3x)^{2/3}(5+x)^{1/2}}$.
- 40. _____

41. Find $\lim_{x \to -1} \frac{1+x^3}{1+x}$.

- 41. _____
- **42.** Graph f and f' over the interval [-3, 3]. Then estimate points at which the line tangent to f is horizontal.

$$f(x) = 3x^5 - 15x^2 + 15x$$
; [-3, 3]

42.

43. Find the following limit by creating a table of values:

$$\lim_{x\to 6} \frac{\sqrt{2x+4}-4}{x-6}$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{2x+4} - 4}{x-6}$$

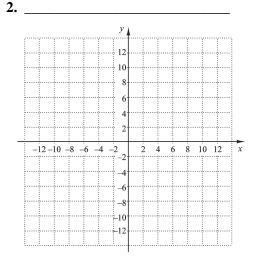
and use TRACE to verify your assertion.

CALCULUS AND ITS APPLICATIONS

Name:

Chapter 1, Form B

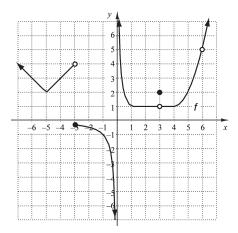
For Questions 1 - 3, consider


$$\lim_{x \to 2} f(x)$$
, where $f(x) = \frac{x^2 - 4}{x - 2}$.

- 1. Numerical limits.
 - (a) Find the limit by completing the following input-output-tables.

$x \rightarrow 2^-$	f(x)	$x \rightarrow 2^+$	f(x)
1.9		2.1	
1.99		2.01	
1.999		2.001	

1. (a) _____


- **(b)** Find $\lim_{x\to 2^-} f(x)$, $\lim_{x\to 2^+} f(x)$, and $\lim_{x\to 2} f(x)$, if each exists.
- (b) _____
- **2.** *Graphical limits.* Find the limit by graphing the function.

- **3.** *Algebraic limits.* Find the limit algebraically. Show all work.
- 3. _____

42 CALCULUS AND ITS APPLICATIONS Chapter 1, Form B

Graphical limits. For Questions 4 - 12, consider f graphed below.

Find the limit, if it exists.

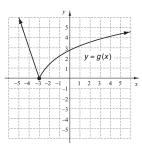
$$4. \quad \lim_{x \to -5} f(x)$$

$$5. \quad \lim_{x \to -3} f(x)$$

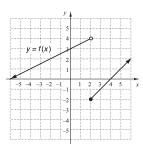
$$6. \quad \lim_{x \to 0} f(x)$$

$$7. \quad \lim_{x \to 3} f(x)$$

$$8. \quad \lim_{x \to 5} f(x)$$


$$9. \quad \lim_{x \to 6} f(x)$$

10. Find
$$f'(2)$$
.


12. State the value(s) of x for which
$$f'(x)$$
 is not defined.

Determine whether the function is continuous. If a function is discontinuous, state why.

13.

14.

13. _____

14.

Consider the function shown in Question 14, answer the following:

15. (a) Find
$$\lim_{x\to 0} f(x)$$
.

- **(b)** Find f(0).
- (c) Is f continuous at 0?

- 15. (a) _____
 - (b) _____

16. Find
$$\lim_{x \to 2} f(x)$$
.

16. _____

Find the limit if it exists. If a limit does not exist, state why.

17.
$$\lim_{x\to 3} (-2x^3 + 6x^2 - 4)$$

17. _____

18.
$$\lim_{x \to 5^+} \frac{x - 5}{x^2 - x - 20}$$

18. _____

19.
$$\lim_{x\to -3} \frac{4}{x+3}$$

19. _____

20. Find the simplified difference quotient for:
$$f(x) = -5x^2 - 3$$
.

20. _____

22. Find the points on the graph of
$$y = 6x^3 + 9x^2$$
 at which the tangent line is horizontal.

22. _____

44 CALCULUS AND ITS APPLICATIONS Chapter 1, Form B

Find dy/dx.

23.
$$y = x^{85}$$

23. _____

24.
$$y = 5\sqrt[3]{x} + 4\sqrt{x}$$

25.
$$y = \frac{120}{x^5}$$

26.
$$y = x^{2/5}$$

27.
$$y = 4.1x^4 - 5x^2 + 7$$

Differentiate.

28.
$$y = \frac{2}{3}x^3 - 4x^2 + 10x + 6$$

29.
$$y = \frac{3x}{3-x}$$

30.
$$(2\sqrt{x}+3)(x-x^2)$$

31.
$$f(x) = (x+2)^3(2-x)^2$$

32.
$$y = (4x^3 - 2x^2 + 5)^{-4}$$

33.
$$f(x) = x^2 \sqrt{x-5}$$

34. For
$$y = 280x - 3x^5$$
, find $\frac{d^3y}{dx^3}$.

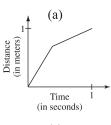
- **35.** *Medicine: temperature during an illness.* The temperature T, in degrees Fahrenheit, of a patient taking fever-reducing medicine is given by $T = 0.17t^2 - 1.5t + 102.5$, where t is time in hours.
 - (a) Find the rate of change of the patient's temperature with respect to time.
 - **(b)** What is the patient's temperature 3 hours after taking the medicine?
 - (c) Find the rate of change of the patient's reducing medicine.
 - temperature 3 hours after taking the fever-
- **36.** Business: average revenue, cost and profit. Given revenue and cost functions R(x) = 35xand $C(x) = x^{2/5} + 500$, where x is the number of items produced and R(x) and C(x) are in dollars, find:
 - (a) The average revenue, the average cost and the average profit when x items are produced.
 - **(b)** The rate at which average cost is changing when 15 items are produced.

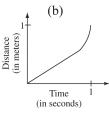
For Questions 37 and 38, let $f(x) = 4x + x^2$ and $g(x) = 9x^5$.

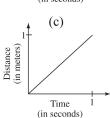
37. Find
$$\frac{d}{dx}(f \circ g)(x)$$
.

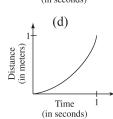
38. Find
$$\frac{d}{dx}(g \circ f)(x)$$
.

35.	(a)	
------------	-----	--


- **36.** (a) _____
 - (b) _____


- 37. _____


46 CALCULUS AND ITS APPLICATIONS Chapter 1, Form B


39. A marble rolls unimpeded along a level table. Let y = s(t) represent the marble's distance after starting to roll. Which graph best represents s.

- **40.** Differentiate $y = \sqrt{(6-3x)^{1/3}(10+x)^{4/3}}$.
- 40. _____

41. Find $\lim_{x \to 3} \frac{27 - x^3}{3 - x}$.

- 41.____
- **42.** Graph *f* and *f'* over the interval [0, 5]. Then estimate points at which the line tangent to *f* is horizontal.

$$f(x) = 4x^3 - 25x^2 + 32x + 4\sqrt{x}$$
; [0, 5]

42.

43. Find the following limit by creating a table of values:

$$\lim_{x\to 0}\frac{\sqrt{x^2+1}-1}{x}.$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{x^2 + 1} - 1}{x}$$

and use TRACE to verify your assertion.

CALCULUS AND ITS APPLICATIONS

Name:

1.(a)

2.

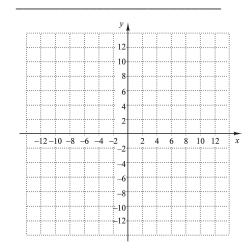
Chapter 1, Form C

For Questions 1 - 3, consider

$$\lim_{x \to -3} f(x)$$
, where $f(x) = \frac{x^2 - 9}{x + 3}$.

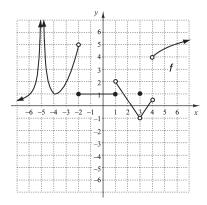
 $x \rightarrow -3^-$ |f(x)|

-3.1 -3.01 -3.001


- 1. Numerical limits.
 - (a) Find the limit by completing the following input-output tables.

$x \rightarrow -3^+$	f(x)
-2.9	
-2.99	
-2.999	

(b) Find $\lim_{x \to -3^-} f(x)$, $\lim_{x \to -3^+} f(x)$, and $\lim_{x \to -3} f(x)$, if each exists.


2. *Graphical limits*. Find the limit by graphing the function.

3. *Algebraic limits*. Find the limit algebraically. Show all work.

50 CALCULUS AND ITS APPLICATIONS Chapter 1, Form C

Graphical limits. For Questions 4 - 12, consider f graphed below.

Find the limit, if it exists.

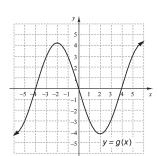
$$4. \quad \lim_{x \to -5} f(x)$$

$$5. \quad \lim_{x \to -2} f(x)$$

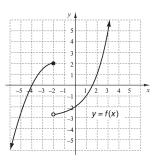
$$6. \quad \lim_{x\to 0} f(x)$$

$$7. \quad \lim_{x \to 3} f(x)$$

$$8. \quad \lim_{x \to 4} f(x)$$


$$9. \quad \lim_{x \to -4} f(x)$$

10. Find
$$f'(-1)$$
.


12. State the value(s) of x at which
$$f'(x)$$
 is not defined.

Determine whether the function is continuous. If a function is discontinuous, state why.

13.

14.

13. _____

14. _____

Consider the function shown in Question 14, answer the following:

15. (a) Find $\lim_{x\to -2} f(x)$.

- **(b)** Find f(-2).
- (c) Is f continuous at -2?

15. (a) _____

- (b) _____
- (c) _____

16. Find $\lim_{x\to 3} f(x)$.

Find the limit if it exists. If the limit does not exist, state why.

17. $\lim_{x \to -2} (4x^3 - 6x^2 - 3x + 1)$

17. _____

16. _____

18. $\lim_{x \to -3^+} \frac{x+3}{x(x^2-9)}$

18. _____

19. $\lim_{x\to 0} \frac{15}{x}$

20. Find the simplified difference quotient for: $f(x) = 4x^2 - 6x$

20. _____

21. Find an equation of the tangent line to the graph of $y = -x + \left(\frac{4}{x}\right)$ at the point (2, 0).

22. Find the points on the graph of $y = x^3 - 3x^2$ at which the tangent line is horizontal.

22.

52 CALCULUS AND ITS APPLICATIONS Chapter 1, Form C

Find dy/dx.

23.
$$y = x^{46}$$

24.
$$y = 6\sqrt[4]{x} - 2\sqrt{x}$$

25.
$$y = -\frac{7}{x^7}$$

26.
$$y = x^{4/5}$$

27.
$$y = 6.3x^3 - 4x^2 - 5$$

Differentiate.

28.
$$y = \frac{3}{4}x^4 + 8x^2 - 161x + 25$$

29.
$$y = (5\sqrt{x} - 8)(x + x^2)$$

30.
$$y = \frac{2x-1}{x^4}$$

31.
$$f(x) = (x+1)^3(3-x)^4$$

32.
$$y = (3x^3 - 5x^2 + 8)^{-3}$$

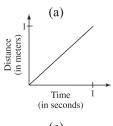
33.
$$f(x) = x^2 \sqrt{x^3 - 5}$$

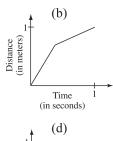
34. For
$$y = 3x^6 - 4x^3$$
, find $\frac{d^3y}{dx^3}$.

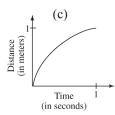
- **35.** *Ozone level*. The ozone level (in parts per billion) in a metropolitan area is modeled by $P = 60 + 15t t^2$, where t is time in hours and t = 0 corresponds to 8:00am.
 - (a) Find the rate of change of the ozone level with respect to time.
 - **(b)** What is the ozone level at t = 6?
 - (c) Find the rate of change of the ozone level at t = 6.
- 35. (a) _____
 - (b) _____
 - (c) _____
- **36.** Business: average revenue, cost and profit. Given revenue and cost functions R(x) = 25x and $C(x) = x^{1/3} + 1000$, where x is the number of items produced and R(x) and C(x) are in dollars, find:
 - (a) The average revenue, the average cost and the average profit when *x* items are produced.
 - **(b)** The rate at which average cost is changing when 25 items are produced.
- 36. (a) _____
 - (b) _____

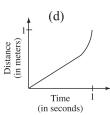
For Questions 37 and 38, let $f(x) = 5x^3$ and $g(x) = x^2 + 8x$.

37. Find
$$\frac{d}{dx}(f \circ g)(x)$$
.


37. _____


38. Find
$$\frac{d}{dx}(g \circ f)(x)$$
.


38. _____


39. A marble rolls on a smooth level surface, then along a carpeted surface. Let y = s(t) represent the marble's distance after starting to roll. Which graph best represents s?

- **40.** Differentiate $y = \sqrt{(4-3x)^{6/5}(1+x)^{2/5}}$.
- 40. _____

41. Find $\lim_{x \to -4} \frac{x^3 + 64}{x + 4}$

- 41. _____
- **42.** Graph f and f' over the interval [-3, 3]. Then estimate points at which the line tangent to f is horizontal.
- 42. _____

$$f(x) = 2x^5 - 5x^2 - x + 2$$
; [-3, 3]

43. Find the following limit by creating a table of values:

43.			

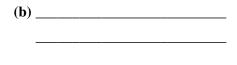
$$\lim_{x\to 0}\frac{\sqrt{x^2+1}-1}{x}.$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{x^2 + 1} - 1}{x}$$

and use TRACE to verify your assertion.

1. (a) _____

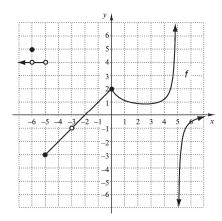

For Questions 1-3, consider

$$\lim_{x\to 4} f(x)$$
, where $f(x) = \frac{x^2 - 16}{x - 4}$.


1. *Numerical limits*. Find the limit by completing the following input-output tables.

$x \rightarrow 4^-$	f(x)	$\underline{x} \rightarrow -4^+$	f(x)
3.9		4.1	
3.99		4.01	
3.999		4.001	

(b) Find $\lim_{x\to 4^-} f(x)$, $\lim_{x\to 4^+} f(x)$, and $\lim_{x\to 4} f(x)$, if each exists


2. *Graphical limits.* Find the limit by graphing the function.

3. *Algebraic limits.* Find the limit algebraically. Show all work.

58 CALCULUS AND ITS APPLICATIONS Chapter 1, Form D

Graphical limits. For Questions 4 - 12, consider f graphed below.

Find the limit, if it exists.

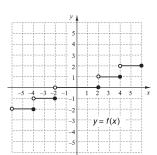
$$4. \quad \lim_{x \to -5} f(x)$$

$$5. \quad \lim_{x \to -3} f(x)$$

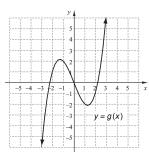
$$6. \quad \lim_{x \to 0} f(x)$$

$$7. \quad \lim_{x \to -2} f(x)$$

$$8. \quad \lim_{x \to 5} f(x)$$


$$9. \quad \lim_{x \to -6} f(x)$$

10. Find
$$f'(3)$$
.


12. State the value(s) of x for which
$$f'(x)$$
 is not defined.

Determine whether the function is continuous. If a function is discontinuous, state why.

13.

14.

13. _____

14. _____

Consider the function in Question 13, answer the following.

15. (a) Find
$$\lim_{x \to -3} f(x)$$
.

- **(b)** Find f(-3).
- (c) Is f continuous at -3?

16. Find
$$\lim_{x \to 4} f(x)$$
.

Find the limit if it exists. If a limit does not exist, state why.

17.
$$\lim_{x \to -1} (5x^4 + 3x^3 - 6x^2 - 4x)$$

18.
$$\lim_{x \to -2^{-}} \frac{x+2}{3x(x^2-4)}$$

19.
$$\lim_{x \to -6} \frac{6}{x+6}$$

20. Find the simplified difference quotient for:
$$f(x) = 3x^2 - 7x$$
.

21. Find an equation of the tangent line to the graph of
$$y = 3x + (\frac{8}{x})$$
 at the point (2, 10).

22. Find the points on the graph of
$$y = 2x^3 - 3x^2$$
 at which the tangent line is horizontal.

60 CALCULUS AND ITS APPLICATIONS Chapter 1, Form D

Find dy/dx.

23. $y = x^{113}$

23. _____

24. $y = 2\sqrt[4]{x} - 4\sqrt{x}$

24. _____

25. $y = \frac{3}{x^4}$

25. _____

26. $y = x^{2/7}$

26. _____

27. $y = 0.59x^4 - 6x^2 + 8$

27. _____

Differentiate.

28. $y = \frac{1}{10}x^5 + 3x^4 - 6x - 6$

28. _____

29. $y = (4\sqrt{x} - 1)(x^2 + x)$

29. _____

 $30. \quad y = \frac{4x^2 + 1}{x^4}$

30. _____

31. $f(x) = (x+1)^3(6-x)^2$

31. _____

32. $y = (6x^2 + 2x^5 + x^6)^{-4}$

32. _____

33. $f(x) = x^2 \sqrt{x^4 - 1}$

33. _____

34. For $y = 4x^6 - 3x^2$, find $\frac{d^3y}{dx^3}$.

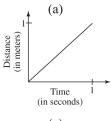
34. _____

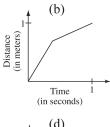
- **35.** *Social Sciences: memory.* In a certain memory experiment, a person is able to memorize M words after t minutes, where $M = -0.002t^3 + 0.1t^2$.
 - (a) Find the rate of change of the number of words memorized with respect to time.
 - **(b)** How many words are memorized during the first 20 minutes (at t = 20)?
 - (c) Find the rate at which words are being memorized after 20 minutes.
- (b) _____
 - (c) _____

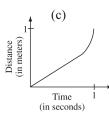
- **36.** Business: average revenue, cost and profit. Given revenue and cost functions R(x) = 60x and $C(x) = x^{3/4} + 300$, where x is the number of items produced and R(x) and C(x) are in dollars, find:
 - (a) The average revenue, the average cost and the average profit when *x* items are produced.
 - **(b)** The rate at which average cost is changing when 16 items are produced
- 36. (a) _____
 - (b) _____

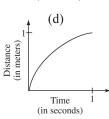
For Questions 37 and 38, let $f(x) = \sqrt{x+4}$ and $g(x) = x^2 + x$.

37. Find
$$\frac{d}{dx}(f \circ g)(x)$$
.


38. Find $\frac{d}{dx}(g \circ f)(x)$.


- 37. _____
- 38. _____


62 CALCULUS AND ITS APPLICATIONS Chapter 1, Form D


39. A small ball rolls along a level table at a constant rate and then down an inclined plane. Let y = s(t) represent the marble's distance after starting to roll. Which graph best represents s?

- **40.** Differentiate $y = \sqrt{(8-2x)^{3/2}(4+x)^{1/3}}$.
- 40.

41. Find $\lim_{x\to 5} \frac{x^3-125}{x-5}$.

- 41. _____
- **42.** Graph f and f' over the interval [-5, 5]. Then estimate points at which the line tangent to f is horizontal.

$$f(x) = 2x^5 + 4x^2 - 7x$$
; [-5, 5]

63

43. Find the following limit by creating a table of values:

$$\lim_{x\to 5}\frac{\sqrt{6x-5}-5}{x-5}.$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{6x - 5} - 5}{x - 5}$$

and use TRACE to verify your assertion.