https://selldocx.com/products/test-bank-calculus-combo-1e-taalman

Name

Chapter 02: Derivatives

1. Suppose that h(t) represents the height, in feet, of a person t years old. In real world terms, what does

represents and what is its unit? represent? What is its unit? What does

ANSWER: h(10) represents the height of a 10-year old person. Its unit is feet. change of the height when a person is t years old. Its unit is feet per year.

2. The function $f(x) = 9 - 2x + x^2$ is both continuous and differentiable at x = 0 Write these facts as limit statements.

 $\lim (9-2x+x^2) = f(0) = 9$ ANSWER: Since f is continuous at x = 0, $x \to 0$

Since f is differentiable at
$$x = 0$$
,
$$\lim_{h \to 0} \frac{-2h + 2xh + h^2}{h}$$
 exists.

Note that there are alternate ways of writing the answer

f(1) = 2, $\lim_{x \to 1^{-}} f(x) = 2$, and $\lim_{x \to 1^{+}} f(x) = 2$, $\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = -2$, $\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = 1$. Is f(1) = 2, $\lim_{x \to 1^{-}} f(x) = 2$, and $\lim_{x \to 1^{+}} f(x) = 2$. 3. Suppose

continuous and/or differentiable at x = 1

- a. f is not continuous but differentiable at x = 1
- b. f is neither continuous nor differentiable at x = 1
- c. f is continuous at but not differentiable at x = 1
- f is both continuous and differentiable at x = 1

ANSWER: c

f(1)=2, $\lim_{x\to 1^-} f(x)=2$, and $\lim_{x\to 1^+} f(x)=2$, $\lim_{h\to 0^-} \frac{f(1+h)-f(1)}{h}=-2$, 4. Suppose Is f continuous and/or differentiable at x = 1?

- a. f is not continuous but differentiable at x = 1
- b. f is neither continuous nor differentiable at x = 1
- c. f is continuous but not differentiable at x = 1
- d. f is both continuous and differentiable at x = 1

ANSWER: d

 $\frac{f(x+h)-f(x)}{h}$ to find f'(-1), if $f(x)=x^2$. 5. Use the definition of derivative: $\hbar \rightarrow 0$ - 2 ANSWER:

 $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ to find } f'(-2), \text{ if } f(x) = \frac{2}{x}.$

6. Use the definition of derivative: $\hbar \rightarrow 0$

Chapter 02: Derivatives

ANSWER:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 to find $f'(1)$, if $f(x) = \frac{x+1}{x-2}$.

7. Use the definition of derivative: $\hbar \rightarrow 0$

ANSWER:

- 3

- 2

- 3

$$\lim_{z \to c} \frac{f(z) - f(c)}{z - c}$$
 to find $f'(-1)$, if $f(x) = x^2$.

8. Use the definition of derivative: *****

ANSWER:

9. Use the definition of derivative: $\frac{f(z)-f(c)}{z-c}$ to find f'(-2), if $f(x)=\frac{2}{x}$. ANSWER:

$$\lim_{z \to c} \frac{f(z) - f(c)}{z - c}$$
 to find $f'(1)$, if $f(x) = \frac{x+1}{x-2}$.

ANSWER:

 $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ f'(x), if $f(x) = \frac{3}{x+1}$.

11. Use the definition of derivative: $h \to 0$ to find $f'(x) = \frac{-3}{(x+1)^2}$ ANSWER:

12. Use the definition of derivative: $\frac{\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}}{h}$ to find f'(x), if $f(x)=2\sqrt{x}$. ANSWER:

 $f'(x) = \frac{1}{\sqrt{x}}$

 $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ f'(x), if $f(x) = \frac{1}{x^2}$. $f'(x) = \frac{-2}{..3}$ ANSWER:

ANSWER:

 $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ to find f'(x), if $f(x) = \sqrt{x+1}$. $f'(x) = \frac{1}{2\sqrt{x+1}}$

Chapter 02: Derivatives

15. Given

 $f(x) = \begin{cases} -2x & \text{if } x < 1 \\ x - 3 & \text{if } x \ge 1 \end{cases}$, is f continuous and/or differentiable at x = 1? Explain.

- a. f is not continuous but differentiable at x = 1
- b. f is neither continuous nor differentiable at x = 1
- c. f is continuous but not differentiable at x = 1
- d. f is both continuous and differentiable at x = 1

ANSWER:

c

 $f(x) = \begin{cases} x^2 - 2 & \text{if } x < 2 \\ 2x + 1 & \text{if } x \ge 2 \end{cases}$, is f continuous and/or differentiable at x = 2? Explain. 16. Given

- a. f is continuous but not differentiable at x = 2
- b. f is differentiable but not continuous at x = 2
- c. f is neither continuous nor differentiable at x = 2
- d. f is both continuous and differentiable at x = 2

ANSWER:

c

- 17. Use the Intermediate Value Theorem to show that $f(x) = x^2 2$ has at least one zero on [0, 2]. ANSWER: f is continuous on [0, 2], and f(0) = -2 < 0, and f(2) = 2 > 0.
- 18. Use the Intermediate Value Theorem to show that $f(x) = x^3 + 2$ has at least one zero on [-2, 1]. ANSWER: f is continuous on [-2, 1], and f(-2) = -6 < 0, and f(1) = 3 > 0.
- 19. Suppose f is a piecewise-defined function, equal to g(x) if x < 3, and h(x) if $x \ge 3$, where g and h are continuous and differentiable everywhere. If g'(3) = h'(3), is the function f'(3) = h'(3) Explain why or why not.

ANSWER:

20. Suppose $f \neq g$ and h are functions with values $f(1) = -3 \neq g(1) = 2 \neq f'(1) = 0 \neq g'(1) = 3 \neq f'(1) = 3 \neq g'(1) = 3 \neq$

- b.
- c.
- d. -7

ANSWER:

21. Suppose f = g and h are functions with values f(1) = -3, g(1) = 2, f'(1) = 0, g'(1) = 3. Find (2f - 5g)'(1)

Chapter 02: Derivatives

$$-12$$

$$-15$$

ANSWER:

d

22. Suppose $f \neq g$ and h are functions with values f(1) = -3, g(1) = 2, f'(1) = 0, g'(1) = 3. Find

$$-\frac{9}{4}$$

ANSWER:

c

23. Find constants

, is continuous and differentiable everywhere?

a.
$$a = 2$$
, $b = 1$

$$a = 1$$
, $b = 1$

$$a = 1$$
, $b = \frac{-1}{2}$

$$a = 1$$
, $b = \frac{1}{2}$

ANSWER:

d

X	g(x)	h(x)	g'(x)	h'(x)
-3	0	3	1	0
-2	1	2	2	-3
-1	3	0	-1	-2
0	2	3	-2	3
1	0	-1	-2	-2
2	-2	-2	-1	0
3	-3	0	0	1

24. Use the table above to find f'(3) if f(x) = 5g(x) - 4h(x).

- b.
- **1**

Chapter 02: Derivatives

c. d. 1

ANSWER:

d

25. Use the table above to find f'(2) if $f(x) = \frac{2gt}{h(x)}$

a.

4

b.

- 1

c.

1

d.

_ 4

ANSWER:

c

26. Use the table above to find $f'(-1) \quad f(x) = \frac{g(x)h(x)+1}{g(x)}$

a.

19/9

b.

-19/9

c.

17/9

d.

-17/9

ANSWER:

d

27. Use the table above to find f'(-2) if f(x) = g(h(x)).

a.

-3

b.

3

c.

- 1

d.

1

ANSWER:

b

28. Use the table above to find f'(-2) if f(x) = h(g(x)).

a.

4

b.

1

c.

- 1

d.

1

ANSWER:

d

29. Use the table above to find f'(1) if $f(x) = (h(x))^3$

a.

3

b.

.

c.

6

Chapter 02: Derivatives

d.

- 6

ANSWER:

d

30. Use the table above to find
$$f'(-1)$$
 if $f(x) = \sqrt{g(x)}$.

c.
$$\frac{\sqrt{3}}{2\sqrt{3}}$$

d.
$$\frac{-1}{2\sqrt{3}}$$

ANSWER:

d

31. Use the table above to find
$$f'(-1)$$
 if $f(x) = h(x^2g(x))$

ANSWER:

d

32. Use the table above to find
$$f'(1)$$
 if $f(x) = h(3-2x^2)$.

ANSWER:

c

$$f(x) = 5 - 2e + 3x - 2x^5 + \frac{1}{\sqrt[3]{x}}$$
33. Find the derivative of

$$-1-10x^4-\frac{1}{3}x^{-\frac{1}{3}}$$

b.
$$3-10x^4-\frac{1}{3}x^{-\frac{1}{3}}$$

c

e:

Chapter 02: Derivatives

c.
$$3-10x^4-\frac{1}{3}x^{-\frac{4}{3}}$$

d.
$$3-10x^4-\frac{1}{3}x^{-\frac{2}{3}}$$

ANSWER:

34. Find the derivative of $f(x) = -2x^3 + 3x + 4\sqrt{x} + 5$.

a. $6x^2 + 3 + 2x^{\frac{1}{2}}$

a.
$$\frac{1}{6x^2+3+2x^2}$$

b.
$$-6x^2+3+2x^{\frac{1}{2}}$$

c.
$$6x^2+3+2x^{-\frac{1}{2}}$$

d.
$$-6x^2+3+2x^{-\frac{1}{2}}$$

d ANSWER:

 $f(x) = \frac{x^2}{1 - 2x^3}$ 35. Find the derivative of

a.
$$\frac{-2x^4 + 2x}{(1 - 2x^3)^2}$$

b.
$$\frac{-2x^4 - 2x}{(1 - 2x^3)^2}$$

c.
$$\frac{2x^4 - 2x}{(1 - 2x^3)^2}$$

d.
$$\frac{2x^4 + 2x}{(1 - 2x^3)^2}$$

ANSWER: d

Chapter 02: Derivatives

$$\frac{-23}{(4-5x)^2}$$

$$\frac{25}{(4-5x)^2}$$

$$\frac{-7}{(4-5v)^2}$$

ANSWER:

b

$$f(x) = \left(\sqrt[3]{x} + 2\sqrt{x}\right)^3$$
37. Find the derivative of

ANSWER:

$$(\sqrt[3]{x} + 2\sqrt{x})^2 \left(\frac{1}{\sqrt[3]{x^2}} + \frac{3}{\sqrt{x}} \right)$$

$$f(x) = \frac{\sqrt[3]{x^5} - 3x^5}{x^3}.$$

38. Find the derivative of

$$\frac{4}{3}x^{-\frac{3}{5}}-6x$$

$$\frac{4}{3}x^{-\frac{3}{7}}-6x$$

$$-\frac{4}{3}x^{-\frac{7}{3}}-6x$$

$$\frac{4}{3}x^{-\frac{7}{3}}-6x$$

ANSWER:

c

$$f(x) = \frac{(x+2)^2}{(x^2-4)(x+2)}$$
9. Find the derivative of

$$\frac{1}{(x+2)^2}$$

Chapter 02: Derivatives

$$\frac{1}{(x-2)^2}$$

$$-\frac{1}{(x-2)^2}$$

ANSWER:

d

40. Find the derivative of
$$f(x) = |2x+1|$$

$$f'(x) = \begin{cases} -2 & \text{if } x < -\frac{1}{2} \\ \text{DNE if } x = -\frac{1}{2} \\ 2 & \text{if } x > -\frac{1}{2} \end{cases}$$

$$f(x) = |1 - 3x|$$

41. Find the derivative of f(x) = |1-3x|

$$f'(x) = \begin{cases} -3 & \text{if } x < \frac{1}{3} \\ \text{DNE if } x = \frac{1}{3} \\ 3 & \text{if } x > \frac{1}{3} \end{cases}$$

$$f(x) = \begin{cases} 4x - 1 & \text{if } x < 2\\ 2x^2 + 3 & \text{if } x \ge 2 \end{cases}$$

42. Find the derivative of

ANSWER:

$$f'(x) = \begin{cases} 4 & \text{if } x < 2\\ \text{DNE if } x = 2\\ 4x & \text{if } x > 2 \end{cases}$$

43. Find the derivative of a.
$$f(x) = \frac{2}{4 - 5x^4}$$

$$\frac{-20x^3}{(4 - 5x^4)^2}$$

$$\frac{-20x^3}{(4-5x^4)^2}$$

$$40x^3$$

Chapter 02: Derivatives

$$\frac{20x^3}{(4-5x^4)^2}$$

$$\frac{-40x^3}{(4-5x^4)^2}$$

ANSWER:

b

$$f(x) = \left(\frac{x^3 - 1}{\sqrt{x}}\right)^3$$

44. Differentiate in three ways: (a) with the chain rule, (b) with the quotient rule but not chain rule, (c) without the chain or quotient rules.

ANSWER:

$$\left[x^{\frac{5}{2}} - x^{-\frac{1}{2}}\right]^{2} \left(\frac{15}{2}x^{\frac{3}{2}} + \frac{3}{2}x^{-\frac{3}{2}}\right)$$

$$f(x) = \left(\frac{2x^3 + 1}{\sqrt[3]{x}}\right)^3$$

45. Differentiate in three ways: (a) with the chain rule, (b) with the quotient rule but not chain rule, (c) without the chain or quotient rules.

ANSWER:

$$\left[2x^{\frac{8}{3}} + x^{-\frac{1}{3}}\right]^2 \left(\frac{48}{3}x^{\frac{5}{3}} - x^{-\frac{4}{3}}\right)$$

$$f(x) = (\sqrt[3]{x} + 4)^6$$

$$\frac{2(x^{\frac{1}{3}}+4)^{\frac{1}{3}}}{x^{\frac{1}{3}}}$$

b.
$$\frac{2(x^{\frac{1}{3}} + 4)^{5}}{\frac{2}{3}}$$

c.
$$2\left[x^{\frac{1}{3}}+4\right]^5$$

d.
$$\frac{2(x^{\frac{1}{3}}+4)^4}{x^{\frac{2}{3}}}$$

Chapter 02: Derivatives

47. Find the derivative of a. $(112x^2+2)(4x^2+1)^6$

a.
$$(112x^2+2)(4x^2+1)^6$$

b.
$$(120x^2+2)(4x^2+1)^7$$

c.
$$(120x^2+2)(4x^2+1)^6$$

d.
$$112x^2(4x^2+1)^6$$

ANSWER:

c

48. Find the derivative of

$$\frac{-x+4}{(x^2+2)^{\frac{3}{2}}}$$

b.
$$\frac{x+4}{(x^2+2)^{\frac{3}{2}}}$$

c.
$$\frac{x^2+4}{x^2+3}$$

d.
$$\frac{-x-4}{(x^2+2)^{\frac{3}{2}}}$$

ANSWER:

b

$$f(x) = (3x\sqrt{x^2+1})^{-3}$$

49. Find the derivative of

ANSWER:

$$\frac{-(2x^2+1)}{9x^4(x^2+1)^{\frac{5}{2}}}$$

$$f(x) = \frac{\left(1 - \sqrt{x}\right)^2}{2x^3 - 5x + 1}.$$

50. Find the derivative of

ANSWER:

$$\frac{\left(1-x^{\frac{1}{2}}\right)\left(4x^{\frac{5}{2}}-6x^{2}-x^{-\frac{1}{2}}+5\right)}{\left(2x^{3}-5x+1\right)^{2}}$$

Chapter 02: Derivatives

51. Find the derivative of

ANSWER:
$$f(x) = \sqrt{5 - \sqrt{2x + 1}}$$

$$-1$$

$$2\sqrt{10x + 5 - (2x + 1)\sqrt{2x + 1}}$$

52. Find the derivative of

a.

$$f(x) = (\sqrt[3]{x} - 3x)^{-2}.$$

a.
$$\frac{18x^{\frac{1}{3}} - 2}{3x^{\frac{2}{3}} \left(x^{\frac{1}{3}} - 3x\right)^3}$$

b.
$$\frac{18x^{\frac{1}{3}} - 2}{3x^{\frac{1}{3}} \left(x^{\frac{1}{3}} - 3x\right)^3}$$

c.
$$\frac{18x^{\frac{2}{3}} - 2}{3x^{\frac{2}{3}} \left(x^{\frac{1}{3}} - 3x\right)^3}$$

d.
$$\frac{18x^{\frac{2}{3}} - 2}{2x^{\frac{2}{3}} \left(x^{\frac{1}{3}} - 3x\right)^3}$$

ANSWER: c

$$f(x) = (1 - 2x^3)^3 (4x^2 + 1)^6.$$
53. Find the derivative of

a.
$$3(1-2x^3)^2(4x^2+1)^4(4x^2+16x+1)$$

b.
$$3(1-2x^3)^2(4x^2+1)^4(32x^4+4x^2+16x+1)$$

c.
$$3(1-2x^3)^2(4x^2+1)^5(4x^2+16x+1)$$

d.
$$6x(1-2x^3)^2(4x^2+1)^5(-28x^3-3x+8)$$

ANSWER: d

$$f(x) = 2((x^2+1)^5-4x)^{-5/2}$$
.

54. Find the derivative of
a.
$$\frac{f(x) = 2((x^2 + 1)^5 - 4x)^{-5/2}}{50x(x^2 + 1)^4} \cdot \frac{50x(x^2 + 1)^4}{((x^2 + 1)^5 - 4x)^{\frac{5}{2}}}$$

Chapter 02: Derivatives

b.
$$\frac{20 - 50x(x^2 + 1)^4}{x^2 + 15^5}$$

c.
$$\frac{50x(x^2+1)^4-20}{((x^2+1)^5-4x)^{\frac{7}{2}}}$$

$$((x^2+1)^5-4x)^{\frac{7}{2}}$$

d.
$$\frac{20 - 50x(x^2 + 1)^4}{((x^2 + 1)^5 - 4x)^{\frac{5}{2}}}$$

ANSWER:

b

$$f(x) = (x\sqrt{x+2})^{-2}, \text{ find } f''(x).$$
55. If , find f''(x).

ANSWER:

$$\frac{12x^4 + 32x^3 + 24x^2}{x^6(x+2)^3}$$

56. Use implicit differentiation to find $\frac{dy}{dx}$ if $xy^2 + 2x^3 + y^2 = 10$.

a.
$$\frac{6x^2 + y^2}{2xy + 2y}$$

b.
$$\frac{-6x^2 + y^2}{2xy + 2y}$$

c.
$$\frac{6x^2 - y^2}{2xy + 2y}$$

$$\frac{-6x^2 - y^2}{2xy + 2y}$$

ANSWER: d

57. Use implicit differentiation to find a. $\frac{\frac{dy}{dx}}{5x-x^2+2xy}$ if $5xy+x^2y-y^2x=10$.

a.
$$\frac{10}{5x-x^2+2xy}$$

b.
$$y^2 + 5y + 2xy$$

c.
$$\frac{y^2 - 5y}{5x + x^2}$$

Chapter 02: Derivatives

d.
$$y^2 - 2xy - 5y$$

ANSWER:

d

58. Use implicit differentiation to find $\frac{dy}{dx}$ if $\sqrt{2y+1} = 4xy$.

a.
$$\frac{1 - 8y\sqrt{2y + 1}}{8x\sqrt{2y + 1}}$$

b.
$$\frac{1 - 4y\sqrt{2y + 1}}{2x\sqrt{2y + 1}}$$

c.
$$\frac{4y\sqrt{2y+1}}{1-4x\sqrt{2y+1}}$$

d.
$$\frac{4y\sqrt{2y+1}}{1+2x\sqrt{2y+1}}$$

ANSWER:

c

59. Find the equation of the tangent lines to the circle $x^2+y^2=4$ at the points with x-coordinate x=1.

ANSWER: $y-\sqrt{3}=-\frac{\sqrt{3}}{3}(x-1)$ and $y+\sqrt{3}=\frac{\sqrt{3}}{3}(x-1)$

60. Find the equation of the tangent lines to the graph of

ANSWER: $y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4}(x-2)$ $y + \frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{4}(x-2)$ and

and

at the points with x-coordinate x = 2.

$$f(x) = \frac{(x^3 - 4)^5 (5x - 2)}{(x + 1)^{-3} (2 + x^2)^4}$$

61. Find the derivative of

ANSWER:

$$\frac{\left(x^3-4\right)^5(5x-2)}{(x+1)^{-3}\left(2+x^2\right)^4}\left(\frac{15x^2}{x^3-4}+\frac{5}{5x-2}+\frac{3}{x+1}-\frac{8x}{2+x^2}\right)$$

$$f(x) = \frac{\sqrt{2x+1}(x^2-1)^4}{(x-3)^3(2+x)}$$

Chapter 02: Derivatives

ANSWER:

$$\frac{\sqrt{2x+1}(x^2-1)^4}{(x-3)^3(2+x)} \left(\frac{1}{2x+1} + \frac{8x}{x^2-1} - \frac{3}{x-3} - \frac{1}{2+x} \right)$$

 $f(x) = \frac{1}{3 + e^{2x}}$ 63. Find the derivative of

a.
$$\frac{e^{2x}}{(3+e^{2x})^2}$$

b.
$$\frac{2e^{2x}}{(3+e^{2x})^2}$$

c.
$$\frac{-e^{2x}}{(3+e^{2x})^2}$$

d.
$$\frac{-2e^{2x}}{(3+e^{2x})^2}$$

ANSWER:

d

64. Find the derivative of $f(x) = e^{5x} \ln (2x^2 + 1)$.

a.
$$e^{5x} \ln (2x^2 + 1) + \frac{e^{5x}}{\ln (2x^2 + 1)}$$

b.
$$e^{5x} \ln (2x^2+1) + \frac{e^{5x}}{2x^2+1}$$

c.
$$5e^{5x} \ln (2x^2+1) + \frac{e^{5x}}{2x^2+1}$$

d.
$$5e^{5x} \ln (2x^2+1) + \frac{4xe^{5x}}{2x^2+1}$$

ANSWER:

d

$$f(x) = \frac{3 + x^2}{e^{2x}}$$

$$f(x) = \frac{3+x^2}{e^{2x}}$$
ative of
a.
$$\frac{2x^2-2x+6}{e^{2x}}$$

b.
$$\frac{x^2 - 2x + 3}{e^{2x}}$$

Chapter 02: Derivatives

c.
$$\frac{-2x^2+2x-6}{e^{2x}}$$

d.
$$\frac{-x^2 + 2x - 3}{e^{2x}}$$

ANSWER:

c

$$f(x) = \sqrt[3]{\ln(2x^2 + 1)}$$

66. Find the derivative of

a.
$$\frac{1}{(6x^2+3)\sqrt[3]{\ln(2x^2+1)}}$$

b.
$$\frac{4x}{(6x^2+3)\sqrt[3]{[\ln{(2x^2+1)}]^2}}$$
c.
$$\frac{4x}{(6x^2+3)\sqrt[3]{[\ln{(2x^2+1)}]^2}}$$
d.
$$\frac{1}{(6x^2+3)\sqrt[3]{[\ln{(2x^2+1)}]^2}}$$

c.
$$\frac{4x}{(6x^2+3)\sqrt[3]{\ln(2x^2+1)}}$$

d.
$$\frac{1}{(6x^2+3)\sqrt[3]{\left[\ln{(2x^2+1)}\right]^2}}$$

ANSWER:

b

67. Find the derivative of $f(x) = e^{5x} \ln (x^2 + 1)$ ANSWER: $e^{5x} [5(x^2 + 1) \ln (x^2 + 1) + 2x]$ $e^{5x} [1 + 1 + 2x]$

$$e^{5x}[5(x^2+1)\ln(x^2+1)+2x]$$

68. Find the derivative of $f(x) = x^3 \ln (2x^2)$.

a.
$$3x^2 \ln (2x^2) + \frac{1}{2}x$$

b.
$$3x^2 \ln(2x^2) + 2x$$

c.
$$3x^2 \ln(2x^2) + 2x^2$$

d.
$$3x \ln(2x^2) + 2x^2$$

ANSWER:

c

69. Find the derivative of $f(x) = x^2 e^{3x}.$ a. $2xe^{3x} + x^2 e^{3x}$

a.
$$2xe^{3x} + x^2e^{3x}$$

b.
$$2xe^{3x} + 3x^2e^{3x}$$

Chapter 02: Derivatives

c.
$$x^2e^{3x} + 3xe^{3x}$$

d.
$$2e^{3x} + 3x^2e^{3x}$$

ANSWER: b

$$f(x) = \ln\left(\frac{x^5}{x^3 + 2x + 1}\right)$$

70. Find the derivative of

a.
$$\frac{5}{x} + \frac{3x+2}{x^3+2x+1}$$

b.
$$\frac{5}{x} + \frac{3x^2 + 2}{x^3 + 2x + 1}$$

c.
$$\frac{5}{x} - \frac{3x^2 + 2}{x^3 + 2x + 1}$$

d.
$$\frac{5}{x} - \frac{3x^2 - 2}{x^3 + 2x + 1}$$

ANSWER: c

71. Find the derivative of $f(x) = 5^{x} + \ln \sqrt{x}$ a. $5^{x} + \frac{1}{x}$

$$5^x + \frac{1}{x}$$

b.
$$5^x \ln 5 + \frac{1}{x}$$

c.
$$5^x + \frac{1}{2x}$$

d.
$$5^x \ln 5 + \frac{1}{2x}$$

ANSWER: d

72. Find the derivative of
a. $6x^{2}e^{3x^{2}} + \frac{5}{3}$

a.
$$6x^2e^{3x^2} + \frac{5}{3}$$

b.
$$6x^2e^{3x^2} + 5 \ln \sqrt[3]{x} + \frac{5}{3}$$

c.
$$6x^2e^{3x^2}+e^{3x^2}+\frac{5}{3}$$

Chapter 02: Derivatives

d.
$$6x^2e^{3x^2}+e^{3x^2}+5\ln\sqrt[3]{x}+\frac{5}{3}$$

ANSWER:

d

$$f(x) = \begin{cases} \ln(x+3) & \text{if } x < 1 \\ 4x^2 - 1 & \text{if } x \ge 1 \end{cases}$$

73. Find the derivative of

a.
$$f'(x) = \begin{cases} \frac{1}{x+3} & \text{if } x < 1 \\ 4x^2 + 1 & \text{if } x \ge 1 \end{cases}$$

b.
$$f'(x) = \begin{cases} \frac{1}{x+3} & \text{if } x < 1 \\ \text{DNE if } x = 1 \\ 4x & \text{if } x > 1 \end{cases}$$

c.
$$f'(x) = \begin{cases} \frac{1}{x+3} & \text{if } x < 1 \\ 8x & \text{if } x \ge 1 \end{cases}$$

d.
$$f'(x) = \begin{cases} \frac{1}{x+3} & \text{if } x < 1 \\ \text{DNE if } x = 1 \\ 8x & \text{if } x > 1 \end{cases}$$

ANSWER:

d

$$f(x) = \frac{e^{3x}(x^3 + 2)^5}{x^2(5e^{2x} + 1)}$$

74. Find the derivative of

a.
$$f'(x) = \frac{e^{3x}(x^3+2)^5}{x^2(5e^{2x}+1)} \left(3x + \frac{5}{x^3+2} - \frac{2}{x} - \frac{10e^{2x}}{5e^{2x}+1}\right)$$

b.
$$f'(x) = \frac{e^{3x}(x^3+2)^5}{x^2(5e^{2x}+1)} \left(3e^{3x} + \frac{5x^2}{x^3+2} - \frac{2}{x} - \frac{10e^{2x}}{5e^{2x}+1}\right)$$

c.
$$f'(x) = \frac{e^{3x}(x^3+2)^5}{x^2(5e^{2x}+1)} \left(3 + \frac{5x^2}{x^3+2} - \frac{2}{x} - \frac{10e^{2x}}{5e^{2x}+1}\right)$$

d.
$$f'(x) = \frac{e^{3x}(x^3+2)^5}{x^2(5e^{2x}+1)} \left(3 + \frac{15x^2}{x^3+2} - \frac{2}{x} - \frac{10e^{2x}}{5e^{2x}+1}\right)$$

ANSWER:

Chapter 02: Derivatives

$$f(x) = \left(\frac{x^2}{x-1}\right)^x$$

75. Find the derivative of

a.
$$f'(x) = \left(\frac{x^2}{x-1}\right)^x (2 \ln x + 1 - \ln (x-1))$$

b.
$$f'(x) = \left(\frac{x^2}{x-1}\right)^x \left[2 \ln x + 2 - \ln (x-1) - \frac{x}{x-1}\right]$$

c.
$$f'(x) = \left(\frac{x^2}{x-1}\right)^x \left[2 \ln x - \ln (x-1) - \frac{x}{x-1}\right]$$

d.
$$f'(x) = \left(\frac{x^2}{x-1}\right)^x \left[2-\ln(x-1)-\frac{x}{x-1}\right]$$

ANSWER:

b

76. Find the derivative of $f(x) = \sin^2 x + 3 \cos^2 x$.

variative of
$$2 \sin x + 6 \cos x$$

$$d = -2 \sin 2x$$

ANSWER:

d

77. Find the derivative of $f(x) = 2^x \tan x + 2x$

a.
$$x2^{x-1} \tan x + 2^x \sec^2 x + 2$$

b.
$$x2^{x-1} \tan x + 2^x \sec x \tan x + 2$$

c.
$$2^x \ln 2 \tan x + 2^x \sec^2 x + 2$$

d.
$$2^x \ln 2 \tan x + 2^x \sec x \tan x + 2$$

ANSWER:

c

$$f(x) = \frac{x^2 \ln (3x^2)}{\sin 3x}$$

78. Find the derivative of

ANSWER:

$$\frac{x \ln (3x^2)(2 \sin 3x - 3x \cos 3x) + 2x \sin 3x}{\sin^2 3x}$$

79. Find the derivative of $f(x) = 3x^2 \tan^{-1} x^3$.

Chapter 02: Derivatives

a.
$$6x \tan^{-1} x^3 + \frac{3x^2}{1+x^9}$$

b.
$$6x \tan^{-1} x^3 + \frac{3x^2}{1+x^6}$$

c.
$$6x \tan^{-1} x^3 + \frac{9x^2}{1+x^6}$$

d.
$$6x \tan^{-1} x^3 + \frac{9x^4}{1+x^6}$$

ANSWER: d

80. Find the derivative of $f(x) = 2x\sqrt{\sin 2x \cos 2x}$

ANSWER:

$$\frac{2\sin 4x + 4x\cos 4x}{\sqrt{2\sin 4x}}$$

81. Find the derivative of $f(x) = \cos^2(\tan^{-1}x)$

a.
$$\frac{\cos 2(\tan^{-1} x)}{1+x^2}$$

b.
$$\frac{2\cos(\tan^{-1}x)}{1+x^2}$$

c.
$$\frac{-\sin 2(\tan^{-1} x)}{1+x^2}$$

d.
$$\frac{2 \sin (\tan^{-1} x)}{1+x^2}$$

ANSWER: c

82. Find the derivative of $f(x) = 2(\sin^{-1} x)^3$.

a.
$$\frac{6(\sin^{-1} x)^2}{1+x^2}$$

b.
$$\frac{6(\sin^{-1} x)^2}{\sqrt{1-x^2}}$$

c.
$$\frac{6(\sin^{-1}x)}{\sqrt{1-x^2}}$$

Chapter 02: Derivatives

d.
$$\frac{6(\sin^{-1}x)}{1+x^2}$$

ANSWER:

b

83. Find the derivative of
$$f(x) = 4 \sec 5x + e^{5x}$$
.

a.
$$20 \sec^2 5x + e^{5x}$$

b.
$$4 \sec 5x \tan 5x + e^{5x}$$

c.
$$20 \sec^2 5x + 5e^{5x}$$

d.
$$20 \sec 5x \tan 5x + 5e^{5x}$$

ANSWER:

d

84. Find the derivative of
$$f(x) = \tan^3(x^2 + 1)$$
.

 $3 \tan^2 (x^2+1)\sec^2 (x^2+1)$

b.
$$3x \tan^2(x^2+1)\sec^2(x^2+1)$$

c.
$$6x \tan^2(x^2+1)\sec^2(x^2+1)$$

d.
$$6x \tan^2(x^2+1)$$

ANSWER:

c

85. Find the derivative of
$$f(x) = \cos^{-1}(\ln x)$$
.

b.
$$\frac{1}{x\sqrt{1-x}}$$

c.
$$\frac{-1}{x\sqrt{1-\ln^2 x}}$$

d.
$$\frac{x\sqrt{1-\ln^2 x}}{\sqrt{1-\ln^2 x}}$$

ANSWER:

c

86. Find the derivative of
$$f(x) = \ln (x \sin 3x)$$
.

a.
$$\frac{1}{3x} + 3 \tan 3x$$

Chapter 02: Derivatives

b.
$$\frac{1}{3x} + 3 \cot 3x$$

c.
$$\frac{1}{x} + 3 \tan 3x$$

d.
$$\frac{1}{x} + 3 \cot 3x$$

ANSWER:

d

87. Find the derivative of $f(x) = \csc^3(e^{5x})$.

a.
$$e^{5x} \csc^2(e^{5x})\cot(e^{5x})$$

b.
$$e^{5x} \csc^3(e^{5x})\cot(e^{5x})$$

c.
$$15e^{5x} \csc^3(e^{5x})\cot(e^{5x})$$

d.
$$-15e^{5x} \csc^3(e^{5x})\cot(e^{5x})$$

ANSWER:

d

88. Find the derivative of $f(x) = 2x \sinh^2 x$.

a.
$$2 \sinh^2 x + 2x \sinh x \cosh x$$

b.
$$2 \sinh^2 x + 4x \sinh x \cosh x$$

c.
$$2 \sinh^2 x + 4x \sinh x$$

d.
$$4x \sinh x \cosh x$$

ANSWER:

b

$$f(x) = \frac{\sin^{-1} x}{\cos^{-1} x}$$

89. Find the derivative of

ANSWER:

$$\frac{\cos^{-1}x + \sin^{-1}x}{(\cos^{-1}x)^2 \sqrt{1-x^2}}$$

90. Find the derivative of $f(x) = (\sin 3x)^{2x}$

a.
$$f'(x) = (\sin 3x)^{2x} (2 \ln (\sin 3x) + 3x \cot 3x)$$

b.
$$f'(x) = (\sin 3x)^{2x} (2 \ln (\sin 3x) + 3x \tan 3x)$$

c.
$$f'(x) = (\sin 3x)^{2x} (2 \ln (\sin 3x) + 6x \cot 3x)$$

Chapter 02: Derivatives

d.
$$f'(x) = (\sin 3x)^{2x} (2 \ln (\sin 3x) + 6x)$$

ANSWER:

c

- 91. Find the derivative of $f(x) = \cosh (\ln (x^3 + 1))$
 - $\frac{\sinh (\ln (x^3+1))}{x^3+1}$
 - $\frac{3x^2 \sinh (\ln (x^3+1))}{x^3+1}$ b.
 - $\frac{-\sinh (\ln (x^3+1))}{x^3+1}$
 - $\sinh (\ln (x^3 + 1))$ d.

ANSWER:

b

$$f(x) = \frac{\tanh\sqrt{x}}{\sinh 3x}$$

92. Find the derivative of

ANSWER:

$$\frac{\sec h^2 \sqrt{x} \sinh 3x - 6\sqrt{x} \cosh 3x \tanh \sqrt{x}}{2\sqrt{x} \sinh^2 3x}$$

93. Find the derivative of $f(x) = \ln (3e^{4x}) + \sin^2 x^3$

ANSWER:

$$4 + 3x^2 \sin 2x^3$$

94. Use implicit differentiation to find $\frac{dy}{dx}$ if $\sin(xy) = x^2 + y^3$. ANSWER: