Chapter 02/test-ានរាស្រាស់ emit Cymp នៅ១៧ន-focused-approach-1e-gilbert

MULTIPLE CHOICE

1.	Wi	nat are cathode rays?		
	a.	electrons	d.	alpha particles

b. protons e. X-rays

c. neutrons

ANS: A DIF: Easy REF: 2.1

OBJ: Describe how cathode rays are generated and behave in magnetic/electric fields

MSC: Remembering

2. Who discovered electrons?

a. Henri Becquerelb. Robert Millikand. John Daltone. James Chadwick

c. Joseph John Thomson

ANS: C DIF: Easy REF: 2.1

OBJ: Learn how the mass-to-charge ratio of the electron was determined

MSC: Remembering

3. Which of the following statements is true regarding Thomson's cathode ray experiment and the discovery of electrons?

- a. Radioactivity was also discovered.
- b. Magnetic fields deflected cathode rays but electric fields did not.
- c. Cathode rays were split into two beams by magnetic fields.
- d. The charge of the electron was determined.
- e. The mass-to-charge ratio of the electron was determined.

ANS: E DIF: Easy REF: 2.1

OBJ: Learn how the mass-to-charge ratio of the electron was determined

MSC: Understanding

4. Who was the first scientist to determine the charge of an electron?

a. Henri Becquerelb. Robert Millikand. John Daltone. James Chadwick

c. Joseph John Thomson

ANS: B DIF: Easy REF: 2.1

OBJ: Learn how the charge on the electron was determined MSC: Remembering

5. Which statement regarding Millikan's oil drop experiment is true?

- a. X-rays removed electrons from fine oil droplets to produce cations.
- b. The rate at which charged oil droplets fell in an adjustable magnetic field was related to the charge on an electron.
- c. The rate at which charged oil droplets fell in an adjustable electric field was related to the charge on an electron.
- d. The rate at which ionized N_2 and O_2 molecules fell between electrically charged metal plates was related to charge on an electron.
- e. Electrons were found to have either a positive or negative charge depending on how they were generated.

ANS: C DIF: Easy REF: 2.1

	OBJ: Learn now the charge on the electron was determined MSC: Understanding
6.	Which of the following is NOT true regarding cations and anions? a. N^{3-} represents a nitrogen atom that has gained three electrons. b. An oxygen molecule can lose an electron to form O_2^- . c. Ca^{2+} represents a calcium atom that has lost two electrons. d. The formation of a chlorine anion can be written as $Cl + e^- \square Cl^-$. e. $N_2 \square N_2^+ + e^-$ describes a nitrogen molecule forming a +1 cation.
	ANS: B DIF: Medium REF: 2.1 OBJ: Write notation for charged species (cations and anions) MSC: Analyzing
7.	What is the correct symbol for an α particle? a. $\frac{4}{1}\alpha$ d. $\frac{4}{2}\alpha$ b. $\frac{2}{2}\alpha$ e. $\frac{6}{0}\alpha$
	ANS: D DIF: Easy REF: 2.1 OBJ: Define and describe types of radioactivity MSC: Applying
8.	What is the correct symbol for a β^- particle? a. ${}^1_0\beta$ b. ${}^{-1}_0\beta$ c. ${}^1_1\beta$ d. ${}^0_1\beta$ e. ${}^01\beta$
	ANS: E DIF: Easy REF: 2.1 OBJ: Define and describe types of radioactivity MSC: Applying
9.	Who discovered neutrons? a. Henri Becquerel d. John Dalton b. Robert Millikan e. James Chadwick c. Joseph John Thomson
	ANS: E DIF: Easy REF: 2.1 OBJ: Describe Rutherford's experiment that discovered the atomic nucleus and the subsequent view of atomic structure MSC: Remembering
10.	 Which statement regarding Rutherford's nuclear model of the atom is false? a. The diameter of the atom is approximately 10,000 times larger than the nucleus. b. The nucleus is approximately 100 times smaller than the diameter of the atom. c. The nucleus is surrounded by a diffuse cloud of electrons. d. Electrons and protons are not mixed uniformly throughout the atom. e. The atom is mostly empty space.
	ANS: B DIF: Easy REF: 2.1 OBJ: Describe Rutherford's experiment that discovered the atomic nucleus and the subsequent view of atomic structure MSC: Understanding
11.	Which statement regarding the Geiger–Marsden experiment is false?a. Beta particles were occasionally deflected by electrons in the gold atoms.b. Alpha particles were occasionally deflected by small positively charged regions in the

c. The results suggested that the positive charge of an atom is localized in a small region.d. The results suggested that most of the mass of an atom is contained in a small region.

gold atoms.

	e. The results suggested that the plum-pudding model of the atom was incorrect.
	ANS: A DIF: Easy REF: 2.1 OBJ: Describe Rutherford's experiment that discovered the atomic nucleus and the subsequent view of atomic structure MSC: Understanding
12.	If the diameter of a carbon atom is approximately 140 pm, how many carbon atoms lined up side to side would span a pencil lead with a diameter of about 0.7 mm? a. 5×10^1 atoms b. 5×10^3 atoms c. 5×10^5 atoms
	ANS: D DIF: Medium REF: 2.1 OBJ: Describe Rutherford's experiment that discovered the atomic nucleus and the subsequent view of atomic structure MSC: Analyzing
13.	The diameter of a carbon atom is approximately 140 pm, whereas the diameter of a pencil lead is approximately 0.7 mm. How many carbon nuclei would be required to span 0.70 mm? The radius of the nucleus is approximately 10,000 times smaller than the radius of an atom. a. 5×10^9 nuclei b. 5×10^{10} nuclei c. 5×10^{10} nuclei e. 5×10^{15} nuclei c. 5×10^{12} nuclei
	ANS: B DIF: Difficult REF: 2.1 OBJ: Describe Rutherford's experiment that discovered the atomic nucleus and the subsequent view of atomic structure MSC: Evaluating
14.	A baseball has a diameter of approximately 7.4 cm (2.9 inches), whereas a carbon atom has a diameter of about 140 pm. How many times larger is the baseball than the carbon atom? a. 5.3×10^{12} d. 5.3×10^{6} b. 5.3×10^{10} e. 5.3×10^{3} c. 5.3×10^{8}
	ANS: C DIF: Difficult REF: 2.1 OBJ: Describe Rutherford's experiment that discovered the atomic nucleus and the subsequent view of atomic structure MSC: Evaluating
15.	If the nucleus of an atom had a diameter of 1 cm (roughly that of a dime), what would be the approximate diameter of the atom? The radius of the nucleus is approximately 10,000 times smaller than the radius of an atom. a. 1000 km b. 10 km c. 1000 m
	ANS: D DIF: Difficult REF: 2.1 OBJ: Describe Rutherford's experiment that discovered the atomic nucleus and the subsequent view of atomic structure MSC: Evaluating
16.	If the nucleus of an atom has a radius of about 5 fm and a mass of about 2×10^{-21} g, what is its approximate density? (Volume of a sphere = $4\pi r^3/3$) a. 4×10^{15} g/cm ³ b. 4×10^{12} g/cm ³ c. 4×10^9 g/cm ³ e. 4×10^9 g/cm ³
	ANS: A DIF: Difficult REF: 2.1 OBJ: Describe Rutherford's experiment that discovered the atomic nucleus and the subsequent view

	of atomic structure MSC: Evaluating		
17.	Which subatomic particles have opposite cha. protons and neutrons b. protons and electrons c. neutrons and electrons	_	all protons all neutrons
	ANS: B DIF: Easy OBJ: Compare the mass and charge of atom MSC: Understanding	REF: mic par	
18.	Which subatomic particles have approximat a. protons and neutrons b. protons and electrons c. neutrons and electrons	d.	protons, neutrons, and electrons none of the above
	ANS: A DIF: Easy OBJ: Compare the mass and charge of atom MSC: Understanding		
19.	What is the correct symbol for an electron? a. $\begin{bmatrix} -1 & e \\ -1 & e \end{bmatrix}$ b. $\begin{bmatrix} -0 & e \\ 0 & e \end{bmatrix}$ c. $\begin{bmatrix} 0 & e \\ 1 & e \end{bmatrix}$	d. e.	$ \begin{array}{c} 0 \\ \overline{0} \\ 0 \end{array} $
	ANS: D DIF: Easy OBJ: Compare the mass and charge of atom MSC: Understanding		
20.	What is the correct symbol for a proton? a. $_{-1}^{0}$ p b. $_{1}^{0}$ p c. $_{1}^{1}$ p	d. e.	1 p 0 p
	ANS: C DIF: Easy OBJ: Compare the mass and charge of atom MSC: Understanding	REF: mic par	
21.	What is the correct symbol for a neutron? a. $\frac{1}{0}$ n b. $\frac{1}{1}$ n c. $\frac{0}{1}$ n	d. e.	$\begin{array}{c} 1 & n \\ \overline{0}^1 & n \\ 0 & n \end{array}$
	ANS: A DIF: Easy OBJ: Compare the mass and charge of atom MSC: Understanding	REF: mic par	
22.	Protons and neutrons are examples ofa. nuclei. b. nuclides.	d. e.	isotopes. charged particles.

b. nuclides. c. nucleons.

	ANS: C DIF: Easy REF: 2.1 OBJ: Compare the mass and charge of atomic particles: electromsC: Understanding	ons, protons, and neutrons
23.	 Which of the following statements regarding the discovery of is a. Positively charged ions were deflected by a combination of b. Nuclides with equal charges but different masses were deflected. c. The amount of deflection of an ion depended on its charge. d. An estimate of the relative abundance of the different isotop ascertained. e. If nuclides had the same mass but different positive charges charge was deflected the most. 	electric and magnetic fields. ected to different degrees. ees of an element could be
	ANS: E DIF: Medium REF: 2.2 OBJ: Describe the experiment that discovered isotopes	MSC: Analyzing
24.	 Isotopes have a. the same atomic mass. b. the same total number of protons and neutrons. c. the same number of neutrons but a different number of prot d. the same number of protons but a different number of neutrons. e. the same number of protons but different numbers of electrons. 	ons.
	ANS: D DIF: Easy REF: 2.2 OBJ: Define isotope, atomic number, mass number	MSC: Remembering
25.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	ANS: A DIF: Easy REF: 2.2 OBJ: Define isotope, atomic number, mass number	MSC: Understanding
26.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	rticles.
	ANS: D DIF: Easy REF: 2.2 OBJ: Define isotope, atomic number, mass number	MSC: Understanding
27.	following statements is false? a. The identity of an atom can be determined solely by its atom b. The identity of an isotope can be determined solely by its m c. Atoms of different elements may have the same mass numb d. Atoms of different elements cannot contain the same numb e. The different isotopes of an element are not always equally ANS: B DIF: Medium REF: 2.2 OBJ: Compare Dalton's definition of an element to the definit	mic number. nass number. ners. er of protons. abundant.
28.	isotopes MSC: Analyzing A ³⁵ Cl atom has protons, neutrons, are	nd electrons.

	a. 17, 18, 17 b. 17, 35, 17 c. 35, 17, 17			18, 35, 17 18, 17, 18		
	ANS: A OBJ: Interpret an numbers, and deter MSC: Understand	mine their charges		entify nuclides		pers and atomic
29.	A phosphorus-31 a a. 31, 31, 31 b. 15, 16, 16 c. 15, 31, 15	tom has	d.	15, 16, 15 16, 15, 15	atrons, and	electrons.
	ANS: D OBJ: Interpret an numbers, and deter MSC: Understand	d write symbols for mine their charges		entify nuclides		pers and atomic
30.			o electrons l	nas	_ protons,	neutrons, and
	electron a. 38, 90, 36 b. 38, 52, 40 c. 38, 52, 36	ons.		38, 90, 40 90, 38, 88		
	ANS: C OBJ: Interpret an numbers, and deter MSC: Understand	mine their charges		entify nuclides		pers and atomic
31.	A ¹⁶ 8 O ²⁻ ion has a. 8, 8, 6 b. 8, 10, 10 c. 8, 8, 10 d. 8, 8, 8 e. 8, 16, 8	protons,		neutrons, and _	elec	trons.
	ANS: C OBJ: Interpret an numbers, and deter MSC: Analyzing	-	nuclides, id	entify nuclides		pers and atomic
32.	A ¹³³ ₅₅ Cs ⁺ ion has a. 55, 78, 54 b. 55, 78, 55 c. 55, 133, 54	protons,	d. e.	neutrons, and 54, 78, 55 54, 133, 55	elec	etrons.
	ANS: A OBJ: Interpret an numbers, and deter MSC: Analyzing		nuclides, id	entify nuclides		pers and atomic
33.	Identify the atom o	r ion: i)	; ii)	: and	iii)	

Ato atomic number mass number no. of electrons

m				
i	56		137	54
ii	54		131	54
iii	52		128	54
			81 p. 2+ 77 xz	76 m 2-
		A	81 Ba $^{2+} \cdot ^{77}$ Xe	10 P2

a. ${}^{81}_{56} Ba^{2-}; {}^{77}_{54} Xe; {}^{76}_{52} Te^{2+}$ b. ${}^{54}_{56} Ba^{2+}; {}^{54}_{54} Xe; {}^{52}_{52} Te^{2-}$ c. ${}^{137}_{56} Ba^{2-}; {}^{131}_{54} Xe; {}^{128}_{52} Te^{2+}$

d. ${}_{56}^{6}Ba^{2}$; ${}_{54}^{4}Xe$; ${}_{52}^{6}Ie^{2}$ e. ${}_{56}^{137}Ba^{2+}$; ${}_{54}^{131}Xe$; ${}_{52}^{128}Te^{2-}$

ANS: E DIF: Medium REF: 2.2

OBJ: Interpret and write symbols for nuclides, identify nuclides from mass numbers and atomic numbers, and determine their charges from the number of electrons

MSC: Applying

34.	Identify the atom or ion:	i)	; ii) ;	and iii)	
	inclinity the december of four	-,	,,	,,	•

Atom	Protons	Neutrons	Electron
			S
i	17	20	18
ii	18	22	18
iii	19	20	18

a. ${}^{35}_{17}\text{Cl}^-; {}^{40}_{18}\text{Ar}; {}^{37}_{19}\text{K}^+$ b. ${}^{37}_{17}\text{Cl}^-; {}^{40}_{18}\text{Ar}; {}^{39}_{19}\text{K}^+$ c. ${}^{37}_{17}\text{Cl}^+; {}^{40}_{18}\text{Ar}; {}^{39}_{19}\text{K}^-$ d. ³⁵₁₇Cl⁺; ⁴⁰₁₈Ar; ³⁷₁₉K⁻ e. ³⁵₁₇Cl⁻; ³⁶₁₈Ar; ³⁷₁₉K⁻

ANS: B DIF: Medium REF: 2.2

OBJ: Interpret and write symbols for nuclides, identify nuclides from mass numbers and atomic numbers, and determine their charges from the number of electrons

MSC: Applying

35. What is the nuclide symbol for the atom that has an atomic number equal to the number of electrons in 35 C1-

and a neutron number equal to the mass number of a sodium atom containing 11 neutrons?

a. $^{42}_{18}$ Ar d. $^{40}_{18}$ Ar b. $^{42}_{20}$ Ca e. $^{52}_{24}$ Cr

c. $^{75}_{35}$ Br

ANS: D DIF: Medium REF: 2.2

OBJ: Interpret and write symbols for nuclides, identify nuclides from mass numbers and atomic numbers, and determine their charges from the number of electrons

MSC: Analyzing

36. What is the nuclide symbol for the ion that has a charge of 2+, 50 neutrons more than its number of protons, and an atomic number equal to the number of electrons in a zirconium atom that has lost 2 electrons?

a. ${}^{72}_{50}\text{Sn}^{2+}$ b. ${}^{88}_{38}\text{Sr}^{2+}$ e. ${}^{90}_{38}\text{Sr}^{2+}$

c. $^{90}_{40}$ Zr²⁺

ANS: B DIF: Medium REF: 2.2

OBJ: Interpret and write symbols for nuclides, identify nuclides from mass numbers and atomic numbers, and determine their charges from the number of electrons

MSC: Analyzing

37.	Nuclei with certain numbers of protons and neutro stable than others. "Magic numbers" that are consi and 126, with 180 and 306 being hypothesized as twith your knowledge of atoms and isotopes, you to stable combinations of nucleons. Which do you that a. $^{18}_{2}X$ d. b. $^{8}_{8}X$ e. c. $^{306}_{180}X$	stent with known nuclides are 2, 8, 20, 28, 50, 82, he next in the series. Using this information, along y to synthesize a new atom (symbol X) based on nk is a likely candidate?
	ANS: C DIF: Difficult REF: OBJ: Interpret and write symbols for nuclides, id numbers, and determine their charges from the nur MSC: Creating	entify nuclides from mass numbers and atomic
38.	What is the symbol for sulfur?	
50.	a. Si d.	S
	b. Sc e.	
	c. Su	
	ANS: D DIF: Easy REF:	2.3
	OBJ: Learn how the periodic table is organized	MSC: Remembering
	ezer zeminen me penieuse mess is eigmineu	in a continuo timg
39.	What is the symbol for magnesium?	
	a. M	Mo
	b. Mg e.	Md
	c. Mn	
	ANS: B DIF: Easy REF:	2.3
	OBJ: Learn how the periodic table is organized	MSC: Remembering
	•	-
40.	Cm is the symbol for	
	a. cerium. d.	curium.
	b. chromium. e.	cesium.
	c. calcium.	
	ANS: D DIF: Easy REF:	2.3
	OBJ: Learn how the periodic table is organized	MSC: Remembering
41.	Which two elements would you expect to show the	
	a. Se and Br d.	
	b. B and Cc. Li and Be	Ca and Sr
	c. Li and be	
	ANS: E DIF: Easy REF:	2.3
	OBJ: Learn how the periodic table is organized	MSC: Remembering
40		1
42.	The sixth period of the periodic table contains a. 18 d.	elements.
	a. 18 d. b. 32 e.	8
	c. 24	U
	ANS: B DIF: Difficult REF:	
	OBJ: Learn how the periodic table is organized	MSC: Evaluating
43	Which of the following is NOT a common ion?	
ъЭ.	which of the following is not a collillon foll:	

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ANS: E DIF: Easy REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Remembering
44.	Which element forms ionic compounds with the formula XBr_2 ? a. sodium b. aluminum c. lithium
	ANS: D DIF: Easy REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Remembering
45.	Which element forms an ionic compound with the formula Na ₂ X? a. magnesium d. phosphorus b. carbon e. sulfur c. iodine
	ANS: E DIF: Easy REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Remembering
46.	Which element forms an ionic compound with nitrogen that has the formula XN? a. tin d. calcium b. aluminum e. potassium c. lithium
	ANS: B DIF: Easy REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Remembering
47.	What is the correct formula for the compound formed between sodium and iodine based on their positions in the periodic table?
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	ANS: C DIF: Medium REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Analyzing
48.	What is the formula for the ionic compound formed when calcium and bromine combine? a. CBr d. $CaBrO$ b. $CaBr_2$ e. CaB_2 c. Ca_2Br
	ANS: B DIF: Medium REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Analyzing
49.	Zinc oxide, a combination of zinc and oxygen, is found in skin ointments. What formula best describes this compound?

	b. Zn_2O e. Zn_2O_3 c. ZnO_2
	ANS: A DIF: Medium REF: 2.6 OBJ: Determine charge from the position of the element in the periodic table MSC: Applying
50.	What is the charge on the thallium ion in Tl_2O_3 ? a. $+1$ b. $+2$ c. $+3$ d. -3 e. -1
	ANS: C DIF: Medium REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Applying
51.	What is the charge on the manganese ion in MnS ₂ ? a. +4 b. +2 c. +1 ANS: A DIF: Medium REF: 2.3
	OBJ: Determine charge from the position of the element in the periodic table MSC: Applying
52.	What is the charge on the iron ion in FeCl ₃ ? a3 b. +3 c1
	ANS: B DIF: Medium REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Applying
53.	In what ratio will alkaline earth metals pair with halogens when they form ionic compounds? a. 3:1
	ANS: D DIF: Medium REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Applying
54.	Active metals often react with oxygen in air to form a protective surface film that prevents further reaction. Which one of the following formulas for a metal-oxygen combination is NOT correct? a. Al_2O_3
	ANS: D DIF: Medium REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Applying
55.	What ion would you predict element 118 would form? a. +2 d2

 $d. \quad Zn_2O_2$

a. ZnO

	b. +1 c1	e.	0 (unlikely to form an ion)
	ANS: E DIF: Medium REI OBJ: Determine charge from the position of the MSC: Analyzing		
56.	ion, what ionic charge would you predict? a. +2	d.	periodic table below radium. If it were to form an -2 0 (unlikely to form an ion)
	ANS: A DIF: Difficult REI OBJ: Determine charge from the position of the MSC: Creating		
57.		d. e.	Cu Ca
	ANS: A DIF: Easy REI OBJ: Identify on the periodic table: groups, per elements, transition metals, alkali metals, alkalim MSC: Remembering	rio	ds, metals, metalloids, nonmetals, representative
58.	1 1 1	d. e.	transition metals. rare earths.
	ANS: D DIF: Easy REIGOBJ: Identify on the periodic table: groups, per elements, transition metals, alkali metals, alkalin MSC: Remembering	rio	ds, metals, metalloids, nonmetals, representative
59.	a. an alkali metal.	d. e.	a halogen. a chalcogen.
	ANS: C DIF: Easy REI OBJ: Identify on the periodic table: groups, per elements, transition metals, alkali metals, alkalim MSC: Remembering	rio	ds, metals, metalloids, nonmetals, representative
60.	a. alkali metals.	d. e.	halogens. chalcogens.
	ANS: D DIF: Easy REI OBJ: Identify on the periodic table: groups, per elements, transition metals, alkali metals, alkalim MSC: Remembering	rio	ds, metals, metalloids, nonmetals, representative

61.	Elements in group 18 (VIIIA) are called a. alkali metals. d. halogens. b. noble gases. e. chalcogens. c. alkaline earth metals.	
	ANS: B DIF: Easy REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Remembering	ve
62.	Silicon is best described as a a. metalloid. d. noble gas. b. metal. e. nonmetal. c. transition metal.	
	ANS: A DIF: Easy REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Remembering	ve
63.	Sodium is best described as a a. metalloid. d. noble gas. b. metal. e. nonmetal. c. transition metal.	
	ANS: B DIF: Easy REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Remembering	ve
64.	Cobalt is best described as a a. metalloid. d. noble gas. b. transition metal. e. nonmetal. c. chalcogen.	
	ANS: B DIF: Easy REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Remembering	ve
65.	Oxygen is best described as a a. metalloid. d. noble gas. b. metal. e. nonmetal. c. transition metal.	
	ANS: E DIF: Easy REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Remembering	ve
66.	What is the name of the metalloid in period four that is in the same family as nitrogen? a. bismuth d. carbon b. antimony e. selenium c. arsenic	

ANS: C DIF: Medium REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Analyzing
What is the name of the halogen in period five? a. selenium b. tellurium c. bromine d. iodine e. antimony
ANS: D DIF: Easy REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Remembering
Which halogen is radioactive? a. astatine b. polonium c. iodine d. tellurium e. bismuth
ANS: A DIF: Easy REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Remembering
Which characteristic would you expect indium NOT to exhibit? a. shiny luster d. a +3 ionic charge b. electrically insulating e. solid at room temperature c. malleable
ANS: B DIF: Easy REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Remembering
You create a superheavy atom with an atomic number of 120. To which category does it belong? a. halogens b. actinides c. transition metals
ANS: E DIF: Medium REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Analyzing
You create a superheavy atom with an atomic number of 120. What is probably true about that element? a. It is probably a gas. d. It is probably metallic.
b. It is probably a metalloid. c. It is probably nonmetallic. d. It is probably finetame. e. It probably forms a stable +1 cation.
ANS: D DIF: Medium REF: 2.3 OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases MSC: Analyzing

67.

68.

69.

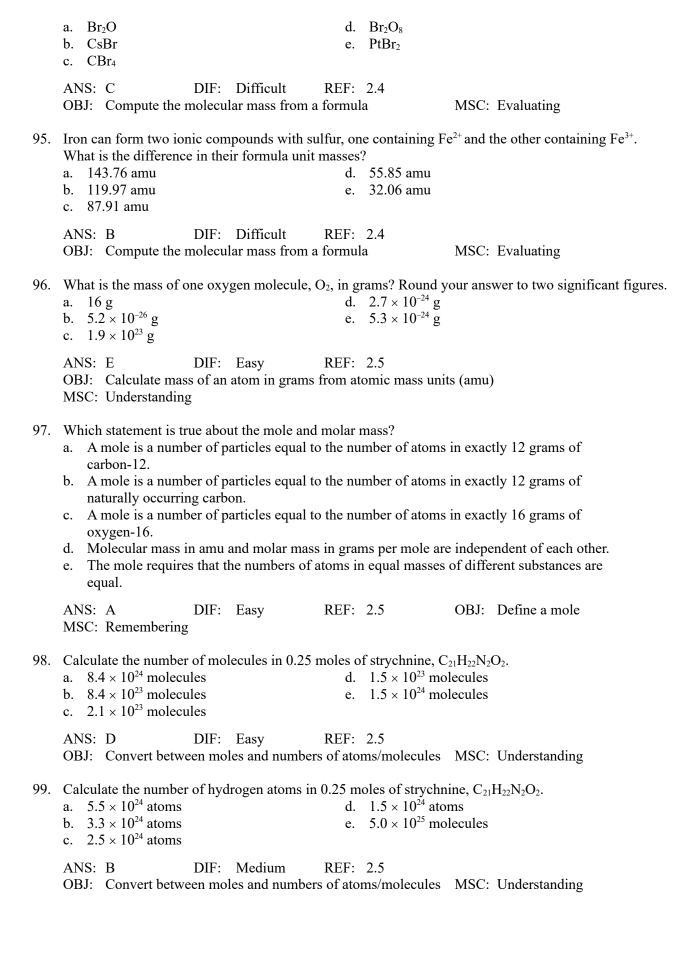
70.

71.

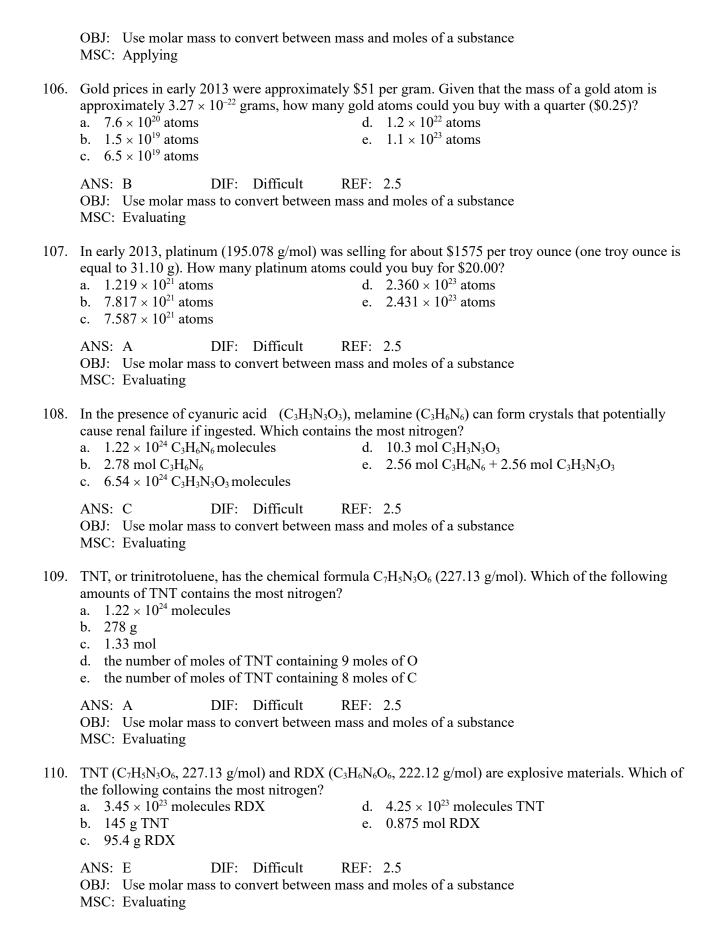
	a. ⁴⁰ Ca d. ⁴⁴ Ca b. ⁴² Ca c. ⁴³ Ca
	ANS: A DIF: Easy REF: 2.4 OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Understanding
73.	For each of the elements below, there are only two naturally occurring isotopes. Using the atomic masses on the periodic table, identify the pair in which the heavier isotope is the more abundant one a. 63 Cu and 65 Cu d. 79 Br and 81 Br b. 85 Rb and 87 Rb e. 14 N and 15 N c. 10 B and 11 B
	ANS: C DIF: Medium REF: 2.4 OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Analyzing
74.	For each of the elements below, there are only two naturally occurring isotopes. Using the atomic masses on the periodic table, identify the pair in which the lighter isotope is the more abundant one. a. ${}^{6}\text{Li}$ and ${}^{7}\text{Li}$ d. ${}^{121}\text{Sb}$ and ${}^{123}\text{Sb}$ b. ${}^{79}\text{Br}$ and ${}^{81}\text{Br}$ e. ${}^{50}\text{V}$ and ${}^{51}\text{V}$ c. ${}^{10}\text{B}$ and ${}^{11}\text{B}$
	ANS: B DIF: Medium REF: 2.4 OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Analyzing
75.	Gallium has two naturally occurring isotopes with the following masses and natural abundances. Calculate the average atomic mass of Ga. 69Ga 68.9256 amu 60.108%
	⁷¹ Ga 70.9247 amu 39.892%
	a. 69.925 amu d. 69.824 amu
	b. 70.127 amu e. 69.723 amu c. 70.000 amu
	ANS: E DIF: Medium REF: 2.4 OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Analyzing
76.	Rubidium has two naturally occurring isotopes, ⁸⁵ Rb (84.912 amu) and ⁸⁷ Rb (86.909 amu). Rubidium-85 is the more abundant isotope (72.17%). Calculate the average atomic mass of Rb. a. 86.91 amu b. 85.47 amu c. 85.91 amu e. 86.00 amu
	ANS: B DIF: Medium REF: 2.4 OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Analyzing
77.	The average atomic mass of lithium is 6.941 amu. Lithium has two naturally occurring isotopes, ⁶ Li (7.52%) and ⁷ Li (92.48%). The mass of ⁶ Li is 6.0151 amu. What is the isotopic mass of ⁷ Li?

72. One isotope makes up 97% of all calcium atoms. Which one?

b. 0.926 amu e. 6.941 amu c. 6.001 amu DIF: Difficult REF: 2.4 ANS: A OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Evaluating 78. The average atomic mass of silver is 107.868 amu. Silver has two naturally occurring isotopes, 107 Ag (106.905 amu, 51.839%) and 109 Ag. What is the isotopic mass of 109 Ag? a. 109.11 amu d. 108.91 amu b. 108.89 amu 108.48 amu e. c. 108.52 amu DIF: Difficult REF: 2.4 ANS: D OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Evaluating 79. The average atomic mass of nickel is 58.693 amu. Given the data in the following table, what is the natural abundance of nickel-64? Mass (amu) Natural Abundance **Isotope** (%) 58Ni 57.935 68.0769 60Ni 59.931 26.2231 61Ni 60.931 1.1399 ^{62}Ni 61.928 3.6345 ⁶⁴Ni 63.928 ? a. 92.56% d. 0.9256% b. 9.256% 0.7440% c. 7.440% ANS: D DIF: Medium REF: 2.4 OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Analyzing 80. Identify the element based on the following values for its three isotopes: 38.9637 amu (93.08%), 39.9640 amu (0.012%), and 40.9618 amu (6.91%). a. K d. Ar b. Cl e. Ca c. S ANS: A DIF: Difficult REF: 2.4 OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Evaluating 81. Identify the element based on the following values for its five isotopes: 179.947 amu (0.12%), 181.948 amu (26.50%), 182.950 amu (14.31%), 183.951 amu (30.64%), and 185.954 amu (28.43%). a. Ir d. Ta b. Os e. W c. Re DIF: Medium ANS: E REF: 2.4 OBJ: Compute the average atomic masses using natural abundances of isotopes for an element MSC: Applying


d. 7.000 amu

7.016 amu


82.	Iron has four naturally an average atomic ma a. ⁵⁴ Fe, 53.9396 amu b. ⁵⁶ Fe, 55.9349 amu c. ⁵⁷ Fe, 56.9354 amu	ss of 55.84 1 1		isote d.		amu
	ANS: B OBJ: Compute the a MSC: Evaluating	DIF: Dif				ices of isotopes for an element
83.		8 (238.051	amu). What is	the exac d.	average atomi	90% U-235 (235.044 amu), with the c mass of this sample of highly
	ANS: E OBJ: Compute the a MSC: Evaluating	DIF: Dif verage ator			2.4 atural abundan	ices of isotopes for an element
84.). What is t	he average ator	mic d.		
	ANS: B OBJ: Compute the a MSC: Evaluating	DIF: Dif			2.4 atural abundan	ices of isotopes for an element
85.	spectrometer, you find	two peaks 2.500 time 1?	s at 5.08113×1	10 ⁻²⁵ ie la	kg and 5.1143	number of 180. In a mass 4×10^{-25} kg, with the former e approximate average atomic mass
	ANS: C OBJ: Compute the a MSC: Creating	DIF: Dif			2.4 atural abundan	ices of isotopes for an element
86.	What is the molecular a. 177.3 amu b. 190.3 amu c. 208.2 amu	mass of pl	hosphorus pent		loride (PCl ₅)? 172.8 amu 202.8 amu	
	ANS: C OBJ: Compute the n	DIF: Eas nolecular n	•		2.4 a	MSC: Remembering
87.	What is the molecular	mass of su	ulfuric acid (H ₂	SO_4)?	

	a. 49.0 amub. 24.5 amuc. 101 amu		98.1 amu 97.0 amu		
	ANS: D DIF: Easy OBJ: Compute the molecular mass from a	REF: formul		MSC:	Remembering
88.	What is the formula unit mass of chromium a. 152.0 amu b. 136.0 amu c. 120.0 amu	d.	ide (Cr ₂ O ₃)? 104.0 amu 68.0 amu		
	ANS: A DIF: Easy OBJ: Compute the molecular mass from a	REF: formul		MSC:	Remembering
89.	Which has the highest molecular mass? a. Br_2O b. IBr_2 c. CBr_4		$\begin{array}{c} Br_2O_8 \\ BrF_5 \end{array}$		
	ANS: C DIF: Medium OBJ: Compute the molecular mass from a	REF: formul		MSC:	Analyzing
90.	Which has the highest formula unit mass? a. $CaBr_2$ b. NaI_2 c. CdF_2	d. e.	HgCl ₂ Ag ₂ S		
	ANS: B DIF: Medium OBJ: Compute the molecular mass from a	REF: formul		MSC:	Analyzing
91.	Which of the following compounds contain a. N_2H_4 b. NH_4NO_3 c. NaN_3		$(NH_4)_2SO_4$	oms?	
	ANS: E DIF: Medium OBJ: Compute the molecular mass from a	REF: formul		MSC:	Analyzing
92.	How many CaCl ₂ formula units are in 125 a a. 0.888 formula units b. 1.00 formula units c. 1.13 formula units		1.25 formula	units	
	ANS: C DIF: Medium OBJ: Compute the molecular mass from a	REF: formul		MSC:	Applying
93.	How many hydrogen atoms are in 51 amu of a. 3 H atoms b. 9 H atoms c. 17 H atoms	•	50 H atoms)?	
	ANS: B DIF: Difficult OBJ: Compute the molecular mass from a	REF: formul		MSC:	Evaluating

94. Which contains the most bromine by mass?

1	00.	Suppose you were given one gold atom every second since the Big Bang occurred about 14 billion years ago $(1.4 \times 10^{10} \text{ years})$. How many moles of gold atoms would you have? a. $4.4 \times 10^{17} \text{ moles}$ d. $2.3 \times 10^{-7} \text{ moles}$ b. $4.4 \times 10^{-17} \text{ moles}$ e. $7.3 \times 10^{-7} \text{ moles}$ c. $1.4 \times 10^{-8} \text{ moles}$
		ANS: E DIF: Difficult REF: 2.5 OBJ: Convert between moles and numbers of atoms/molecules MSC: Evaluating
1	01.	Cyanidin chloride ($C_{15}H_{11}O_6Cl$, 322.7 g/mol) contains the cyanidin ion, a pigment found in many berries. Calculate the number of moles of cyanidin chloride equivalent to 7.2 mg. a. 2.2×10^1 mol d. 2.2×10^{-5} mol b. 3.2×10^{-2} mol e. 7.2×10^{-5} mol c. 2.2×10^{-2} mol
		ANS: D DIF: Easy REF: 2.5 OBJ: Use molar mass to convert between mass and moles of a substance MSC: Understanding
1	02.	A 1.5 g tablet for pain might contain 0.30 g acetaminophen ($C_8H_9NO_2$, 151.16 g/mol) and 0.044 g codeine ($C_{18}H_{21}NO_3$, 299.36 g/mol). Calculate the number of moles of codeine in the tablet. a. 1.5×10^{-4} mol d. 5.0×10^{-3} mol b. 2.9×10^{-4} mol e. 1.1×10^{-1} mol c. 1.0×10^{-3} mol
		ANS: A DIF: Easy REF: 2.5 OBJ: Use molar mass to convert between mass and moles of a substance MSC: Understanding
1	03.	Antirrhinin chloride ($C_{27}H_{11}O_6Cl$, 630.97 g/mol) contains the antirrhinin ion, a pigment found in açai berries. Calculate the number of moles of carbon in 0.75 g of antirrhinin chloride. a. 1.2×10^{-3} mol d. 1.6×10^{-3} mol e. 4.4×10^{-5} mol c. 4.3×10^{-2} mol
		ANS: B DIF: Medium REF: 2.5 OBJ: Use molar mass to convert between mass and moles of a substance MSC: Analyzing
1	04.	TNT, or trinitrotoluene, has the chemical formula $C_7H_5N_3O_6$. How many grams of nitrogen are present in 25 grams TNT (227.13 g/mol)? a. 0.11 g d. 4.6 g b. 0.33 g e. 5.4 g c. 1.5 g
		ANS: D DIF: Medium REF: 2.5 OBJ: Use molar mass to convert between mass and moles of a substance MSC: Analyzing
1	05.	Calculate the number of americium-241 atoms present in a smoke alarm containing 0.30 μg of radioactive ²⁴¹ Am (241.06 g/mol). a. 7.5×10^{14} atoms b. 1.8×10^{17} atoms c. 2.5×10^{21} atoms e. 1.4×10^5 atoms e. 1.4×10^5 atoms
		ANS: A DIF: Medium REF: 2.5

111.	g/mol)? a. 18.6 g P ₄ d.	tain the same number of atoms as 154 g S_8 (256.48 149 g P_4 596 g P_4
	ANS: D DIF: Difficult REF: OBJ: Use molar mass to convert between mass a MSC: Evaluating	
112.	many moles of silicon are present in 22.0 cm ³ of s a. 6.48 mol Si d.	4.00% Si by mass, and its density is 8.28 g/cm ³ . How silicon brass? 0.260 mol Si 0.0946 mol Si
	ANS: B DIF: Difficult REF: OBJ: Use molar mass to convert between mass a MSC: Evaluating	
113.	higher molar mass and by how much? a. Egyptian blue by 137.3 g/mol d.	Si ₄ O ₁₀) and Egyptian blue (CaCuSi ₄ O ₁₀). Which has a Han blue by 137.3 g/mol Han blue by 177.4 g/mol
	ANS: C DIF: Easy REF: OBJ: Determine the molar mass/formula mass of MSC: Understanding	
114.		vith a negative charge? neutron positron
	ANS: B DIF: Easy REF: OBJ: Describe the nucleosynthesis of the element MSC: Remembering	
115.	In the early stages of primordial nucleosynthesis, neutron formed which of the following? a. ${}_{1}^{2}D$ d. b. ${}_{1}^{1}H$ e. c. ${}_{2}^{4}He$	a nuclear reaction involving one proton and one $ \begin{array}{c} {}^0_{-1}e \\ {}^0_{-1}e + \gamma \end{array} $
	ANS: A DIF: Easy REF: OBJ: Describe the nucleosynthesis of the element MSC: Understanding	
116.	of energy were released while fusion reactions of analogous to	two magnets attracting each other.

	ANS: C DIF: Easy REF: 2.7 OBJ: Describe the nucleosynthesis of the elements up to uranium after the Big Bang MSC: Understanding
117.	 According to the Big Bang theory, which statement about the origin of the elements is NOT correct? a. Initially, energy was transformed into electrons and other elementary particles. b. As the universe cooled, neutrons and protons were formed. c. Collisions of neutrons and protons produced deuterons, which then led to the formation of alpha particles. d. Nuclear fusion reactions in the interior of stars formed elements up to ⁵⁶Fe. e. All nuclear reactions forming the elements required an input of energy.
	ANS: E DIF: Medium REF: 2.6 OBJ: Describe the nucleosynthesis of the elements up to uranium after the Big Bang MSC: Analyzing
118.	 Which statement is NOT correct regarding primordial nucleosynthesis? a. Colliding pairs of electrons annihilated each other to form two gamma rays. b. Deuterons fused together, forming alpha particles. c. More stable nuclides were formed from less stable nuclides. d. Gamma rays were produced. e. Neutrons and protons fused together, forming deuterons.
	ANS: A DIF: Medium REF: 2.6 OBJ: Describe the nucleosynthesis of the elements up to uranium after the Big Bang MSC: Analyzing
119.	Which nuclear reaction is NOT correctly written? a. ${}^{209}_{83} \text{Bi} + {}^{1}_{0} \text{n} \rightarrow {}^{210}_{82} \text{Pb}$ b. ${}^{12}_{6} \text{C} + {}^{1}_{1} \text{H} \rightarrow {}^{13}_{7} \text{N}$ c. ${}^{12}_{6} \text{C} + {}^{4}_{2} \alpha \rightarrow {}^{16}_{8} \text{O}$ d. ${}^{15}_{7} \text{N} + {}^{1}_{1} \text{H} \rightarrow {}^{12}_{6} \text{C} + {}^{4}_{2} \alpha$ e. ${}^{206}_{82} \text{Pb} + 3 {}^{1}_{0} \text{n} \rightarrow {}^{209}_{82} \text{Pb}$
	ANS: A DIF: Medium REF: 2.7 OBJ: Write and balance nuclear reactions MSC: Analyzing
120.	Which reactant and product would balance the following nuclear reaction equation?
	reactant + 12 C \rightarrow 11 B + product
	a. $reactant = \beta^-$, $product = {}^{1}H$ d. $reactant = \beta^-$, $product = \alpha$ b. $reactant = \beta^-$, $product = {}^{1}P$ e. $reactant = {}^{1}H$, $product = \alpha$
	b. $reactant = \beta^-$, $product = {}^1P$ e. $reactant = {}^1H$, $product = \alpha$ c. $reactant = \beta^-$, $product = {}^1n$
	ANS: C DIF: Difficult REF: 2.7 OBJ: Write and balance nuclear reactions MSC: Evaluating
121.	The peak in nuclear binding energy/nucleon occurs at an isotope of a. helium. d. carbon. b. iron. e. lead. c. uranium.
	ANS: B DIF: Easy REF: 2.7 OBJ: Use the mass defect to calculate the binding energy of a nucleus and the binding energy per nucleon MSC: Remembering

122. Calculate the nuclear binding energy of the ⁵⁶Fe nucleus given the following data:

⁵⁶Fe nuclear mass 55.920679 amu $9.285846 \times 10^{-26} \text{ kg}$ $1.672622 \times 10^{-27} \,\mathrm{kg}$ Proton mass 1.00727646 amu $1.674927 \times 10^{-27} \text{ kg}$ Neutron mass 1.00866492 amu

Speed of light $2.998 \times 10^8 \text{ m/s}$

a. $8.346 \times 10^{-9} \text{ J}$ d. $7.804 \times 10^{-11} \text{ J}$ b. $4.417 \times 10^{-9} \text{ J}$ e. $7.887 \times 10^{-11} \text{ J}$

c. $4.370 \times 10^{-9} \text{ J}$

ANS: E DIF: Difficult REF: 2.6

OBJ: Use the mass defect to calculate the binding energy of a nucleus and the binding energy per MSC: Evaluating nucleon

- 123. Which of the following statements regarding the mass defect and nuclear binding energy is false?
 - a. The mass of the nucleus is slightly less than the combined mass of its separate constituent nucleons.
 - b. Separated protons and neutrons are more stable than when they are in the nucleus.
 - c. Mass is converted to energy when separated nucleons combine to form a nucleus.
 - d. The binding energy reflects the amount of energy that would be required to break up the
 - e. $E = mc^2$ allows binding energies to be calculated.

ANS: B DIF: Medium REF: 2.7

OBJ: Use the mass defect to calculate the binding energy of a nucleus and the binding energy per MSC: Analyzing nucleon

- 124. Which statement regarding the strong nuclear force is false?
 - a. The strong nuclear force prevents radioactive decay from occurring.
 - b. The strong nuclear force is about 100 times stronger than the repulsive force between protons.
 - c. Nuclear stability depends on the competition between the strong nuclear force and electrostatic repulsions.
 - d. The strong nuclear force acts only over very short distances.
 - e. The strong nuclear force binds nucleons together and stabilizes the nucleus.

ANS: A DIF: Easy REF: 2.7

MSC: Understanding OBJ: Describe the strong nuclear force

- 125. A supernova event is the explosion caused by the collapse of a dying star that has run out of its nuclear fuel. These stars and events are responsible for
 - a. the production of elements heavier than iron-56.
 - b. nuclear fission of heavy elements.
 - c. the distribution of heavy elements throughout the universe.
 - d. both a and c.
 - e. both b and c.

ANS: D DIF: Medium REF: 2.7

OBJ: Describe the role supernovas have in nucleosynthesis MSC: Applying

126. Elements higher than uranium in the periodic table must be synthesized. Identify the nuclear synthesis reaction that is NOT correctly written.

a.
$${}^{244}_{94}$$
Pu + ${}^{48}_{20}$ Ca $\rightarrow {}^{289}_{114}$ Fl + $3{}^{1}_{0}$ n

d.
$$^{238}_{92}U + ^{48}_{99}Ca \rightarrow ^{282}_{112}Cn + 4^{1}_{9}n$$

b.
$$^{249}_{98}$$
 Cf + $^{14}_{7}$ N \rightarrow $^{260}_{105}$ Db + $^{1}_{0}$ n c. $^{209}_{98}$ Bi + $^{54}_{24}$ Cr \rightarrow $^{262}_{107}$ Bh + $^{1}_{0}$ n

d.
$$^{238}_{92}\text{U} + ^{48}_{20}\text{Ca} \rightarrow ^{282}_{112}\text{Cn} + 4^{1}_{0}\text{n}$$

e. $^{248}_{96}\text{Cm} + ^{48}_{20}\text{Ca} \rightarrow ^{293}_{116}\text{Cn} + 3^{1}_{0}\text{n}$

$$c_1 \xrightarrow{209} \text{Bi} + {}_{24}^{54}\text{Cr} \rightarrow {}_{107}^{262}\text{Bh} + {}_{0}^{1}\text{m}$$

ANS: B DIF: Medium REF: 2.7 OBJ: Describe how elements heavier than uranium are synthesized MSC: Analyzing 127. Which of the following would correctly complete this fusion reaction: ${}_{1}^{2}H + {}_{2}^{3}He \rightarrow \underline{\qquad} + {}_{1}^{1}H$? ⁴He b. ⁴₃Li $^{3}_{1}H$ e. c. $4^{0}_{-1}\beta$ ANS: D DIF: Medium REF: 2.7 OBJ: Balance nuclear fusion reactions MSC: Analyzing **SHORT ANSWER** 1. Uranium ores sometimes contain pockets of trapped helium. What is the origin of the helium? ANS: Alpha decay. OBJ: Define and describe types of radioactivity REF: 2.1 DIF: Easy MSC: Remembering 2. In one sentence, describe the picture of the atom that emerged from the Geiger-Marsden experiment. ANS: The atom was pictured as consisting of a tiny, positively charged nucleus surrounded by a diffuse cloud of negatively charged electrons. DIF: Easy REF: 2.1 OBJ: Describe Rutherford's experiment that discovered the atomic nucleus and the subsequent view of atomic structure MSC: Remembering 3. ¹H, ²H, and ³H are examples of because they have different numbers of . ANS: isotopes/neutrons OBJ: Define isotope, atomic number, mass number DIF: Easy REF: 2.2 MSC: Remembering 4. Give the number of protons, neutrons, and electrons in the following atoms or ions: ⁵⁶Fe, ³²S²⁻, ¹³³Cs⁺, $^{89}Y^{3+}$, $^{31}P^{3-}$. ANS: 26, 30, 26

16, 16, 18

55, 78, 54

39, 50, 36

15, 16, 18

DIF: Easy REF: 2.2

OBJ: Interpret and write symbols for nuclides, identify nuclides from mass numbers and atomic

5.	Write the complete atomic symbol with both a superscript and a subscript for the atom or ion that contains 11 protons, 10 electrons, and 12 neutrons.
	ANS: 23 Na+
	DIF: Easy REF: 2.2 OBJ: Interpret and write symbols for nuclides, identify nuclides from mass numbers and atomic numbers, and determine their charges from the number of electrons MSC: Understanding
6.	Write the complete atomic symbol with both a superscript and a subscript for the atom or ion that contains the same number of protons as the number of neutrons in ⁵⁶ Fe, has a +2 charge, and has a mass number that equals the atomic number of terbium, Tb.
	ANS: $_{30}^{65}Zn^{2+}$
	DIF: Medium REF: 2.2 OBJ: Interpret and write symbols for nuclides, identify nuclides from mass numbers and atomic numbers, and determine their charges from the number of electrons MSC: Analyzing
7.	Write the complete atomic symbol with both a superscript and a subscript for the atom or ion that contains the same number of electrons as argon, has a -2 charge, and contains equal numbers of protons and neutrons.
	ANS: 32/16 S ²⁻
	DIF: Medium REF: 2.2 OBJ: Interpret and write symbols for nuclides, identify nuclides from mass numbers and atomic numbers, and determine their charges from the number of electrons MSC: Analyzing
8.	A cation has a charge because it has electrons.
	ANS: positive/lost
	DIF: Easy REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Understanding
9.	An anion has a charge because it has electrons.
	ANS: negative/gained
	DIF: Easy REF: 2.3

numbers, and determine their charges from the number of electrons

MSC: Remembering

OBJ: Determine charge from the position of the element in the periodic table MSC: Understanding 10. What is the charge on an alkali metal atom when it is in an ionic compound? ANS: +1DIF: Easy REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Remembering 11. What is the charge on the phosphorus atom when it forms an ionic compound with magnesium? ANS: -3DIF: Easy REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Remembering 12. What is the charge on the copper ion in CuCl₂? ANS: +2DIF: Medium REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Analyzing 13. How many nitrogen atoms would be required to form an ionic compound with barium? ANS: 2 DIF: Medium **REF: 2.3** OBJ: Determine charge from the position of the element in the periodic table MSC: Analyzing 14. How many oxygen atoms would be required to form an ionic compound with aluminum? ANS: 3 DIF: Medium REF: 2.3 OBJ: Determine charge from the position of the element in the periodic table MSC: Analyzing 15. Give an example of an alkali metal.

ANS:

lithium, sodium, potassium, rubidium, cesium, francium; answers will vary.

DIF: Easy REF: 2.3

OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases

MSC: Remembering

16. Give an example of an alkaline earth metal.

ANS:

beryllium, magnesium, calcium, strontium, barium, radium; answers will vary.

DIF: Easy REF: 2.3

OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases

MSC: Remembering

17. Give an example of a halogen.

ANS:

fluorine, chlorine, bromine, iodine, astatine; answers will vary.

DIF: Easy REF: 2.3

OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases

MSC: Remembering

18. Give an example of a period 4 transition metal.

ANS:

scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc; answers will vary.

DIF: Easy REF: 2.3

OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases

MSC: Remembering

19. Give an example of a nonmetal.

ANS:

carbon, nitrogen, oxygen, fluorine, sulfur, etc.; answers will vary.

DIF: Easy REF: 2.3

OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases

MSC: Remembering

20. Give an example of a metalloid (also known as a semimetal).

ANS:

boron, silicon, germanium, arsenic, antimony, tellurium; answers will vary.

DIF: Easy REF: 2.3

OBJ: Identify on the periodic table: groups, periods, metals, metalloids, nonmetals, representative elements, transition metals, alkali metals, alkaline earth metals, halogens, noble gases

MSC: Remembering

21. What is the average atomic mass of a sample of highly enriched uranium uranium that contains exactly 20% uranium-235 (235.04 amu) and 80% uranium-238 (238.05 amu)?

ANS:

237.45 amu

(0.20)(235.04) + (0.80)(238.050) = 237.45 amu

DIF: Difficult REF: 2.4

OBJ: Compute the average atomic masses using natural abundances of isotopes for an element

MSC: Evaluating

22. Boron, which has an average atomic mass of 10.81 amu, has two stable isotopes: boron-10 and boron-11. Boron-10 has an atomic mass of 10.0129 amu and a natural abundance of 19.78%. What is the atomic mass of boron-11?

ANS:

11.01 amu

(0.1978)(10.0129) + (0.8022)(x) = 10.81 amu

DIF: Difficult REF: 2.4

OBJ: Compute the average atomic masses using natural abundances of isotopes for an element

MSC: Evaluating

23. What is the mass in amu of one molecule of glucose, C₆H₁₂O₆?

ANS:

180.16 amu

DIF: Easy REF: 2.5 OBJ: Compute the molecular mass from a formula

MSC: Understanding

24. How many atoms are there in 2.5 moles of water?

ANS:

 4.5×10^{24}

 $2.5 \times 3 \times 6.02 \times 10^{23} = 4.5 \times 10^{24}$

DIF: Medium REF: 2.5

OBJ: Convert between moles and numbers of atoms/molecules MSC: Applying

25. How many hydrogen atoms are there in 473 g of water (roughly 16 fluid ounces)?

ANS:

 3.16×10^{25}

 $473 / 18.02 \times 6.02 \times 10^{23} \times 2 = 3.16 \times 10^{25}$

DIF: Medium REF: 2.5

OBJ: Use molar mass to convert between mass and moles of a substance

MSC: Applying

26. Using a scanning tunneling microscope, Don Eigler at IBM arranged 99 iron atoms on a copper surface to form the Kanji characters for "atom." What is the total mass of iron present in grams and in atomic mass units? Assume that the Fe atoms are "average" in terms of their mass.

ANS:

 $9.182 \times 10^{-21} \text{ g}$; 5529 amu

DIF: Medium REF: 2.5

OBJ: Use molar mass to convert between mass and moles of a substance

MSC: Analyzing

27. Fill in the following table.

Substanc	Mass (g)	Moles (mol)	#molecules	#atoms
e				
NO	64.0			
NO ₂		0.786		
N ₂ O			7.52×10^{21}	
N ₂ O ₄				1.48×10^{26}

ANS:

Substanc	Mass (g)	Moles (mol)	#molecules	#atoms
e				
NO	64.0	2.13	1.28×10^{24}	2.56×10^{24}
NO ₂	36.2	0.786	4.73×10^{23}	1.42×10^{24}
N ₂ O	0.550	0.0125	7.52×10^{21}	2.26×10^{22}
N ₂ O ₄	3770	41.0	2.47×10^{25}	1.48×10^{26}

DIF: Difficult REF: 2.5

OBJ: Use molar mass to convert between mass and moles of a substance

MSC: Evaluating

28. Hydrogen sulfide (H_2S) is a highly toxic gas that smells like rotten eggs. Suppose the odor detection limit is approximately 4.7×10^{-7} g H_2S per one gram of air. At this level, how many moles of H_2S are present in

1.0 L air? How many H₂S molecules? Assume the density of air is 0.0013 g/mL.

ANS:

 1.8×10^{-8} moles; 1.1×10^{16} molecules.

DIF: Difficult REF: 2.5

OBJ: Use molar mass to convert between mass and moles of a substance

MSC: Evaluating

29. Calculate the formula unit mass of sodium phosphate (Na₃PO₄) in which all of the phosphorus is ³²P, a radioactive isotope of phosphorus used in medical applications. A ³²P atom has an atomic mass of 31.97 amu.

ANS:

164.94 g/mol

3(22.99) + 1(31.974) + 4(16.00) = 164.94

DIF: Medium REF: 2.5

OBJ: Determine the molar mass/formula mass of a substance using the periodic table

MSC: Analyzing

30. Write nuclear reaction equations to show how helium-4 nuclides are produced from protons in our Sun using the following information: step (1) 2 protons react to form hydrogen-2 and a high-energy electron; step (2) hydrogen-2 reacts with a proton to form helium-3; and step (3) two helium-3 combine to helium-4 and two protons.

ANS:

$${}^{1}p + {}^{1}p \rightarrow {}^{2}H + e^{-}$$
 ${}^{2}H + {}^{1}p \rightarrow {}^{3}He$
 $2 {}^{3}He \rightarrow {}^{4}He + 2 {}^{1}p$

DIF: Medium REF: 2.6 OBJ: Write and balance nuclear reactions

MSC: Analyzing

31. The carbon-nitrogen-oxygen cycle in stars is one process by which hydrogen is converted to helium. Write the complete nuclear reaction for the reaction of a carbon-12 nucleus with a hydrogen nucleus to form nitrogen. What isotope of nitrogen is produced?

ANS:

$${}^{12}_{6}\text{C} + {}^{1}_{1}\text{H} \rightarrow {}^{13}_{7}\text{N}$$
; nitrogen-13.

DIF: Medium REF: 2.6 OBJ: Write and balance nuclear reactions

MSC: Applying

32. Suppose the reaction ${}^{13}_{6}\text{C} + {}^{1}_{1}\text{H} \rightarrow {}^{14}_{7}\text{N}$ produces 1.21×10^{-12} J of energy $(1.21 \times 10^{-12} \text{ kg} \cdot \text{m}^2/\text{s}^2)$. Calculate the change in mass that occurs during the reaction in amu. $E = mc^2$, where $c = 2.998 \times 10^8$ m/s;

$$1 \text{ kg} = 6.0221415 \times 10^{26} \text{ amu}.$$

ANS:

0.00811 amu

$$1.21\times 10^{-12}\; kg \cdot m^2\!/s^2 \, / \, (2.998\times 10^8\; m/s)^2 \times 6.0221415\times 10^{26} = 0.00811\; amu$$

DIF: Difficult REF: 2.6

OBJ: Use the mass defect to calculate the binding energy of a nucleus and the binding energy per

nucleon MSC: Evaluating

33. Calculate the binding energy of a helium-4 nucleus in J/mol 4 He. 1 amu = 1.6605×10^{-27} kg

helium-4 nucleus 4.00153 amu proton mass 1.00728 amu

neutron mass 1.00866 amu

speed of light $2.998 \times 10^8 \text{ m/s}$

ANS:

 $2.728\times10^{12}\,J/mol$

DIF: Difficult REF: 2.6

OBJ: Use the mass defect to calculate the binding energy of a nucleus and the binding energy per

nucleon MSC: Evaluating

34. Iron-56 has one of the highest binding energies of all nuclides. Calculate its nuclear binding energy in kJ per mol nucleon. 1 amu is equivalent to 1.492×10^{-10} J.

mass of iron-56 nuclide 55.934994 amu (includes electrons)

 $\begin{array}{lll} proton \ mass & 1.00728 \ amu \\ neutron \ mass & 1.00866 \ amu \\ electron \ mass & 5.4858 \times 10^{-4} \ amu \\ speed \ of \ light & 2.998 \times 10^8 \ m/s \end{array}$

ANS:

 $8.477 \times 10^8 \text{ kJ/mol nucleon}$

 $56.44908 - 55.92073 = 0.52835 \ amu \times 1.492 \times 10^{-10} \ J \times 6.022 \times 10^{23} \ / 1000 \ / \ 56 = 8.477 \times 10^8 \ kJ/mol \ nucleon$

DIF: Difficult REF: 2.6

OBJ: Use the mass defect to calculate the binding energy of a nucleus and the binding energy per

nucleon MSC: Evaluating

35. Darmstadtium was first created in 1994 when ²⁰⁸Pb was bombarded with ⁶²Ni to produce ²⁶⁹Ds and one neutron. Write the complete nuclear equation.

ANS:
$${}^{208}_{82}$$
Pb + ${}^{62}_{28}$ Ni $\rightarrow {}^{269}_{110}$ Ds + ${}^{1}_{0}$ n

DIF: Easy REF: 2.7

OBJ: Describe how elements heavier than uranium are synthesized

MSC: Understanding