https://selldocx.com/products/test-bank-chemistry-the-molecular-nature-of-matter-and-change-9e-silberberg

Student name:_____

0

0

true

false

TRUE	/FALS	E - Write 'T' if the statement is true and 'F'	
if the s	tateme	nt is false.	
1)	The rip	ening of fruit, once picked, is an example of	
physica	ıl chang	re.	
	o	true	
	0	false	
	•	Taise	
2)	An imp	portant aim in much chemical work is to use	
macros	copic n	neasurements in order to gain an understanding	
of the r	nicrosc	opic world.	
	o	true	
	0	false	
	-	tential energy of a car moving on a level road and on its speed. true false	
4) energy	When a wooden match burns in air, chemical potential is converted to kinetic energy.		
	o	true	
	0	false	
5) avoid a		applying the scientific method, it is important to a flypothesis.	

6)	Whe	n applying the scientific method, a model or	theory should be based on
	<!--</th--><th>true false</th><th></th>	true false	
7) Celsi		numerical value of any temperature expressed in ways different from the numerical value of the	same temperature in Fahrenheit.
	<!--</td--><td>true false</td><td></td>	true false	
8) Celsi		numerical value of any temperature expressed in ways different from the numerical value of the	same temperature in kelvin.
	<!--</td--><td>true false</td><td></td>	true false	
9) becoi	The mes 6.0	number 6.0448, rounded to 3 decimal places,	
	<!--</td--><td>true false</td><td></td>	true false	
10) becom	The mes 6.0	number 6.0448, rounded to 2 decimal places, 95.	
	<!--</td--><td>true false</td><td></td>	true false	
11) balan		weight of a coin measured as 1.96235 g on one efinitely more accurate than a weight	measurement of 1.95 g on another balance.
	<!--</td--><td>true false</td><td></td>	true false	

MULTIPLE CHOICE - Choose the one alternative that best completes the statement or answers the question.

12) Which one of the following is a "substance" in the

sense of the word as used in your textbook?

- C) Sea water
- D) Water
- E) Toothpaste

A) Air

B) Tap water

13) Select the best statement.

- A) Physical changes may be reversed by changing the temperature.
- B) Physical changes alter the composition of the substances involved.
- C) Physical properties are not valid characteristics for identifying a substance.
- D) Physical properties are mostly extensive in nature.
- E) Physical changes are usually accompanied by chemical changes.

14) Select the best statement.

- A) Chemical changes provide the only valid basis for identification of a substance.
- B) Chemical changes are easily reversed by altering the temperature of the system.
- C) Chemical changes always produce substances different from the starting materials.
 - D) Chemical changes are associated primarily with

extensive properties.

E) Chemical changes are accompanied by changes in the total mass of the substances involved.

- 15) Which of the following is a chemical change?
 - A) Boiling of water
 - B) Melting wax
 - C) Broiling a steak on a grill

D) Condensing water vapor into rainfall

E) Carving a piece of wood

- 16) Water vapor is less dense than ice because
- A) molecules in the gas phase are in constant motion.
- B) molecules in the gas phase have more potential energy than in solids.
- C) molecules in the gas phase have more kinetic energy than in solids.
- 17) During the swing of a frictionless pendulum, what energy form(s) remain constant?
 - A) Kinetic energy only
 - B) Potential energy only
 - C) Both kinetic energy and potential energy
- **18)** The most significant contribution to modern science made by alchemists was
- A) their fundamental work in the transmutation of the elements.
- B) their widespread acceptance of observation and experimentation.
 - C) their systematic method of naming substances.
- 19) Select the best statement about chemistry before 1800.
- A) Alchemy focused on objective experimentation rather than mystical explanations of processes.
- B) The phlogiston theory laid a valuable theoretical basis for modern chemistry.
 - C) Lavoisier's quantitative work on the role of

- D) gaseous molecules have less mass.
- E) molecules in the gas phase have more space between them than in solids.

- D) Kinetic plus potential energy
- E) None of these choices are correct.

- D) their understanding of the nature of chemical reactions.
- E) their discovery of phlogiston.

oxygen in combustion was the beginning of modern chemistry.

D) The interpretation of data by alchemists was not biased

by their overall view of life. any practical chemical E) Alchemists failed because they did not develop methods. 20) Which of the following activities is not a part of good science? D) Designing A) Proposing a theory experiments B) Developing a hypothesis E) Indulging in C) Making quantitative observations speculation 21) A scientist made careful measurements of the pressure and temperature of many different gases. Based on these measurements, he concluded that "the pressure of a fixed amount of gas, measured at constant volume, is directly proportional to its absolute temperature." This statement is best described as a C) law. A) theory. D) experiment. B) hypothesis. E) definition.

22) A dictionary has the following definition for a word: "A tentative explanation that accounts for a set of facts." Which of the following words best fits that definition?

A) Theory

B) Hypothesis

23) A detailed explanation of natural phenomena that is generally accepted and has been extensively tested is called a

C) Law

D) Experiment

E) Definition

A)	theory
ΔI	uncor y

B) hypothesis.

- C) law.
- D) fact.
- E) postulate.

24) The distance between carbon atoms in ethylene is 134 picometers. Which of the following expresses that distance in meters?

D)
$$1.34 \times 10^{-7}$$

m

A)
$$1.34 \times 10^{-13}$$
 m
B) 1.34×10^{-12} m

C) 1.34×10^{-10} m

E)
$$1.34 \times 10^{-6}$$

m

25) The average distance from Earth to the Sun is 150 megameters. What is that distance in meters?

D)
$$1.5 \times 10 \ 3 \text{ m}$$

A)
$$1.5 \times 10$$
 8 m

B)
$$1.5 \times 10 \ 6 \text{ m}$$

C) $1.5 \times 10 \ 5 \text{ m}$

D)
$$1.5 \times 10^{\circ} 3 \text{ m}$$

E)
$$1.5 \times 10 -6$$

The mass of a sample is 550 milligrams. Which of the 26) following expresses that mass in kilograms?

A)
$$5.5 \times 10 8 \text{ kg}$$

B) $5.5 \times 10 - 5 \text{ kg}$

C) 5.5×10 -4 kg

D)
$$5.5 \times 10 -6$$

kg

m

E)
$$5.5 \times 10 -1$$

kg

A dose of medication was prescribed to be 35 27) microliters. Which of the following expresses that volume in centiliters?

A)
$$3.5 \times 10 \ 5 \text{ cL}$$

E)
$$3.5 \times 10 -3$$

B) $3.5 \times 10 \ 4 \text{ cL}$

C) 3.5 cL

D) $3.5 \times 10 -4 \text{ cL}$

cL

28) Which of the following represents the largest volume?

A) $10,000 \, \mu L$

B) 1000 pL

C) 100 mL

D) 10 nL

E) 10 cm 3

29) You prepare 1000. mL of tea and transfer it to a 1.00-quart pitcher for storage. Which of the following statements is true?

- A) The pitcher will be filled to 100% of its capacity with no tea spilled.
- B) The pitcher will be filled to about 95% of its capacity.
- C) The pitcher will be filled to about 50% of its capacity.
 - D) The pitcher will be completely filled and a small

amount of tea will overflow.

E) The pitcher will be completely filled and most of the tea will overflow.

30) In an average year, the American chemical industry produces more than 9.5 million metric tons of sodium carbonate. Over half of this is used in the manufacture of glass while another third is used in the production of detergents and other chemicals. How many pounds of sodium

carbonate are produced annually?

A) $2.1 \times 10 \ 10 \ lb$

B) $4.3 \times 10 \ 9 \text{ lb}$

C) $1.1 \times 10 \ 7 \text{ lb}$

D) $2.2 \times 10 - 6 \text{ lb}$

E) $2.1 \times 10 + 4 \text{ lb}$

31) A large pizza has a diameter of 15 inches. Express this

diameter in centimeters.

Version 1

7

B) 24 cm

C) 18 cm

D) 9.3 cm

E) 5.9 cm

32) The average distance between the Earth and the Moon is 240,000 miles. Express this distance in kilometers.

A)
$$6.1 \times 10^{-5} \text{ km}$$

B) $5.3 \times 10^{-5} \text{ km}$

C)
$$3.9 \times 10^{-5} \text{ km}$$

D) $1.5 \times 10^{-5} \text{ km}$

E) $9.4 \times 10^{-4} \text{ km}$

33) The area of a 15-inch pizza is 176.7 in². Express this area in square centimeters.

A) 1140. cm²

B) 448.8 cm^{-2}

C) 96.8 cm²

D) 69.57 cm^{-2}

E) 27.39 cm^{-2}

34) The speed needed to escape the pull of Earth's gravity is 11.3 km/s. What is this speed in mi/h?

A) 65,500 mi/h

B) 25,300 mi/h

C) 18,200 mi/h

E) $5.02 \times 10-3$

35) The density of mercury, the only metal to exist as a liquid at room temperature, is 13.6 g/cm³. What is that density in pounds per cubic inch?

D) 0.491 lb/in ³

E) $1.83 \times 10 - 3$

lb/in ³

mi/h

A) 849 lb/in ³

B) 491 lb/in ³

C) 376 lb/in ³

	A) 16.4 in ³ . B) 6.45 in ³ .	C) D) E)	0.394 in ³ 0.155 in 0.0610 in
	At a pressure of one billionth (10^{-9}) of atmospheric re, there are about 2.7×10^{10} molecules in one cubic eter of a gas. How many molecules is this per cubic		
	A) 2.7×10^{-16} B) 2.7×10^{-14}	C) D) E)	2.7×10^{-1} 2.7×10^{-1} 2.7×10^{-4}
	If the price of gold at the morning fixing in London (310 per lb, what would a kilogram of gold have cost in ends)? (Assume an exchange rate of $1.00 = £0.545$)		
	A) £1310 B) £3510	C) D) E)	£6370 £10400 £17100
39)	Which of the following is not an SI base unit?		
	A) Meter B) Ampere	C) D) E)	Second Gram Kelvin
40)	The symbol for the SI base unit of mass is	A)	mg.

Given that 1 inch = 2.54 cm, 1 cm³ is equal to

36)

	B) C)	g. kg.	D) E)	metric ton. lb.
41) base u		ich of the following abbreviations of the given SI incorrect?		
	A) B)	second: s kilogram: kg	C) D) E)	kelvin: K mole: m ampere: A
42) base u		ich of the following abbreviations of the given SI incorrect?		
	A) B)	second: s kilogram: kg	C) D) E)	meter: m mole: mol kelvin: k
43)	The	SI prefix mega- (M) means		
	A) B)	10 ⁻⁶ . 10 ⁻³ .	C) D) E)	10 ³ . 10 ⁶ . 10 ⁹ .
44)	The	SI unit of speed (velocity) is		
	A) B) C)	km/h. km/s. m/h.	D) E) choices are	m/s. None of these correct.
				joule is the SI

to 1 kg m² s⁻². The erg is another energy unit, equal to 1 g cm² s⁻². Use unit conversion methods to work out how many ergs are in 1 joule.

$$A) \frac{20.1 \text{ g}}{1 \text{ cm}^3} \times \frac{1000 \text{ kg}}{1 \text{ g}} \times \frac{1 \text{ cm}^3}{0.01 \text{ m}^3}$$

$$B) \frac{20.1 \text{ g}}{1 \text{ cm}^3} \times \frac{1 \text{ kg}}{1000 \text{ g}} \times \frac{1 \text{ cm}^3}{0.01 \text{ m}^3}$$

$$C) \frac{20.1 \text{ g}}{1 \text{ cm}^3} \times \frac{1 \text{ kg}}{1000 \text{ g}} \times \frac{0.01 \text{ cm}^3}{1 \text{ m}^3}$$

A) 10^{-1} ergs

B) 10 ergs

$$D) \\ \frac{20.1 \text{ g}}{1 \text{ cm}^3} \times \frac{1 \text{ kg}}{1000 \text{ g}} \times \frac{(0.01 \text{ cm})^3}{(1 \text{ m})^3} \\ E) \\ \frac{20.1 \text{ g}}{1 \text{ cm}^3} \times \frac{1 \text{ kg}}{1000 \text{ g}} \times \frac{(1 \text{ cm})^3}{(0.01 \text{ m})^3}$$

47) If the density of a certain spherical atomic nucleus is
$$1.0 \times 10^{14}$$
 g cm⁻³ and its mass is 2.0×10^{-23} g, what is its radius in cm?

D)
$$2.2 \times 10^{-19}$$

cm

A) Boiling point

A) 3.6×10^{-13} cm

B) 2.0×10^{-37} cm

C) 4.8×10^{-38} cm

- B) Temperature
- C) Average kinetic energy of molecules

- D) Density
- E) Mass

49)	A flask has a mass of 78.23 g when empty and 593.63
g when	filled with water. When the same flask is filled with
concen	trated sulfuric acid, H ₂ SO ₄ , its mass is 1026.57 g. What
is the d	ensity of concentrated sulfuric acid? (Assume water
has a d	ensity of 1.00 g/cm ³ at the temperature of the
measur	ement.)

- A) 1.992 g/cm^{-3}
- B) 1.840 g/cm^{-3}

- C) 1.729 g/cm^{-3}
- D) 1.598 g/cm^{-3}
- E) 0.543 g/cm^{-3}

- **50)** Talc is a mineral that has low conductivity for heat and electricity and that is not attacked by acid. It is used as talcum powder and face powder. A sample of talc weighs 35.97 g in air and 13.65 g in mineral oil ($d = 1.75 \text{ g/cm}^3$). What is the density of talc?
 - A) 4.61 g/cm^{-3}
 - B) 2.82 g/cm³

- C) 2.63 g/cm^{-3}
- D) 2.44 g/cm^{-3}
- E) 1.61 g/cm^{-3}

- **51)** Acetone, which is used as a solvent and as a reactant in the manufacture of Plexiglas[®], boils at 56.1°C. What is the
 - A) 159°F
 - B) 133°F

boiling point in degrees Fahrenheit?

- C) 101°F
- D) 69.0°F
- E) 43.4°F

- **52)** Isopropyl alcohol, commonly known as rubbing alcohol, boils at 82.4°C. What is the boiling point in kelvins?
 - A) 387.6 K
 - B) 355.6 K

C) 323.6 K

- D) 190.8 K
- E) -190.8 K

- **53)** Acetic acid boils at 244.2°F. What is its boiling point in degrees Celsius?
- C) 153.4°C
- D) 117.9°C
- E) 103.7°C

- **54)** Which one of the following numbers contains a digit or digits which is/are not significant?
- C) 0.300
- D) 0.0043
- E) 20.01

A) 970.0

A) 382.0°CB) 167.7°C

- B) 502
- **55)** Select the answer that expresses the result of this calculation with the correct number of significant figures.

$$\frac{13.602 \times 1.90 \times 3.06}{4.2 \times 1.4097} =$$

- A) 13.3568
- B) 13.357

- C) 13.36
- D) 13.4
- E) 13

- **56)** Select the answer that expresses the result of this calculation with the correct number of significant figures and with correct units.
 - A) 105.2 g/cm^{-3}
 - B) 105.2 g/cm^{-2}

- $16.18 \text{ cm} \times 9.6114 \text{ g} \div 1.4783 \text{ cm}^2 =$
 - C) 105.2 g/cm
 - D) 72.13 g/cm²
 - E) 72.13 g/cm

57) Which measurement is expressed to 4 significant

figures?

- C) 1300 K
- D) 82,306 m
- E) 62.40 g

58) Express 96,342 m using 2 significant figures.

- D) 9.6×10^{-4} m
- E) 96000. m

A) 9.60×10^{-4} m

A) 0.423 kgB) 24.049 cm

- B) 9.6×10^{-4} m
- C) $9.60 \times 10^{-4} \text{ m}$

59) Select the answer with the correct number of decimal places for the following sum:

13.914 cm + 243.1 cm + 12.00460 cm =

- A) 269.01860 cm
- B) 269.0186 cm

- C) 269.019 cm
- D) 269.02 cm
- E) 269.0 cm

60) The appropriate number of significant figures in the result of 15.234×15.208 is

- C) 4.
- D) 5.
- E) 6.

A) 2.

B) 3.

61) The appropriate number of significant figures in the result of 15.234 - 15.208 is

- C) 3.
- D) 4.
- E) 5.

A) 1.

B) 2.

62)	The result of $(3.8621 \times 1.5630) - 5.98$ is properly	writte	n as	
	A) 0.06. B) 0.056.		C) D) E)	0.0565. 0.05646. 0.056462.
density The de	As chief chemist at Superior Analytical Products you must design an experiment to determine the of an unknown liquid to three (3) significant figures. Insity is of the order of 1 g/cm ³ . You have imately 7 mL of the liquid and only graduated ers and balances are available for your use. Which of	of equ	ipme mee	ng combinations ent will allow t but not exceed
balance	 A) Graduated cylinder with ±0.1 mL uncertainty; e with ±0.1 g uncertainty B) Graduated cylinder with ±0.01 mL uncertainty; e with ±0.1 g uncertainty C) Graduated cylinder with ±0.01 mL uncertainty; e with ±0.01 g uncertainty D) Graduated cylinder with ±0.001 mL uncertainty; 	uncert cylind uncert	ainty E) er wi ainty	th ±0.001 g Graduated th ±0.1 mL; balance with neertainty
	A student makes several measurements of the density nknown mineral sample. She then reports the average of these measurements. The number of significant	figures she uses in her result should be a measure of its		
	A) accuracy.B) precision.C) systematic error.	error.	D) E)	determinate human error.
density	The difference between a student's experimental rement of the density of sodium chloride and the known of this compound reflects the of the t's result.			
	A) accuracy		B) C)	precision random error

- D) systematic error
- E) indeterminate error
- 66) Bud N. Chemist must determine the density of a mineral sample. His four trials yield densities of 4.77 g/cm³, 4.67 g/cm³, 4.69 g/cm³, and 4.81 g/cm³. Independent studies found the correct density to be 4.75 g/cm³. Which of the
- A) Bud's results have much greater accuracy than precision.
- B) Bud's results have much greater precision than accuracy.
 - C) Bud's results have high accuracy and high
- As part of an experiment to determine the density of a new plastic developed in her laboratory, Sara Ann Dippity measures the volume of a solid sample. Her four trials yield volumes of 12.37 cm³, 12.41 cm³, 12.39 cm³, and 12.38 cm³. Measurements of other scientists in the lab give an average
- A) Sara's results have low precision and high accuracy.
- B) Sara's results have high precision and high accuracy.
- C) Sara's results have greater precision than accuracy.
- **68)** Which of the following correctly expresses 52,030.2 m in scientific notation?
 - A) $5.20302 \times 10^{-4} \text{ m}$
 - B) 5.20302×10^{-5} m
 - C) 5.203×10^{-4} m

following statements represents the best analysis of the data?

precision.

- D) Bud's results have low accuracy and low precision.
- E) Bud's equipment is faulty.

volume of 12.49 cm³. Which of the following statements represents the best analysis of the data?

- D) Sara's results have greater accuracy than precision.
- E) Sara has been using a faulty instrument to measure the volume.

- D) $5.20 \times 10^{-4} \text{ m}$
- E) $5.2 \times 10^{-4} \, \text{m}$

69)	Which of the following correctly expresses
0.0000	07913 g in scientific notation?

D)
$$7.913 \times 10^{-6}$$

E) An egg being

A)
$$7.913 \times 10^{-6}$$
 g

B)
$$7.913 \times 10^{-5}$$
 g

C)
$$7.913 \times 10^{-5}$$
 g

g E)
$$7.913 \times 10^{-9}$$

g

hard-boiled

- A) Milk turning sour
- B) Battery cables corroding
- C) Sugar turning brown when heated
- D) Liquid water being cooled and forming ice
- 71) Which of the following processes and concepts is not a part of the "scientific method"?
 - A) Experiment
 - B) Observation

- C) Model
- D) Speculation
- E) Law

Answer Key

Test name: chapter 1

- 1) FALSE
- 2) TRUE
- 3) TRUE
- 4) TRUE
- 5) FALSE
- 6) TRUE
- 7) FALSE
- 8) TRUE
- 9) TRUE
- 10) FALSE
- 11) FALSE
- 12) D
- 13) A
- 14) C
- 15) C
- 16) E
- 17) D
- 18) B
- 19) C

- 20) E
- 21) C
- 22) B
- 23) A
- 24) C
- 25) A
- 26) C
- 27) E
- 28) C
- 29) D
- 30) A
- 31) A
- 32) C
- 33) A
- 34) B
- 35) D
- 36) E
- 37) A
- 38) C
- 39) D
- 40) C

- 41) D
- 42) E
- 43) D
- 44) D
- 45) E
- 46) E
- 47) A
- 48) E
- 49) B
- 50) B
- 51) B
- 52) B
- 53) D
- 54) D
- 55) E
- 56) C
- 57) E
- 58) B
- 59) E
- 60) D
- 61) B

- 62) A
- 63) C
- 64) B
- 65) A
- 66) A
- 67) C
- 68) A
- 69) D
- 70) D
- 71) D