https://selldocx.com/products/test-bank-college-algebra-2e-miller

Exam	Intips://sendocx.com/products/test-bank-conege-algebra-ze-ininer
Name	
SHORT A	NSWER. Write the word or phrase that best completes each statement or answers the question.
	the missing information.
	An equation that can be written in the form $ax + b = 0$ where a and b are real numbers and $a \neq 0$ is called a equation in one variable.
	Answer: linear
	A linear equation is also called adegree equation because the degree of the variable is 1. Answer: first
3)	A to an equation is the value of the variable that makes the equation a true statement.
	Answer: solution
4	
	The solution to an equation is the set of all solutions to the equation.
	Answer: set
5)	Two equations are equations if they have the same solution set.
	Answer: equivalent
6)	The property of equality indicates that adding the same real number to both sides of an
•	equation results in an equivalent equation.
	Answer: addition
7)	The property of equality indicates that if $a = b$, then $\frac{a}{c} = \frac{b}{c}$ provided that $c \neq 0$.
	Answer: division
8)	A equation is one that is true for some values of the variable and false for others.
•	Answer: conditional
,	An is an equation that is true for all values of the variable for which the expressions in
	the equation are defined. Answer: identity
	Answer: Identity
10)	A is an equation that is false for all values of the variable.
	Answer: contradiction
11)	A equation is an equation in which each term contains a rational expression.
	Answer: rational

12) If an equation has no sol	lution, then the solution se	et is theset	and is denoted by
Answer: empty (or null);	{ } or ∅		
MULTIPLE CHOICE. Choose the or	ne alternative that best comp	letes the statement or an	swers the question.
Solve the problem.			
13) A train ride is \$3.40 per			les on the train.
A) $C = 3.40x$	B) $C = 3.40 - x$	C) $Cx = 3.40$	D) $C = 3.40 + x$
Answer: A			
14) A train ride is \$2.85 per	ride. A commuter can pur	chase an unlimited-rid	e card for \$45 per month.
How many rides are requ	uired for a commuter to sa	ve money by buying th	ne card?
A) 16 rides	B) 22 rides	C) 20 rides	D) 18 rides
Answer: A			
is the altitude in thousan 9,000 ft. Round to the ne	vater T (in °F) can be approached of feet. Determine the earest degree.	oximated by the model temperature at which w	T = -1.83a + 212, where a vater boils at an altitude of
a) 214 °F	в) 228 °F	c) 196 °F	D) 210 °F
Answer: C			
is the altitude in thousan	vater T (in °F) can be approached of feet. Two campers h	oximated by the model niking in Colorado boil	o estimate altitude. The $T = -1.83a + 212$, where a water for tea. If the water of the nearest hundred feet. D) 2,900 ft
Determine whether the equation		on, an identity, or a co	ontradiction.
17) $3(z+2) - 5z = 4\left[-\frac{1}{2}z + 1\right]$ A) Conditional	+ 2 B) Identity		c) Contradiction
Answer: B	b) Identity		c) Contradiction
A MISWOIL D			
18) $16y + 2(3 - y) = 5 + 14y$			
A) Conditional	B) Identity	C	C) Contradiction
Answer: C			
19) $y - 12 + 3y = 2y + 4$			
A) Conditional	B) Identity	C	C) Contradiction

Solve the rational equation.

$$20) \, \frac{11}{2} y + \frac{1}{3} = \frac{7}{4} y$$

A)
$$\left\{\frac{4}{87}\right\}$$

B)
$$\left\{-\frac{1}{4}\right\}$$

D)
$$\left\{-\frac{4}{45}\right\}$$

Answer: D

$$21) \frac{3}{x} + \frac{5}{2} = \frac{3}{4}$$

A)
$$\left\{-\frac{7}{12}\right\}$$

B)
$$\left\{ \frac{7}{12} \right\}$$

C)
$$\left\{ \frac{12}{7} \right\}$$

D)
$$\left\{-\frac{12}{7}\right\}$$

Answer: D

22)
$$\frac{6}{p-12} = \frac{3p-15}{p-12} - \frac{3}{p}$$

C)
$$\{-5, -3\}$$

D)
$$\{6, 2\}$$

Answer: D

23)
$$\frac{3}{x} + \frac{3}{x-7} = \frac{3x-18}{x-7}$$

$$A) \left\{ -\frac{5}{2}, \frac{1}{3} \right\}$$

Answer: B

24)
$$\frac{1}{x-4} - \frac{5}{x+1} = \frac{1}{x^2 - 3x - 4}$$

C)
$$\{5, 1\}$$

Answer: B

25)
$$\frac{t-8}{t-2} = \frac{t-23}{t^2-4} - \frac{1}{t+2}$$

Determine the restrictions on x.

$$26) \frac{9}{3x-5} - \frac{6}{7x} = \frac{1}{2-x}$$

A)
$$x \neq \frac{3}{5}$$
; $x \neq -7$; $x \neq 2$

C)
$$\frac{3}{5}$$
; $x \neq 0$; $x \neq -2$

B) $x \neq \frac{5}{3}$; $x \neq 0$; $x \neq 2$

D)
$$x \neq \frac{5}{3}$$
; $x \neq -7$; $x \neq -2$

Answer: B

Solve the rational equation.

$$27) \frac{-21}{x^2 - x - 12} - \frac{5}{x - 4} = \frac{3}{x + 3}$$

A) { }

B) {3}

c) {-4}

D) $\{-3\}$

Answer: A

Solve for the indicated variable.

28)
$$-8x - 9y = 7$$
 for y

A)
$$y = \frac{8}{9}x + 7$$

A)
$$y = \frac{8}{9}x + 7$$
 B) $y = -\frac{8}{9}x - \frac{7}{9}$ C) $y = -\frac{8}{9}x + 7$ D) $y = \frac{8}{9}x - \frac{7}{9}$

C)
$$y = -\frac{8}{9}x + 7$$

Answer: B

29)
$$3x - y = 2$$
 for y

A)
$$y = 3x - 2$$

B)
$$y = -3x - 2$$

C)
$$y = 3x + 2$$

D)
$$y = -3x + 2$$

Answer: A

30)
$$A = LW$$
 for L

A)
$$W = \frac{A}{L}$$

B)
$$L = \frac{W}{A}$$

C)
$$L = \frac{A}{W}$$

D)
$$W = \frac{L}{A}$$

Answer: C

31)
$$H = kx - kx_0$$
 for x

$$A) x = \frac{H + kx_0}{x_0}$$

$$B) x = \frac{H - kx_0}{k}$$

$$C) x = \frac{H + kx_0}{k}$$

B)
$$x = \frac{H - kx_0}{k}$$
 C) $x = \frac{H + kx_0}{k}$ D) $x = \frac{H - kx_0}{x_0}$

Answer: C

32)
$$T = cMN^2$$
 for N^2

A)
$$N^2 = \frac{cM}{T}$$

B)
$$N^2 = \frac{T}{cM}$$

C)
$$N^2 = cMT$$

D)
$$N^2 = \frac{cT}{M}$$

Answer: B

33)
$$S = \alpha (T - T_0) + S_0$$
 for T

A)
$$T = \alpha(S - S_0) + T_0$$

B)
$$T = \frac{1}{\alpha}(S - S_0) + T_0$$

C)
$$T = \frac{1}{\alpha}(S - S_0 + T_0)$$

D)
$$T = \frac{S}{g} - S_0 + T_0$$

34)
$$q = \frac{c}{4}(h+r)$$
 for r

A)
$$r = \frac{q}{4c} - h$$
 B) $r = \frac{4q - h}{c}$

B)
$$r = \frac{4q - h}{c}$$

C)
$$r = \frac{4q}{c} - h$$

C)
$$r = \frac{4q}{c} - h$$
 D) $r = \frac{4c}{q} - h$

Answer: C

35)
$$Q = \frac{1}{3}DP$$
 for D

A)
$$D = \frac{P}{3Q}$$
 B) $D = \frac{3Q}{P}$

B)
$$D = \frac{3Q}{P}$$

C)
$$D = \frac{Q}{3P}$$

D)
$$D = \frac{3P}{O}$$

Answer: B

36)
$$L = \frac{1}{3}\pi q^2 s \quad \text{for } s$$

$$A) s = \frac{\pi q^2}{3L}$$

$$B) s = \frac{3\pi q^2}{L}$$

$$c) s = \frac{3L}{\pi q^2}$$

$$D) s = \frac{L}{3\pi q^2}$$

Answer: C

37)
$$9x + ry = tx + 6$$
 for x

A)
$$x = \frac{tx - ry + 6}{9}$$
 B) $x = \frac{6 - ry}{9 - t}$

B)
$$x = \frac{6 - ry}{9 - t}$$

$$C) x = \frac{6 - ry}{t - 9}$$

$$D) x = \frac{t+6}{9+ry}$$

Answer: B

Solve the equation.

38)
$$5 - 2{2 - [-3n - 2(n+5)]} = -8n + 2(1+4n) - 21$$

Solve the problem.

39) Dema's truck gets 32 mpg on the highway and 18 mpg in the city. The amount of gas he uses A (in gal) is given by $A = \frac{1}{18}c + \frac{1}{32}h$, where c is the number of city miles driven and h is the number of

highway miles driven. If Dema drove 45 mi in the city and used 8 gal of gas, how many highway miles did he drive?

- A) 176 miles
- B) 192 miles
- c) 200 miles
- D) 160 miles

Answer: A

Solve the equation.

40) $-\frac{1}{4}x - \frac{1}{6} = -\frac{1}{6}(x+1) - \frac{1}{12}x$

A) $\left\{-\frac{1}{3}\right\}$

- B) All real numbers
- c) {0}

D) { }

Answer: E

Find the value of a so that the equation has the given solution set.

41) ax - 6 = 7x - 26 {5}

- A) $a = -\frac{141}{5}$
 - B) $a = \frac{3}{5}$
- C) a = 3

D) a = 5

Answer: C

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide the missing information.

42) The formula for the perimeter P of a rectangle with length l and width w is given by ______.

Answer: P = 2l + 2w

43) The sum of the measures of the angles inscribed inside a triangle is .

Answer: 180°

44) If \$6000 is borrowed at 7.5% simple interest for 2 yr, then the amount of interest is ______.

Answer: \$900

45) Suppose that 8% of a solution is fertilizer by volume and the remaining 92% is water. How much fertilizer is there in a 2 L bucket of solution?

Answer: 0.16 L

46) If d = rt, then $t = \frac{?}{?}$

Answer: $\frac{d}{r}$

47) If
$$d = rt$$
, then $r = \frac{?}{?}$

Answer: $\frac{d}{t}$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the problem.

48) If \$13,000 is borrowed at 5.8% simple interest for 10 years, how much interest will be paid for the loan?

A) \$9,845.47

B) \$20,540.00

c) \$7,540.00

D) \$22,845.47

Answer: C

49) Aaron invested a total of \$4,100, some in an account earning 8% simple interest, and the rest in an account earning 5% simple interest. How much did he invest in each account if after one year he earned \$211 in interest?

A) \$3,200 at 8%, \$900 at 5%

B) \$3,900 at 8%, \$200 at 5%

c) \$900 at 8%, \$3,200 at 5%

D) \$200 at 8%, \$3,900 at 5%

Answer: D

50) How many gallons of gasoline that is 5% ethanol must be added to 2,000 gallons of gasoline with no ethanol to get a mixture that is 3% ethanol?

A) 4,115

B) 6,000

C) 3,000

D) 1,800

Answer: C

51) A nurse mixes 90 cc of a 45% saline solution with a 10% saline solution to produce a 20% saline solution. How much of the 10% solution should he use?

A) 18 cc

B) 180 cc

c) 225 cc

D) 202.5 cc

Answer: C

52) Two cars are 261 miles apart and travel toward each other on the same road. They meet in 3 hours. One car travels 3 mph faster than the other. What is the average speed of each car?

A) 40 mph; 43 mph

B) 41 mph; 44 mph

c) 39 mph; 42 mph

D) 42 mph; 45 mph

Answer: D

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

53) A boat can travel 42 miles upstream against the current in the same amount of time it can travel 63 miles downstream with the current. If the boat's average speed in still water is 20 miles per hour, find the speed of the current.

Answer: 4 miles per hour

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 54) A consultant traveled 255 miles to attend a meeting, traveling 45 mph hours for the first part of the trip, then increasing to a speed of 60 mph for the second part. If the entire trip took 5 hours, how far did the consultant travel at the faster speed? A) 127.5 mi B) 120 mi c) 135 mi D) 180 mi Answer: B 55) It takes Terrell 69 minutes to weed his garden if he does it every 2 weeks, while his wife can get it done in 49 minutes. How long would it take them working together? Round to the nearest tenth of a minute. A) 28.7 minutes B) 24.5 minutes C) 34.5 minutes D) 29.5 minutes Answer: A 56) The JUST-SAY-MOW lawn mowing company consists of two people: Marsha and Bob. If Marsha cuts the lawn by herself, she can do it in 3 hours. If Bob cuts the same lawn himself, it takes him an hour longer than Marsha. How long would it take them if they worked together? Round to the nearest hundredth of an hour. A) 4.00 hours B) 1.71 hours c) 3.50 hours D) 1.00 hour Answer: B 57) The property tax on a \$160,000.00 house is \$2,400.00. At this rate, what is the property tax on a house that is \$280,000,00? A) \$4,620.00 B) \$5,040.00 c) \$3,780.00 D) \$4,200.00 Answer: D 58) To estimate the number of bass in a lake, a biologist catches and tags 32 bass. Several weeks later, the biologist catches a new sample of 55 bass and finds that 5 are tagged. How many bass are in the lake? A) 275 bass B) 1,760 bass c) 160 bass D) 352 bass Answer: D 59) The plans for a rectangular deck call for the width to be 4 feet less than the length. Sam wants the deck to have an overall perimeter of 52 feet. What should the length of the deck be? A) 4 feet B) 28 feet c) 19 feet D) 15 feet Answer: D 60) The perimeter of a rectangular lot of land is 436 ft. This includes an easement of x feet of uniform width inside the lot on which no building can be done. If the buildable area is 122 ft by 60 ft, determine the width of the easement.

B) 18 feet

A) 4.5 feet

Answer: D

c) 7 feet

D) 9 feet

61)) Suppose that a merchant buys a patio set from the wholesaler for \$260. At what price should the merchant mark the patio set so that it may be offered at a discount of 25% but still give the merchant a 20% profit on his \$260 investment?				
	A) \$325 Answer: B	в) \$416	c) \$377	D) \$312	
	Allswei. D				
62)	62) Aliyah earned an \$6,000 bonus from her sales job for exceeding her sales goals. After paying at a 30% rate, she invested the remaining money in two stocks. One stock returned the equal 10% simple interest after 1 yr, and the other returned 4% at the end of 1 yr. If her investme returned \$240.00 (excluding commissions) how much did she invest in each stock A) \$2,750 at 4% and \$1,450 at 10% B) \$3,000 at 4% and \$1,200 at 10% C) \$1,200 at 4% and \$3,000 at 10% D) \$1,450 at 4% and \$2,750 at 10% Answer: B			ned the equivalent of er investments ck 00 at 10%	
63)	63) One number is 33 more than another number. The quotient of the larger number and smaller number				
	is 5 and the remainder is 1.		o) 5 120	D 11 1 4 4	
	A) 10 and 43 Answer: B	B) 8 and 41	c) 5 and 38	D) 11 and 44	
SHORT A	ANSWER. Write the word or ph	nrase that best completes ea	ch statement or answers the o	question.	
Provide	the missing information.				
64)	The imaginary number i is d	lefined so that $i = \sqrt{-1}$ and	$i^2 =$.		
	Answer: -1				
65)	For a positive real number, i	b, the value $\sqrt{-b} =$	•		
	Answer: $\mathrm{i}\sqrt{b}$				
66)	Given a complex number a called the part.	+ bi, the value of a is called	ed the part and	the value of b is	
	Answer: real; imaginary				
67)	67) Given a complex number $a + bi$, the expression $a - bi$ is called the complex				
	Answer: conjugate				
MULTIPL	LE CHOICE. Choose the one al	ternative that best complete	s the statement or answers th	ne question.	
	the expression in terms of $\sqrt{-49}$	i:			
00)	A) 7 <i>i</i>	в) 49 <i>i</i>	c) <i>i</i> $\sqrt{7}$	D) -7 <i>i</i>	
	Answer: A	,	· · · V ·	,	

69)
$$\sqrt{-18}$$

A)
$$-3i\sqrt{2}$$

B)
$$3i\sqrt{2}$$

c)
$$9i\sqrt{2}$$

D)
$$3\sqrt{2i}$$

Simplify the expression.

70)
$$\frac{\sqrt{-144}}{\sqrt{-36}}$$

A)
$$\frac{1}{2}$$

Answer: B

71)
$$\sqrt{-81} \cdot \sqrt{-3}$$

B)
$$9\sqrt{3}$$

c)
$$-9\sqrt{3}$$

D)
$$9\sqrt{-3}$$

Answer: C

72)
$$\frac{\sqrt{-25}}{\sqrt{9}}$$

A) -
$$\frac{\sqrt{5}}{3}$$

B)
$$\frac{5}{3}$$

C)
$$\frac{5}{3}i$$

D)
$$-\frac{5}{3}$$

Answer: C

Identify the real and imaginary parts of the complex number.

73) 11 + 13i

A) Real: 11; imaginary: 13

C) Real: 13; imaginary: 11

B) Real: 24; imaginary: i

D) Real: 11; imaginary: 13i

Answer: A

74) $\frac{4}{7}$

A) Real: $\frac{4}{7}$; imaginary: *i*

B) Real: 0; imaginary: $\frac{4}{7}$

C) Real: $\frac{4}{7}$; imaginary: 0

D) Real: 4; imaginary: 7

Answer: C

Simplify and write the result in standard form, a + bi.

75)
$$\frac{14 - \sqrt{-12}}{2}$$

A)
$$7 + 2i\sqrt{3}$$

B)
$$7 + i\sqrt{3}$$

c)
$$7 - 2i\sqrt{3}$$

76)
$$\frac{4+\sqrt{-18}}{6}$$

A)
$$\frac{2}{3} - \frac{\sqrt{18}}{6}i$$

B)
$$\frac{2}{3} + \frac{\sqrt{2}}{2}i$$

C)
$$\frac{3}{5} + \frac{\sqrt{18}}{6}i$$

D)
$$\frac{2}{3} - \frac{\sqrt{2}}{2}i$$

77)
$$\frac{-8 - 10i}{-2}$$

A)
$$4 + 10i$$

D)
$$4 + 5i$$

Answer: D

78)
$$\frac{6 - \sqrt{-18}}{-3}$$

A)
$$-2 - 3i\sqrt{2}$$

B)
$$-2 - i\sqrt{2}$$

c)
$$-2 + i\sqrt{2}$$

D)
$$-2 + 3i\sqrt{2}$$

Answer: C

Simplify.

79) i^{40}

B) i

D) -*i*

Answer: C

80) i^{15}

A) i

B) -1

c) 1

D) -*i*

Answer: D

Perform the indicated operation. Write the answer in the form a + bi.

81)
$$(-12 - 10i) + (17 + 14i)$$

A)
$$29 + 24i$$

D)
$$5 + 4i$$

Answer: D

A)
$$-28i$$

C)
$$-10i$$

D)
$$-13 + 3i$$

Answer: D

83)
$$(-5 - 9i)(6 + 6i)$$

Answer: A

84)
$$7i(-5 + 5i)$$

A)
$$-70i$$

$$C) -30i$$

Answer: B

85)
$$\frac{-8+3i}{5+7i}$$

A)
$$-\frac{19}{74} - \frac{71}{74}i$$

B)
$$-\frac{19}{74} + \frac{71}{74}i$$
 C) $-\frac{8}{5} - \frac{3}{7}i$

C)
$$-\frac{8}{5} - \frac{3}{7}i$$

D)
$$-\frac{8}{5} + \frac{3}{7}i$$

$$86) \frac{6 - i}{2 + i}$$

A)
$$\frac{11}{5} - \frac{8}{5}i$$

C)
$$\frac{13}{5} - \frac{8}{5}i$$

Answer: A

87)
$$\frac{8+9i}{3-i}$$

A)
$$\frac{15}{8} + \frac{35}{8}i$$

B)
$$\frac{15}{8} - \frac{35}{8}i$$

C)
$$\frac{3}{2} - \frac{7}{2}i$$

D)
$$\frac{3}{2} + \frac{7}{2}i$$

Answer: D

88)
$$(6 + \sqrt{-9})(8 - \sqrt{-9})$$

A) 57 - $2i\sqrt{9}$

B)
$$57 + 2i\sqrt{9}$$

D)
$$39 + 2i\sqrt{9}$$

Answer: B

89)
$$(8 - 5i)^2 + (8 + 5i)^2$$

B)
$$78 + 160i$$

Answer: D

Evaluate $\sqrt{b^2 - 4ac}$ for the given values of a, b, and c, and simplify.

90) a = 4, b = -2, and c = 7

A)
$$3i\sqrt{6}$$

B)
$$6i\sqrt{3}$$

c)
$$6\sqrt{3}$$

D)
$$-6\sqrt{3}$$

Answer: B

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide the missing information.

equation is a second degree equation of the form $ax^2 + bx + c = 0$ where $a \neq 0$. 91) A

Answer: quadratic

92) A equation is a first degree equation of the form ax + b = 0 where $a \neq 0$.

Answer: linear

93) The zero product property indicates that if ab = 0, then ____ = 0 or ___ = 0.

Answer: a; b

94) The zero product property indicates that if (5x + 1)(x - 4) = 0, then = 0 or = 0. Answer: (5x + 1); (x - 4)

- 95) The square root property indicates that if $x^2 = k$, then x =. Answer: $\pm \sqrt{k}$
- 96) The value of *n* that would make the trinomial $x^2 + 20x + n$ a perfect square trinomial is . Answer: 100
- 97) Given $ax^2 + bx + c = 0$ ($a \ne 0$), write the quadratic formula.

Answer: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

98) For a quadratic equation $ax^2 + bx + c = 0$, the discriminant is given by the expression Answer: $b^2 - 4ac$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation.

99) 5w (5w + 12) = -32

$$A) \left\{ -\frac{8}{5}, \frac{4}{5} \right\}$$

B)
$$\left\{0, -\frac{12}{5}\right\}$$

B)
$$\left\{0, -\frac{12}{5}\right\}$$
 C) $\left\{-\frac{8}{5}, -\frac{4}{5}\right\}$

$$D)\left\{\frac{8}{5},\frac{4}{5}\right\}$$

Answer: C

100) $t^2 - 5t = -4$

A)
$$\{0, 5\}$$

B)
$$\{0, -5\}$$

Answer: D

101) $y^2 - 20y = 0$

B)
$$\left\{0, \frac{1}{20}\right\}$$

Answer: D

102) 15m(m+5) = 38m - 20

$$A) \left\{ \frac{4}{5}, \frac{5}{3} \right\}$$

B)
$$\left\{ \frac{4}{5}, -\frac{5}{3} \right\}$$

D)
$$\left\{-\frac{4}{5}, -\frac{5}{3}\right\}$$

103)
$$9s^2 = 4$$

A)
$$\left\{\frac{3}{2}\right\}$$

B)
$$\left\{-\frac{2}{3}, \frac{2}{3}\right\}$$

C)
$$\left\{\frac{2}{3}\right\}$$

$$D)\left\{-\frac{3}{2},\frac{3}{2}\right\}$$

104)
$$(m+3)(m-4) = -6$$

A)
$$\{-2, 3\}$$

C)
$$\{2, -3\}$$

Answer: A

Solve the equation by using the square root property.

105)
$$f^2 = 25$$

B)
$$\{\pm 5i\}$$

C)
$$\{5i\}$$

D)
$$\{\pm 5\}$$

Answer: D

106)
$$(3x + 10)^2 = 81$$

A)
$$\left\{ \frac{61}{6}i, -\frac{61}{6}i \right\}$$

B)
$$\left\{-\frac{1}{3}\right\}$$

C)
$$\left\{ \frac{61}{6}, -\frac{61}{6} \right\}$$

D)
$$\left\{ -\frac{1}{3}, -\frac{19}{3} \right\}$$

Answer: D

107)
$$(c + 8)^2 = 16$$

Answer: C

108)
$$(3z - 18)^2 + 59 = 14$$

A)
$$\{14 + 3\sqrt{5}, -14 + 3\sqrt{5}\}$$

c)
$$\{3\sqrt{5} + 14\}$$

B)
$$\{6 + i\sqrt{5}, 6 - i\sqrt{5}\}$$

D)
$$\{3\sqrt{5} - 14\}$$

Answer: B

109)
$$3(x+8)^2 - 15 = 255$$

A)
$$-8 \pm \sqrt{265}$$

B)
$$8 \pm 3\sqrt{10}$$

C)
$$-8 \pm 3\sqrt{10}$$

D)
$$8 \pm \sqrt{265}$$

Answer: C

$$110) \left[t - \frac{1}{6} \right]^2 = -\frac{17}{36}$$

A)
$$\left\{ -\frac{11}{36} \right\}$$

$$B) \begin{cases} \frac{1}{6} \pm \frac{\sqrt{17}}{6}i \end{cases}$$

B)
$$\left\{ \frac{1}{6} \pm \frac{\sqrt{17}}{6} i \right\}$$
 C) $\left\{ \frac{1}{6} \pm \frac{\sqrt{17}}{6} \right\}$ D) $\left\{ \frac{1 - i\sqrt{17}}{6} \right\}$

$$D) \left\{ \frac{1 - i\sqrt{17}}{6} \right\}$$

Answer: B

Find the value of n so that the expression is a perfect square trinomial and then factor the trinomial.

111)
$$j^2 - 4j + n$$

A)
$$n = 2$$
; $(j + 2)^2$ B) $n = 4$; $(j - 2)^2$

B)
$$n = 4$$
; $(j - 2)^2$

C)
$$n = 4$$
; $(j - 2)$

D)
$$n = 2$$
; $(j - 2)^2$

Answer: B

112)
$$x^2 + 20x + n$$

A)
$$n = 100$$
; $(x + 10)^2$

B)
$$n = 400$$
; $(x + 20)^2$

C)
$$n = 100$$
; $(x + 10)(x - 10)$

D)
$$n = 100$$
; $(x - 10)^2$

Answer: A

113) Find the value of n so that the expression is a perfect square trinomial and then factor the trinomial.

$$t^2 - \frac{14}{3}t + n$$

A)
$$n = \frac{49}{9}$$
; $\left[t + \frac{7}{3}\right]^2$

B)
$$n = \frac{49}{9}$$
; $\left[t - \frac{7}{3}\right]^2$

C)
$$n = \frac{196}{9}$$
; $\left[t - \frac{49}{3}\right]^2$

D)
$$n = \frac{98}{9}$$
; $\left[t - \frac{98}{9}\right]^2$

Answer: B

Solve the quadratic equation by completing the square and applying the square root property.

114)
$$u^2 + 20u + 101 = 0$$

A)
$$\{-10 \pm i\}$$

B)
$$\{-10 + i\}$$

C)
$$\{10 + i\}$$

D)
$$\{\pm i\}$$

Answer: A

115)
$$n^2 + 18n = -75$$

A)
$$\{-9 - \sqrt{6}, -9 + \sqrt{6}\}$$

B)
$$\{9 - \sqrt{6}, 9 + \sqrt{6}\}$$

C)
$$\{-9 - \sqrt{249}, -9 + \sqrt{249}\}$$

D)
$$\left\{ \frac{-18 - \sqrt{249}}{2}, \frac{-18 + \sqrt{249}}{2} \right\}$$

Answer: A

116)
$$y^2 + 53 = 4y$$

A)
$$\{4 - \sqrt{37}, 4 + \sqrt{37}\}$$

C)
$$\{-2 - 7i, -2 + 7i\}$$

B)
$$\{4 - i\sqrt{37}, 4 + i\sqrt{37}\}$$

D)
$$\{2 - 7i, 2 + 7i\}$$

117)
$$2v^2 + 4v + 12 = 0$$

A)
$$\{-2 - \sqrt{2}, -2 + \sqrt{2}\}$$

C)
$$\{-1 - \sqrt{5}, -1 + \sqrt{5}\}$$

Answer: D

118)
$$2x^2 + 6 = 9x$$

A)
$$\{-9 - \sqrt{87}, -9 + \sqrt{87}\}$$

C)
$$\left\{ \frac{-9 - \sqrt{33}}{4}, \frac{-9 + \sqrt{33}}{4} \right\}$$

Answer: D

119)
$$-5v^2 = 5 + 7v$$

A)
$$\left\{ \frac{7 - \sqrt{69}}{10}, \frac{7 + \sqrt{69}}{10} \right\}$$

C) $\left\{ \frac{-7 - \sqrt{69}}{10}, \frac{-7 + \sqrt{69}}{10} \right\}$

Answer: B

120)
$$3x^2 + 5x - 6 = 0$$

A)
$$-\frac{5}{3} \pm \frac{\sqrt{97}}{3}$$

B)
$$-\frac{5}{6} \pm \frac{\sqrt{97}}{6}$$

Answer: B

B)
$$\{-2 - i\sqrt{2}, -2 + i\sqrt{2}\}$$

D)
$$\{-1 - i\sqrt{5}, -1 + i\sqrt{5}\}$$

B) $\{9 - \sqrt{87}, 9 + \sqrt{87}\}$

$$D) \left\{ \frac{9 - \sqrt{33}}{4}, \frac{9 + \sqrt{33}}{4} \right\}$$

B)
$$\left\{ -\frac{7}{10} - \frac{\sqrt{51}}{10}i, -\frac{7}{10} + \frac{\sqrt{51}}{10}i \right\}$$

D)
$$\left\{ \frac{7}{10} - \frac{\sqrt{51}}{10}i, \frac{7}{10} + \frac{\sqrt{51}}{10}i \right\}$$

B)
$$-\frac{5}{6} \pm \frac{\sqrt{97}}{6}$$

C)
$$-\frac{5}{6} \pm \frac{\sqrt{47}}{6}$$
 D) $-\frac{5}{3} \pm \frac{\sqrt{47}}{3}$

Solve the equation by using the quadratic formula.

121)
$$3x^2 + 12x - 15 = 0$$

A)
$$\left\{ \frac{1}{3}, -\frac{5}{3} \right\}$$

B) {1, -5}

$$C) \left\{-\frac{1}{3}, \frac{5}{3}\right\}$$

D) $\{-1, 5\}$

Answer: B
122)
$$2x(x - 2) = 5$$

A)
$$1 \pm \frac{\sqrt{14}}{2}$$

c)
$$1 \pm \frac{\sqrt{14}}{2}i$$

B)
$$-1 + \frac{\sqrt{14}}{2}$$
, $-6 + \frac{\sqrt{14}}{2}$

D)
$$-1 + \frac{\sqrt{14}}{2}i$$
, $-6 + \frac{\sqrt{14}}{2}i$

123)
$$6y + 3 = -4y^2$$

A) $\left\{ -\frac{3}{4} + \frac{i\sqrt{3}}{4}, -\frac{3}{4} - \frac{i\sqrt{3}}{4} \right\}$
C) $\left\{ -\frac{1}{4} + \frac{\sqrt{105}}{12}, -\frac{1}{4} - \frac{\sqrt{105}}{12} \right\}$

Answer: A

$$B)\left\{-\frac{9}{2},\frac{1}{3}\right\}$$

D)
$$\{2 + \sqrt{3}, 2 - \sqrt{3}\}$$

124) $5y - 6 + 50y^2 = 0$

A)
$$\left\{ \frac{5}{2}, -\frac{10}{3} \right\}$$
 B) $\left\{ \frac{1}{3}, \frac{2}{5} \right\}$

C) $\left\{ \frac{3}{5} \pm \frac{\sqrt{2,791}}{5} i \right\}$ D) $\left\{ -\frac{2}{5}, \frac{3}{10} \right\}$

Answer: D

125)
$$6x(x-2) = 5$$

A) $\left\{-1 + \frac{\sqrt{66}}{6}, -6 + \frac{\sqrt{66}}{6}\right\}$
C) $\left\{1 \pm \frac{\sqrt{66}}{6}i\right\}$

Answer: B

B)
$$\left\{1 \pm \frac{\sqrt{66}}{6}\right\}$$
D) $\left\{-1 + \frac{\sqrt{66}}{6}i, -6 + \frac{\sqrt{66}}{6}i\right\}$

126) $-\frac{4}{3} = \frac{1}{6}x - 5x^2$

A)
$$\left\{ \frac{1}{10} \pm \frac{\sqrt{161}}{10} \right\}$$
 B) $\left\{ -8, \frac{9}{30} \right\}$

C) $\left\{ \frac{1}{16} \pm \frac{\sqrt{959}}{16}i \right\}$ D) $\left\{ -\frac{1}{2}, \frac{8}{15} \right\}$

Answer: D

127) $0.49x^2 = 0.28x - 0.04$

A)
$$\left\{\pm \frac{2}{7}\right\}$$

Answer: C

B) $\left\{\frac{2}{7}i\right\}$

C) $\left\{\frac{2}{7}\right\}$

D) $\left\{-\frac{2}{7}\right\}$

128) (3w - 2)(w - 1) = -3

A)
$$\left\{ \frac{5}{6} - \frac{\sqrt{35}}{6}i, \frac{5}{6} + \frac{\sqrt{35}}{6}i \right\}$$

C) $\left\{ -\frac{1}{3}, -2 \right\}$

B)
$$\left\{ -\frac{5}{6} - \frac{\sqrt{37}}{6}i, \frac{5}{6} + \frac{\sqrt{37}}{6}i \right\}$$
D) $\left\{ -\frac{5}{6} - \sqrt{35}, \frac{-5}{6} + \sqrt{35} \right\}$

D)
$$\left\{ \frac{-5 - \sqrt{35}}{6}, \frac{-5 + \sqrt{35}}{6} \right\}$$

129)
$$y^2 = 4y - 9$$

A)
$$\{4 \pm 2i \sqrt{5}\}$$

B)
$$\{-2 \pm i\sqrt{5}\}$$
 C) $\{2 \pm i\sqrt{5}\}$ D) $\{-4 \pm 2i\sqrt{5}\}$

C)
$$\{2 \pm i \sqrt{5}\}$$

D)
$$\{-4 \pm 2i \sqrt{5}\}$$

Answer: C

130)
$$t(t-2) = -2$$

A) $\{1 \pm 2i \}$

B)
$$\{-1 \pm i \}$$

C)
$$\{-1 \pm 2i \}$$

D)
$$\{1 \pm i \}$$

Answer: D

Use the discriminant to determine the type and number of solutions.

131)
$$-2x^2 + 5x + 5 = 0$$

- A) One rational solution
- C) Two irrational solutions

Answer: C

D) Two imaginary solutions

132)
$$5x^2 + 4x + 5 = 0$$

- A) Two imaginary solutions
- C) Two rational solutions

Answer: A

D) Two irrational solutions

133) $6q^2 = 1$

- A) Two rational solutions
- C) Two imaginary solutions

Answer: B

- B) Two irrational solutions
- D) One rational solutions

Solve for the indicated variable.

134)
$$c = 9\sqrt{r}$$
 for r

A)
$$r = \frac{c^2}{81}$$

B)
$$r = \frac{c}{81}$$

c)
$$r = \frac{c^2}{9}$$

D)
$$r = \frac{c}{\Omega}$$

Answer: A

135)
$$w = \frac{1}{3}kr^2$$
 for $r > 0$

A)
$$r = \frac{3\sqrt{w}}{k}$$

B)
$$r = \sqrt{3w}$$

$$C) r = \frac{\sqrt{3w}}{k}$$

$$D) r = \frac{\sqrt{3wk}}{k}$$

Answer: D

136)
$$m = h^2 k t^2 x$$
 for $t > 0$

A)
$$t = \frac{\sqrt{mkx}}{hkx}$$

B)
$$t = \sqrt{\frac{m}{h}}$$

C)
$$t = \frac{\sqrt{mhkx}}{hkx}$$

$$D) t = \frac{m}{h^2 kx}$$

137)
$$at^2 + uy = h$$
 for t

A)
$$t = \frac{\sqrt{a(h-uy)}}{a}$$
 or $t = \frac{\sqrt{a(h+uy)}}{a}$

B)
$$t = \pm \sqrt{a(h - uy)}$$

$$C) t = \sqrt{\frac{h - uy}{a}}$$

D)
$$t = \pm \frac{\sqrt{a(h - uy)}}{a}$$

Answer: D

138)
$$s = vt + \frac{1}{2}at^2$$
 for t

$$A) \ \ t = \frac{v \pm \sqrt{v^2 + 2as}}{2a}$$

$$c) t = \frac{-v \pm \sqrt{v^2 + 2as}}{a}$$

$$B) t = \frac{-v \pm i\sqrt{v^2 + 2as}}{a}$$

$$D) \ \ t = \frac{v \pm \sqrt{v^2 + 2as}}{a}$$

Answer: C

Solve the equation.

139)
$$y^2 + 3y - 11 = (y + 2)(y - 4)$$

C)
$$\left\{ \frac{3}{5} \right\}$$

D)
$$\left\{ \frac{3}{5}, -\frac{3}{5} \right\}$$

Answer: C

140)
$$5(x+2) + x^2 = x(x+5) + 10$$

A)
$$\{0\}$$

B) All real numbers

C) No solution

D) $2\sqrt{5}$

Answer: B

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide the missing information.

141) Write a formula for the area of a triangle of base b and height h.

Answer: $A = \frac{1}{2}bh$

142) Write a formula for the area of a circle of radius r.

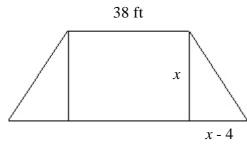
Answer: $A = \pi r^2$

143) Write a formula for the volume of a rectangular solid of length l, width w, and height h.

Answer: V = lwh

144)	Write the Pythagorean theo the length of the hypotenuse	•	th the lengths of the legs g	iven by a and b and	
	Answer: $a^2 + b^2 = c^2$				
MULTIP	LE CHOICE. Choose the one a	Iternative that best complete	es the statement or answers t	ne question.	
	e problem.				
145)	Ramon wants to fence in a revegetable garden. He plans maximum area he can encloup to 40.)	to use 40 feet of fence, an	nd needs fence on only thre	ee sides. Find the	
	A) 200 sq. ft.	B) 400 sq. ft.	C) 100 sq. ft.	D) 225 sq. ft.	
	Answer: A				
146)	The product of two consecu	itive positive even integer	es is 120. Find the integers		
. 10,	A) 59 and 61	B) 12 and 14	c) 10 and 12	D) 58 and 62	
	Answer: C				
147)	 147) The length of a rectangle is 4 yd more than twice the width x. The area is 390 yd². Find the dimensions of the given shape. A) 26 yd. by 15 yd. B) 6.5 yd. by 60 yd. C) 13 yd. by 30 yd. D) 13 yd. by 26 yd 				
	Answer: C				
1/10\	The sum of the squares of t	wo consecutive whole nu	mbers is 25 Find the num	hers	
140)	A) 11 and 12	B) 2 and 3	c) 3 and 4	D) 12 and 13	
	Answer: C	-,	-,	_,	
4.40	Th				
149)	The sum of an integer and i A) -6 and 36			D) 5 and 25	
	Answer: C	b) 23 and 30	c) 3 and -0	<i>b)</i> 3 and 23	
150)	An open box is formed from removing squares of side 4 carton is then 336 in ³ , what	in. from each corner and	folding up the sides. If the	volume of the	
	A) 11 in. by 16 in.	B) 15 in. by 20 in.	C) 19 in. by 24 in.	D) 7 in. by 12 in.	
	Answer: B	2, 10 m. 0, 20 m.	o, 12 m. o, 2 i m.	2, / III. 0y 12 III.	
151)	A sprinkler rotates 360° to	=	=	=	
	$2,200 \text{ yd}^2$, determine the ra	dius of the region (the rad	lius is length of the stream	of water). Round the	

B) 350 yd


c) 26 yd

D) 19 yd

answer to the nearest yard.

A) 6 yd

152) A patio is configured from a rectangle with two right triangles of equal size attached at the two ends. The length of the rectangle is 38 ft. The base of the right triangle is 4 ft less than the height of the triangle. If the total area of the patio is 1,232 ft², determine the base and height of the triangular porti

A) base =
$$21 \text{ ft}$$
; height = 25 ft

C) base =
$$15 \text{ ft}$$
; height = 19 ft

Answer: D

B) base = 19 ft; height = 23 ft

D) base =
$$18 \text{ ft}$$
; height = 22 ft

153) The length of a rectangle is 6 yd more than twice the width x. The area is 416 yd². Find the dimensions of the rectangle.

A) width =
$$32$$
 yd; length = 13 yd

C) width =
$$13$$
 yd; length = 32 yd

B) width =
$$26 \text{ yd}$$
; length = 16 yd

D) width =
$$16 \text{ yd}$$
; length = 26 yd

Answer: C

154) The height of a triangle is 4 ft less than the base x. The area is 126 ft². Find the dimensions of the triangle.

A) base =
$$18 \text{ ft}$$
; height = 14

B) base =
$$20 \text{ ft}$$
; height = 16

C) base =
$$18 \text{ ft}$$
; height = 22

D) base =
$$9 \text{ ft}$$
; height = 28

Answer: A

155) The width of a rectangular box is 4 in. The height is one-fifth the length x. The volume is 180 in². Find the length and the height of the box.

A) length =
$$4$$
 in.; height = 20 in.

B) length =
$$20$$
 in.; height = 4 in.

C) length =
$$15$$
 in.; height = 3 in.

D) length =
$$3$$
 in.; height = 15 in.

Answer: C

156) The length of the longer leg of a right triangle is 14 ft longer than the length of the shorter leg *x*. The hypotenuse is 6 ft longer than twice the length of the shorter leg. Find the dimensions of the triangle.

A) Short
$$leg = 11$$
, $long leg = 25$, hypotenuse = 28

B) Short
$$leg = 9$$
, $long leg = 23$, hypotenuse = 28

C) Short
$$leg = 9$$
, $long leg = 23$, hypotenuse = 24

D) Short
$$leg = 10$$
, $long leg = 24$, hypotenuse = 26

width. Round to the near A) length = 5.4; width C) length = 8.4; width Answer: C	rest tenth of a yard. = 8.4 yd	th is 3 yd longer than the wid B) length = 6.8; widt D) length = 9.8; widt	th = 9.8 yd
	Find the base and height $= 10.9 \text{ ft}$	ght of the triangle to the near B) base = 12 ft; heig D) base = 15.7 ft; heigh	est tenth of a foot. ht = 7 ft
given by	20 ($t = \text{seconds after}$		er second. Its height in fe D) 20 seconds
given by	0t + 20 ($t = seconds a$		er second. Its height in fe
$T(x) = 0.289x^2 - 1$	$5.202x + 83$ $0 \le x$ enheit and x is the num	nber of hours after 5 PM on I	
162) The temperature at a state $T(x) = 0.264x^2 - 4$		June can be approximated by $c \le 18$	the function

where T is degrees Fahrenheit and x is the number of hours after 5 PM on Friday.

What was the lowest temperature reached? Round to the nearest whole degree.

A) 66 degrees

B) 72 degrees

C) 60 degrees

D) 64 degrees

feε

fee

163)	The gas mileage for a cert speed of the vehicle in mp nearest mph. A) 23 mph and 47 mph C) 27 mph and 43 mph Answer: C	= =	=		
164)	The daily profit in dollars $P(x) = -45x^2 +$	made by an automobile $x = 2,430x - 15,000$	nanufacturer is		
	where <i>x</i> is the number of company to maximize its	= =	How many cars must	be produced per shift for the	
	A) 29	в) 32	c) 54	D) 27	
	Answer: D				
165)	The daily profit in dollars $P(x) = -40x^2 + 2.24$	•	nanufacturer is		
	where <i>x</i> is the number of of A) \$13,211 Answer: B	cars produced per shift. I B) \$14,360	Find the maximum p C) \$31,360	ossible daily profit. D) \$13,642	
166)	A bad punter on a football velocity of 89 ft/sec.	l team kicks a football ap	proximately straight	upward with an initial	
	a. If the ball leaves his foot from a height of 4 ft, write an equation for the vertical height s (in ft) of the ball t seconds after being kicked.				
	b. Find the time(s) at wh	ich the ball is at a height	of 102.2125 ft. Rou	nd to 1 decimal place.	
	A) $s = -9.8t^2 + 89t + 4$; 2			9t + 4; 1.5 sec and 4 sec	
	C) $s = -16t^2 + 89t + 4$; 1 Answer: C	.5 sec and 4 sec	D) $s = -16t^2 + 89$	2t + 4; 2.5 sec and 6.6 sec	
SHORT A	NSWER. Write the word or	phrase that best completes	each statement or ans	wers the question.	
Provide	the missing information.				
	A equation is	an equation that has one	or more radicals con	ntaining a variable.	
	Answer: radical				
168)	Given an equation of the f	Form $u^{m/n} = k$, raise both	sides to the p	bower to isolate u (that is, to	
	obtain u^1 on the left side).				
	Answer: $\frac{n}{m}$				

169) The equation $m^{2/3} + 10m^{1/3} + 9 = 0$ is said to be in form, because making the substitution u = results in a new equation that is quadratic.

Answer: quadratic; $m^{1/3}$

170) Consider the equation $(4x^2 + 1)^2 + 4(4x^2 + 1) + 4 = 0$. If the substitution u =_____is made, then the equation becomes $u^2 + 4u + 4 = 0$.

Answer: $4x^2 + 1$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation.

171)
$$x^2(x^2 + 31) = 180$$

A) $\{\pm 5i, \pm 6\}$

B) $\{\pm 5, \pm 6\}$

C) $\{\pm 5, \pm 6i\}$

D) $\{\pm\sqrt{5}, \pm 6i\}$

Answer: D

172)
$$2x(3x-1)(x+7)^2$$

A)
$$\left\{0, \frac{1}{3}, \pm 7\right\}$$

B) $\left\{ \frac{1}{3}, -7 \right\}$

c) $\left\{0, \frac{1}{3}, -7\right\}$

D) $\{0, 3, \pm 7\}$

Answer: C

173)
$$-5(w^2 - 7)(w^2 + 4)$$

A)
$$\{\pm\sqrt{7}\}$$

B)
$$\{0, \pm \sqrt{7}, \pm 2i\}$$

C)
$$\{\pm\sqrt{7}, \pm 2i\}$$

D)
$$\{0, \pm \sqrt{7}\}$$

Answer: C

174)
$$180x^3 + 36x^2 - 5x - 1 = 0$$

A)
$$\left\{\frac{1}{5}, \pm \frac{1}{6}i\right\}$$

$$\mathsf{B})\left\{-\frac{1}{5}\right\}$$

$$C) \left\{ -\frac{1}{5}, \pm \frac{1}{6} \right\}$$

D)
$$\{-5, \pm 6\}$$

Answer: C

175)
$$100x^3 + 25x^2 + 4x + 1 = 0$$

A)
$$\left\{-\frac{1}{4}, \pm \frac{1}{5}\right\}$$
 B) $\left\{-\frac{1}{4}, \pm \frac{1}{5}i\right\}$

$$\mathsf{B})\left\{-\frac{1}{4},\,\pm\frac{1}{5}i\right\}$$

C)
$$\{-4, \pm 5\}$$

D)
$$\left\{-\frac{1}{4}\right\}$$

Answer: B

176)
$$2n^2(n^2+6) = 54 + 9n^2$$

A)
$$\left\{ \frac{9}{2}, -6 \right\}$$

B)
$$\left\{\pm \frac{3\sqrt{2}}{2}, \pm i\sqrt{6}\right\}$$
 C) $\left\{\frac{3\sqrt{2}}{2}, i\sqrt{6}\right\}$

$$C) \left\{ \frac{3\sqrt{2}}{2}, i\sqrt{6} \right\}$$

D)
$$\left\{0, \pm i\sqrt{6}\right\}$$

Answer: B

177)
$$x^3 - 8 = x - 2$$

A)
$$\{2, 1 \pm \sqrt{3}\}$$

B)
$$\{2, -1 \pm i\sqrt{2}\}$$

c)
$$\{2, 1 \pm i\sqrt{3}\}$$

D)
$$\{2, -1 \pm \sqrt{2}\}$$

$$178) \frac{2z}{z-2} + \frac{3}{z-4} = 1$$

A)
$$\left\{ -\frac{1}{2} \pm \frac{\sqrt{57}}{2} i \right\}$$
 B) $\left\{ -\frac{1}{2} \pm \frac{\sqrt{57}}{2} \right\}$ C) $\left\{ \frac{1}{2} \pm \frac{\sqrt{57}}{2} i \right\}$ D) $\left\{ \frac{1}{2} \pm \frac{\sqrt{57}}{2} \right\}$

$$B) \left\{ -\frac{1}{2} \pm \frac{\sqrt{57}}{2} \right\}$$

$$\text{C) } \left\{ \frac{1}{2} \pm \frac{\sqrt{57}}{2} i \right\}$$

D)
$$\left\{ \frac{1}{2} \pm \frac{\sqrt{57}}{2} \right\}$$

Answer: B

$$179) \frac{5z}{z-5} + \frac{1}{z-4} = -1$$

A)
$$\left\{ \frac{7}{3} \pm \frac{\sqrt{106}}{6} \right\}$$

B)
$$\left\{ -\frac{7}{3} \pm \frac{\sqrt{106}}{6} \right\}$$

A)
$$\left\{ \frac{7}{3} \pm \frac{\sqrt{106}}{6} \right\}$$
 B) $\left\{ -\frac{7}{3} \pm \frac{\sqrt{106}}{6} \right\}$ C) $\left\{ -\frac{7}{3} \pm \frac{\sqrt{106}}{6} i \right\}$ D) $\left\{ \frac{7}{3} \pm \frac{\sqrt{106}}{6} i \right\}$

$$D) \left\{ \frac{7}{3} \pm \frac{\sqrt{106}}{6} i \right\}$$

Answer: A

180)
$$\frac{3}{x} + \frac{3}{x-4} = \frac{3x-9}{x-4}$$

A)
$$\left\{-\frac{5}{2}, \frac{1}{3}\right\}$$

Answer: B

181)
$$\frac{5}{v-4} - \frac{8}{v+1} = \frac{34}{v^2 - 3v - 4}$$

C)
$$\{1\}$$

Answer: C

182)
$$4x - 5 = \frac{3}{x}$$

A)
$$\left\{ \frac{5 \pm \sqrt{73}}{8} \right\}$$
 B) $\left\{ \frac{5 \pm \sqrt{73}}{4} \right\}$

$$B) \left\{ \frac{5 \pm \sqrt{73}}{4} \right\}$$

$$C) \left\{ \frac{5 \pm \sqrt{37}}{8} \right\}$$

$$D) \left\{ \frac{5 \pm \sqrt{37}}{4} \right\}$$

Answer: A

$$183) \frac{20}{c^2 - 2c} + 5 = \frac{10}{c - 2}$$

A)
$$\{\pm 2\}$$

Solve the problem.

184) Fernando's motorboat can travel 35 mi/h in still water. If the boat can travel 7 miles downstream in the same time it takes to travel 3 miles upstream, what is the rate of the river's current?

A) 9 mi/h

B) 4 mi/h

c) 14 mi/h

D) 35 mi/h

Answer: C

Solve the absolute value equation.

185) |6z - 3| = 7

A)
$$\left\{-\frac{2}{3}\right\}$$

B) $\left\{ \frac{5}{3}, -\frac{2}{3} \right\}$

c) {7, -6}

D) $\left\{ \frac{5}{3} \right\}$

Answer: B

186) |12x - 6| - 15 = -15

B) { }

C)
$$\left\{ \frac{1}{2}, -\frac{1}{2} \right\}$$

D) $\left\{\frac{1}{2}\right\}$

Answer: D

187) |b+4|-2=4

B) {-10, 6}

C) $\{-10, 2\}$

D) {6, 2}

Answer: C

188) 3 - |3w + 9| = 6

A) { }

B) $\{2, -2\}$

C) $\{-1\}$

D) {-1, -5}

Answer: A

189) - $\frac{17}{4} + \frac{2}{3}|3y - 9| = -4$

A)
$$\left\{ -3, \frac{4}{3} \right\}$$

B) $\left\{ \frac{23}{8}, \frac{25}{8} \right\}$

C) $\left\{ -\frac{1}{8}, \frac{1}{8} \right\}$

D) { }

Answer: B

190) |2v| = |-13 - 3v|

A)
$$\left\{-13, -\frac{13}{5}\right\}$$

B) $\left\{ \frac{5}{13}, 0 \right\}$

c) {-13}

D) {0, 16}

Answer: A

191) -2|x-4|+6=-8

B) {-6, 14}

c)
$$\{2, 6\}$$

D) $\{3, 5\}$

192)
$$|2r + 3| = |5r - 17|$$

A) $\left\{ \frac{20}{3} \right\}$

Answer: C

B)
$$\left\{-\frac{20}{3}, \frac{20}{3}\right\}$$

C)
$$\left\{ 2, \frac{20}{3} \right\}$$

D) Ø

Solve the equation.

193)
$$-3 + \sqrt{5x + 5} = 5$$

A) $\left\{ \frac{69}{5} \right\}$

$$B) \left\{ \frac{59}{5} \right\}$$

C)
$$\left\{ \frac{64}{5} \right\}$$

D)
$$\left\{-\frac{1}{5}\right\}$$

Answer: B

194)
$$\sqrt{m+55} + 1 = m$$

A) $\{-12, 9\}$

B) {-12}

c) 8

D) {9}

Answer: D

195)
$$6 + \sqrt[4]{m} = 8$$

A) $\{\pm 16\}$

B) {4}

c) {16}

D) $\{\pm 4\}$

Answer: C

196)
$$-15 = -11 + (q - 2)^{1/3}$$

A) $\{66\}$

B) {62}

c) {-62}

D) { }

Answer: C

197)
$$\sqrt[5]{10z + 2} = \sqrt[5]{7z + 11}$$

A) $\{0\}$

Answer: B

B) {3}

C) $\{6\}$

D) {-3}

198)
$$\sqrt{4x-5} + 1 = \sqrt{4x+5}$$

A) $\left\{ \frac{61}{16} \right\}$

Answer: D

B) $\left\{ \frac{101}{4} \right\}$

 $C) \left\{ \frac{141}{16} \right\}$

 $D) \left\{ \frac{101}{16} \right\}$

199)
$$5 - \sqrt{x + 10} = \sqrt{7 - x}$$

A) $\{6, -9\}$

B) {12, -18}

C) $\{6, -18\}$

D) {12, -9}

Answer: A

200)
$$\sqrt{11 - p} - \sqrt{2 + p} = -1$$

A) $\{7, 2\}$

B) {2}

c) $\{\pm 2\}$

D) {7}

201) $4d^{2/3} - 9d^{1/3} - 9 = 0$

A)
$$\left\{ \frac{27}{64}, 3 \right\}$$

B)
$$\left\{-\frac{27}{64}, 27\right\}$$

C)
$$\left\{ \frac{27}{64}, 27 \right\}$$

D)
$$\left\{ -\frac{3}{4}, 3 \right\}$$

Answer: B

202) $3(x-4)^{2/3} = 48$

Answer: A

203) $(2x + 4)^{3/2} = 64$

A)
$$\pm 16$$

D)
$$\pm 6$$

Answer: B

204) $\sqrt{-3+p} = 7 - \sqrt{32-p}$

D)
$$\{\pm 28\}$$

Answer: C

205) $6(x-1)^{6/7} = 12$

A)
$$\{1^{7/6} + 2\}$$

B)
$$\{2^{7/6}+1\}$$

C)
$$\{2^{6/7} + 1\}$$

D)
$$\{1^{6/7} + 2\}$$

Answer: B

206) $n^{4/5} = 3$

A)
$$\left\{\pm\frac{15}{4}\right\}$$

B)
$$\{\pm 3^{5/4}\}$$

C)
$$\left\{ \frac{15}{4} \right\}$$

Answer: D

 $207) 4p^{2/3} = \frac{1}{4}$

A)
$$\left\{\pm \frac{1}{64}\right\}$$

Answer: A

B)
$$\left\{\frac{1}{16}\right\}$$

C)
$$\left\{\pm \frac{1}{16}\right\}$$

D)
$$\left\{ \frac{1}{64} \right\}$$

Solve the problem.

208) The amount of time it takes an object dropped from an initial height of h_0 feet to reach a height of h feet is given by the formula

$$t = \sqrt{\frac{h_0 - h}{16}}$$

How long would it take an object to reach the ground from the top of a building that is 470 feet tall? to the nearest tenth of a second.

- A) 29.4 seconds
- B) 4 seconds
- c) 0.3 seconds
- D) 5.4 seconds

209) The amount of time it takes an object dropped from an initial height of h_0 feet to reach a height of hfeet is given by the formula

$$t = \sqrt{\frac{h_0 - h}{16}}$$

An object dropped from the top of the Sears Tower in Chicago takes 9.7 seconds to reach the ground the above equation to approximate the height of the Sears Tower to the nearest foot.

- A) 1.032 feet
- B) 1,219 feet
- c) 1,584 feet
- D) 1,505 feet

Answer: D

- 210) The yearly depreciation rate for a certain vehicle is modeled by $r = 1 \left(\frac{V}{C}\right)^{1/n}$, where V is the value of the car after *n* years, and *C* is the original cost.
 - a. Determine the depreciation rate for a car that originally cost \$18,000 and is worth \$11,000 after 3 yr. Round to the nearest tenth of a percent.
 - **b.** Determine the original cost of a truck that has a yearly depreciation rate of 14% and is worth \$12,000 after 5 yr. Round to the nearest \$100.
 - A) **a.** 15.1% per year; **b.** \$25,500

B) **a.** 77.2% per year; **b.** \$25,500

c) **a.** 77.2% per year; **b.** \$14,000

D) **a.** 15.1% per year; **b.** \$14,000

Answer: A

Solve the equation by using substitution.

211)
$$(t+3)^2 - (t+3) - 12 = 0$$

Answer: D

Answer: A

212)
$$3(t^2 - 9)^2 + 16(t^2 - 9) = -5$$

A)
$$\left\{\pm \frac{\sqrt{78}}{3}, \pm 2\right\}$$
 B) $\left\{\pm \frac{\sqrt{78}}{3}i, \pm i2\right\}$ C) $\left\{-\frac{1}{3}, -5\right\}$

$$B) \left\{ \pm \frac{\sqrt{78}}{3}i, \pm i2 \right\}$$

C)
$$\left\{-\frac{1}{3}, -5\right\}$$

D)
$$\left\{\pm \frac{1}{3}, \pm 5\right\}$$

Solve the equation.

213)
$$4z^4 + 68z^2 + 225 = 0$$

A)
$$\left\{ -\frac{5\sqrt{2}}{2}i, -\frac{3\sqrt{2}}{2}i, \frac{3\sqrt{2}}{2}i, \frac{5\sqrt{2}}{2}i \right\}$$

C) $\left\{ -\frac{25}{2}, -\frac{9}{2} \right\}$

B)
$$\left\{-\frac{5\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}, \frac{5\sqrt{2}}{2}\right\}$$

D)
$$\left\{ \frac{9}{2}, \frac{25}{2} \right\}$$

214)
$$30m^2 = 216 - m^4$$

A)
$$\{-6i, -i\sqrt{6}, i\sqrt{6}, 6i\}$$

C)
$$\{-\sqrt{6}, \sqrt{6}, -6i, 6i\}$$

B)
$$\{-6, -\sqrt{6}, \sqrt{6}, 6\}$$

D)
$$\{-6, 6, -i\sqrt{6}, i\sqrt{6}\}$$

Answer: C

215)
$$2a^4 + 1 = 7a^2$$

A)
$$\left\{ -\frac{\sqrt{7 + \sqrt{41}}}{2}, -\frac{\sqrt{7 - \sqrt{41}}}{2}, \frac{\sqrt{7 - \sqrt{41}}}{2}, \frac{\sqrt{7 + \sqrt{41}}}{2} \right\}$$
B)
$$\left\{ -\frac{7 - \sqrt{41}}{4}, \frac{-7 + \sqrt{41}}{4} \right\}$$
C)
$$\left\{ -\frac{7 - \sqrt{41}}{4}, \frac{7 + \sqrt{41}}{4} \right\}$$
D)
$$\left\{ -\frac{\sqrt{7 + \sqrt{41}}}{2}i, -\frac{\sqrt{7 - \sqrt{41}}}{2}i, \frac{\sqrt{7 - \sqrt{41}}}{2}i, \frac{\sqrt{7 + \sqrt{41}}}{2}i \right\}$$

Answer: A

216) $9 + 24u^{-2} = 58u^{-1}$

A)
$$\left\{ \frac{33}{58} \right\}$$

$$\mathsf{B}\mathsf{)}\left\{\frac{4}{9},\,6\right\}$$

C)
$$\left\{-\frac{9}{10}\right\}$$

D)
$$\left\{ -6, -\frac{4}{9} \right\}$$

Answer: B

Solve the equation by using substitution.

217)
$$z^{2/3} + 2z^{1/3} - 15 = 0$$

Answer: D

218)
$$(4y + 7)^2 = 4(4y + 7) + 6$$

A)
$$\{2 + \sqrt{10}, 2 - \sqrt{10}\}$$

C)
$$\left\{ \frac{5}{4} + \frac{\sqrt{10}}{4}, \frac{5}{4} - \frac{\sqrt{10}}{4} \right\}$$

Answer: D

B)
$$\{-2 + \sqrt{10}, -2 - \sqrt{10}\}$$

D)
$$\left\{-\frac{5}{4} + \frac{\sqrt{10}}{4}, -\frac{5}{4} - \frac{\sqrt{10}}{4}\right\}$$

Solve and express your solution in simplified form.

219)
$$x^4 - 3x^2 + 2 = 0$$

A)
$$\{1, \sqrt{2}\}$$

B)
$$\{\pm 1, \pm 2\}$$

C)
$$\{\pm 1, \pm \sqrt{2}\}$$

220)
$$x^4 - 13x^2 - 48 = 0$$

B)
$$\{16, 3i\}$$

C)
$$\{\pm 4, \pm \sqrt{3}\}$$

D)
$$\{\pm 4, \pm i\sqrt{3}\}$$

Answer: D

Solve the equation.

221)
$$\left[2 + \frac{9}{y}\right]^2 + 4\left[2 + \frac{9}{y}\right] = -3$$

A) $\left\{-\frac{9}{4}, \frac{5}{4}\right\}$

C)
$$\left\{ -\frac{9}{5}, -3 \right\}$$

Answer: C

Make an appropriate substitution and solve the equation.

222)
$$(3x + 7)^2 + 2(3x + 7) - 15 = 0$$

A)
$$\left\{-\frac{2}{3}, -\frac{10}{3}\right\}$$
 B) $\left\{-4, -\frac{10}{3}\right\}$ C) $\left\{-4, -\frac{4}{3}\right\}$

B)
$$\left\{-4, -\frac{10}{3}\right\}$$

C)
$$\left\{-4, -\frac{4}{3}\right\}$$

D)
$$\left\{-\frac{2}{3}, -\frac{4}{3}\right\}$$

Answer: C

223)
$$(x^2 + 4x)^2 - 17(x^2 + 4x) = -60$$

C)
$$\{-5, -6, 2, 1\}$$

Answer: C

$$224) - \frac{5}{a^2} + \frac{6}{a} + 1 = 0$$

A)
$$\{-3 + \sqrt{14}, -3 - \sqrt{14}\}$$

C)
$$\{3 + \sqrt{14}, 3 - \sqrt{14}\}$$

B)
$$\left\{ \frac{-3 + \sqrt{14}}{5}, \frac{-3 - \sqrt{14}}{5} \right\}$$

D)
$$\left\{ \frac{3 + \sqrt{14}}{5}, \frac{3 - \sqrt{14}}{5} \right\}$$

Answer: A

225)
$$\frac{3}{(n+4)^2} - \frac{1}{n+4} = 4$$

A)
$$\left\{-5, -\frac{13}{4}\right\}$$
 B) $\left\{-1, \frac{4}{3}\right\}$

B)
$$\left\{-1, \frac{4}{3}\right\}$$

C)
$$\left\{-5, \frac{4}{3}\right\}$$

D)
$$\left\{-1, \frac{19}{3}\right\}$$

Answer: A

226)
$$\left[m - \frac{12}{m}\right]^2 - 10 \left[m - \frac{12}{m}\right] - 11 = 0$$

A) $\{-4, -1, 3, 12\}$ B) $\{-1, 11\}$

227)
$$n^{1/2} + 3n^{1/4} - 40 = 0$$

Answer: A

228)
$$400x^{-4} - 41x^{-2} + 1 = 0$$

B)
$$\left\{ \frac{1}{5}, \frac{1}{4} \right\}$$

D)
$$\left\{-\frac{1}{4}, -\frac{1}{5}, \frac{1}{5}, \frac{1}{4}\right\}$$

Answer: A

229)
$$9t - 16\sqrt{t} = 0$$
A) $\left\{0, \frac{4}{3}\right\}$

Answer: B

B)
$$\left\{0, \frac{256}{81}\right\}$$

C)
$$\left\{0, \frac{3}{4}\right\}$$

D)
$$\left\{0, \frac{81}{256}\right\}$$

Solve the equation for the indicated variable.

230) Solve for
$$p$$
: $h = \sqrt{2pq}$

$$A) p = \frac{h^2}{2q}$$

$$B) p = \frac{h^2}{4q^2}$$

$$c) p = \frac{h^2 q^2}{4}$$

$$D) p = \frac{h^2q}{2}$$

Answer: A

231) Solve for *n*:
$$M = \frac{Gp_1p_2}{n^2}$$

$$A) n = \frac{\pm \sqrt{Gp_1p_2}}{M}$$

B)
$$n=\pm\sqrt{M+Gp_1p_2}$$

C)
$$n = \pm \sqrt{M - Gp_1p_2}$$

D)
$$n = \frac{\pm \sqrt{Gp_1p_2M}}{M}$$

Answer: D

232) Solve for
$$p$$
: $T = 2\pi \sqrt{\frac{p}{n}}$

$$A) p = n(T - 2\pi)^2$$

$$p = \frac{T^2}{4\pi^2} + n$$

A)
$$p = n(T - 2\pi)^2$$
 B) $p = \frac{T^2}{4\pi^2} + n$ C) $p = n\left(\frac{T}{2\pi}\right)^2$ D) $p = \left(\frac{nT}{2\pi}\right)^2$

D)
$$p = \left(\frac{nT}{2\pi}\right)^2$$

233) Solve for *x*:
$$25 + \sqrt{x^2 - y^2} = z$$

A)
$$x = z^2 + y^2 - 50z + 625$$

C)
$$x = \sqrt{z - y^2 - 5}$$

B)
$$x = \pm \sqrt{z + y^2 - 5}$$

D) $x = \pm \sqrt{(z - 25)^2 + y^2}$

Answer: D

234) Solve for
$$K_2$$
: $\frac{R_1 Z_1}{K_1} = \frac{R_2 Z_2}{K_2}$

A)
$$K_2 = \frac{R_2 Z_2 K_1}{R_1 Z_1}$$

B)
$$K_2 = \frac{R_2 Z_2 R_1 Z_1}{K_1}$$

c)
$$K_2 = \frac{R_1 Z_1}{R_2 Z_2 K_1}$$

A)
$$K_2 = \frac{R_2 Z_2 K_1}{R_1 Z_1}$$
 B) $K_2 = \frac{R_2 Z_2 R_1 Z_1}{K_1}$ C) $K_2 = \frac{R_1 Z_1}{R_2 Z_2 K_1}$ D) $K_2 = \frac{K_1}{R_2 Z_2 R_1 Z_1}$

Answer: A

Solve the equation.

235)
$$\sqrt{x + \sqrt{x + 2}} = 4$$

Answer: A

A)
$$\left\{ \frac{33 - \sqrt{73}}{2} \right\}$$
 B) $\left\{ \frac{33 + \sqrt{73}}{2} \right\}$ C) $\left\{ \frac{33 \pm \sqrt{73}}{2} \right\}$

B)
$$\left\{ \frac{33 + \sqrt{73}}{2} \right\}$$

$$C) \left\{ \frac{33 \pm \sqrt{73}}{2} \right\}$$

Solve the problem.

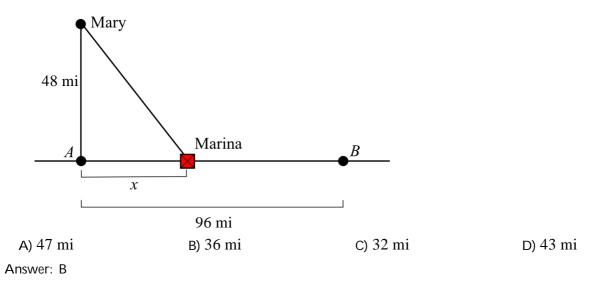
236) The equation $r = \sqrt[3]{\frac{3V}{4\pi}}$ gives the radius r of a sphere of volume V. If the radius of a sphere is 6 in.,

find the exact volume.

A)
$$96\pi$$
 in.³

B)
$$288\pi \text{ in.}^{3}$$

B)
$$288\pi \text{ in.}^3$$
 C) $144\pi \text{ in.}^3$


D)
$$\sqrt[3]{\frac{9}{2\pi}} \text{ in.}^3$$

Answer: B

237) The distance d (in miles) that an observer can see on a clear day is approximated by $d = \frac{49}{40} \sqrt{h}$,

where h is the height of the observer in feet. It Rita can see 24.5 mi, how far above ground is her eye level?

238) Mary is in a boat in the ocean 48 mi from point *A*, the closest point along a straight shoreline. She needs to dock the boat at a marina *x* miles farther up the coast, and then drive along the coast to point B, 96 mi from point A. Her boat travels 10 mph, and she drives 60 mph. If the total trip took 7 hr, determine the distance *x* along the shoreline.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide the missing information.

239) If a compound inequality consists of two inequalities joined by the word "and," the solution set is the of the solution sets of the individual inequalities.

Answer: intersection

Answer: a < x < b

- 240) The compound inequality a < x and x < b can be written as the three-part inequality ______.
- 241) If a compound inequality consists of two inequalities joined by the word "or," the solution set is the of the solution sets of the individual inequalities.

Answer: union

242) If k is a positive real number, then the inequality |x| < k is equivalent to _____ < x < ____.

Answer: -k; k

243) If k is a positive real number, then the inequality |x| > k is equivalent to $x < \underline{\hspace{1cm}}$ or $x \underline{\hspace{1cm}} k$.

Answer: -k; >

244) If k is a positive real number, then the solution set to the inequality |x| > -k is ______.

Answer: R

245) If k is a positive real number, then the solution set to the inequality |x| < -k is

Answer: { }

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the inequality. Write the solution set in interval notation.

246) $9(x - 3) - 8x \ge -3$

A)
$$(24, \infty)$$

B)
$$[0, \infty)$$

c)
$$[24, \infty)$$

D)
$$(-\infty, 24]$$

Answer: C

247) -2(7y - 7) + y > 2y - (-5 + y)

A)
$$\left[-\infty, \frac{9}{14}\right]$$
 B) $\left[\frac{9}{14}, \infty\right]$

B)
$$\left[\frac{9}{14}, \infty\right]$$

$$C)\left[\frac{2}{7},\infty\right]$$

$$D) \left[-\infty, \frac{9}{14} \right]$$

Answer: A

Solve the inequality. Write the solution set in interval notation using fractions.

248) $0.21n - 3 \le -0.1(-10 - n)$

A)
$$\left[-\infty, \frac{97}{9}\right]$$

$$\mathsf{B})\left[-\infty,\frac{400}{11}\right]$$

C)
$$\left[\frac{97}{9}, \infty\right]$$

$$D)\left[-\infty, \frac{400}{11}\right]$$

Answer: B

Solve the inequality. Write the solution set in interval notation.

249) -1 - 2(2x + 1) < x - (-1 - x)

A)
$$\left[-\infty, -\frac{2}{3}\right]$$

B)
$$\left[-\frac{2}{3},\infty\right]$$

$$C)\left[-\frac{2}{3},\infty\right]$$

D) $(-\infty, -1)$

Answer: C

250) $\frac{4}{5}y - \frac{1}{6} \ge y + \frac{2}{5}$

A)
$$\left[-\infty, -\frac{17}{6}\right]$$

B)
$$\left[-\infty, \frac{1}{2}\right]$$

C)
$$\left[\frac{17}{6}, \infty\right]$$

D)
$$\left[-\infty, -\frac{1}{2}\right]$$

Answer: A

251) $-2(4y - 7) + y \ge 2y - (-8 + y)$

A)
$$\left[\frac{3}{4},\infty\right]$$

B)
$$\left[-\infty, \frac{3}{4}\right]$$

C)
$$\left[-\frac{1}{4},\infty\right]$$

D)
$$\left[-\infty, \frac{3}{4}\right]$$

Answer: D

252) $0.31 \ge 0.04a + 0.07$

A)
$$[6, \infty)$$

C)
$$[0.6, \infty)$$

D)
$$(-\infty, 0.6]$$

Answer: B

253)
$$\frac{1}{2}(x-2) - \frac{3}{4}(x-2) \ge \frac{1}{5}x + 1$$

A)
$$\left[-\frac{10}{9},\infty\right]$$

A)
$$\left[-\frac{10}{9}, \infty\right]$$
 B) $\left[-\infty, -\frac{10}{9}\right]$

C)
$$\left[-\infty, \frac{2}{3}\right]$$

D)
$$\left[\frac{2}{3}, \infty\right]$$

254)
$$7 - 5[1 - 2(x - 1)] \ge 5\{1 - [2 - (x + 1)]\}$$

A)
$$\left[\frac{8}{5}, \infty\right]$$

B)
$$\left[-\infty, \frac{2}{7}\right]$$

C)
$$\left[\frac{2}{7}, \infty\right]$$

D)
$$\left[-\infty, -\frac{8}{5}\right]$$

Answer: A

255)
$$20 > 3x$$
 and $11 + 2x \ge 2$

$$A)\left[-\frac{20}{3},\frac{9}{2}\right]$$

A)
$$\left[-\frac{20}{3}, \frac{9}{2}\right]$$
 B) $\left[-\infty, -\frac{9}{2}\right] \cup \left[\frac{20}{3}, \infty\right]$ C) $\left[-\frac{9}{2}, \frac{20}{3}\right]$

$$C) \left[-\frac{9}{2}, \frac{20}{3} \right]$$

Answer: C

256)
$$\frac{9}{8}$$
 - 5y < $\frac{5}{4}$ and $\frac{4}{7}$ y + 1 < $\frac{9}{14}$

A)
$$\left(-\infty,\infty\right)$$

C)
$$\left[-\frac{5}{8}, -\frac{1}{40} \right]$$

D)
$$\left[-\infty, -\frac{5}{8}\right]$$

Answer: B

257)
$$-2 < -2y + 11 < 6$$

$$A)\left[\frac{5}{2},\frac{13}{2}\right]$$

$$B)\left[\frac{5}{2},\frac{13}{2}\right]$$

$$C)\left[\frac{13}{2},6\right]$$

$$D)\left[\frac{13}{2},\frac{5}{2}\right]$$

Solve the compound inequality. Write the answer in interval notation.

258)
$$4x \le 12$$
 or $9 - x < 0$

Answer: A

B)
$$(-\infty, 9)$$

C)
$$(-\infty, \infty)$$

D)
$$(-\infty, 3] \cup (9, \infty)$$

Answer: D

259)
$$2x \le 4$$
 or $14 - x < 8$

B)
$$(-\infty, 2] \cup (6, \infty)$$

C)
$$(-\infty, \infty)$$

Answer: B

260)
$$23 < 3x$$
 or $-8 + 2x \le -15$
A) $\left[-\frac{7}{2}, \frac{23}{2} \right]$

C)
$$(-\infty, \infty)$$

B)
$$\left[-\frac{23}{3}, \frac{7}{2}\right]$$

D) $\left[-\infty, -\frac{7}{2}\right] \cup \left[\frac{23}{3}, \infty\right]$

Answer: D

Solve the compound inequality. Graph the solution set, and write the solution set in interval notation.

- 261) $-8 < -5x + 2 \le 22$
 - A) [-2, 4)
 - -11-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10 11
 - B) (-4, 2]
 - -11-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10 11
 - c) [-4, 2)
 - D) (-2, 4]
 - c1
 -11
 -10
 -9
 -8
 -7
 -6
 -5
 -4
 -3
 -2
 -1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

$$262) -1 \le \frac{2x+3}{3} < 4$$

A)
$$\left(-\infty, -3\right] \cup \left(\frac{9}{2}, \infty\right)$$

-11-10-9-8-7-6-5-4-3-2-1-0-1-2-3-4-5-6-7-8-9-10-11

B)
$$\left(-\infty, -3\right) \cup \left[\frac{9}{2}, \infty\right]$$

-11-10-9-8-7-6-5-4-3-2-1-0-11-2-3-4-5-6-7-8-9-10-11

$$C)\left[-3,\frac{9}{2}\right]$$

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

$$D)\left[-3,\frac{9}{2}\right]$$

-11-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10 11

Answer: C

Solve the absolute value inequality. Write the solution in interval notation.

263) |y| > 13

A) (-13, 13)

B) (13, ∞)

C) $(-\infty, -13) \cup (13, \infty)$

D) $(-\infty, -13)$

Answer: C

264) |x+6| < 15

A) (-9, 21)

B) (-9, 9)

(-21, 9)

D) $(-\infty, -21) \cup (9, \infty)$

265)
$$24 \le 2 + \left| -15t + 1 \right|$$

A)
$$\left[-\frac{21}{15}, \frac{23}{15} \right]$$

$$C)\left[-\infty, -\frac{21}{15}\right] \cup \left[\frac{23}{15}, \infty\right]$$

D) { }

Answer: C

266)
$$|2b - 23| > -15$$

C)
$$(-\infty, 4] \cup [19, \infty)$$

D) $(-\infty, \infty)$

Answer: D

267)
$$3|x - 9| + 9 < 15$$

C)
$$(-\infty, 7) \cup (11, \infty)$$

D)
$$(-\infty, 1) \cup (17, \infty)$$

Answer: B

268)
$$3|x - 5| + 12 \ge 15$$

B)
$$(-\infty, -4] \cup [14, \infty)$$

C)
$$(-\infty, 4] \cup [6, \infty)$$

Answer: C

$$269) \left| \frac{m-12}{4} \right| < 19$$

A)
$$(-\infty, -16) \cup (22, \infty)$$

Answer: C

270)
$$|2x + 7| + 7 > 6$$

Answer: C

A)
$$(-\infty, -4) \cup (-3, \infty)$$
 B) $(-4, -3)$

C)
$$(-\infty, \infty)$$

Solve the problem.

271) In order to ride certain amusement park rides, riders must be at least 46" tall, but no more than 79" tall. Let h represent the height of a prospective rider. Write an inequality that represents the allowable heights.

A)
$$h \le 79$$
 and $h \ge 46$

B)
$$h \le 46$$
 or $h \ge 79$
D) $h \le 46$ and $h \ge 79$

C)
$$h \le 79$$
 or $h \ge 46$

D)
$$h < 46$$
 and $h > 79$

Answer: A

272) A skydiving company insists that its customers weigh at least 130 pounds, but no more than 280 pounds, including parachute and other gear. If the total weight of all gear is 25 pounds, write and solve a compound inequality that represents the weight range without gear that is acceptable.

A)
$$155 \le w \le 255$$

B)
$$105 \le w \le 305$$

C)
$$105 \le w \le 255$$

D)
$$155 < w < 305$$

- 273) Sparky has scores of 71, 60, and 69 on his first three Sociology tests. If he needs to keep an average of 70 to stay eligible for lacrosse, what scores on the fourth exam will accomplish this?
 - A) He must score more than 84

B) He must score 84 or higher.

C) He must score 80 or higher.

D) He must score more than 80

Answer: C

Write the requested inequality.

274) The cost for a long-distance telephone call is \$0.35 for the first minute and \$0.10 for each additional minute or a portion thereof. The total cost of the call cannot exceed \$3. Write an inequality representing the number of minutes m, a person could talk without exceeding \$3.

A) $m \le 27$

B) $m \le 28$

c) m < 29

D) $m \le 26$

Answer: A

Solve the problem.

275) The width of a rectangle is fixed at 30 cm, and the perimeter can be no greater than 170 cm. Find the maximum length of the rectangle.

A) 140 cm

B) 110 cm

c) 70 cm

D) 55 cm

Answer: D

276) Pressure-treated wooden studs can be purchased for \$4.88 each. How many studs can be bought if a project's budget allots no more than \$200 for studs?

A) 43 studs

B) 42 studs

c) 41 studs

D) 40 studs

Answer: D

277) Rita earns scores of 75, 82, 69, 82, and 67 on her five chapter tests for a certain class and a grade of 68 on the class project. The overall average for the course is computed as follows: the average of the five chapter tests makes up 55% of the course grade; the project accounts for 10% of the grade; and the final exam accounts for 35%. What scores can Rita earn on the final exam to earn a "B" in the course if the cut-off for a "B" is an overall score greater than or equal to 80, but less than 90? Assume that 100 is the highest score that can be earned on the final exam and that only whole-number scores are given.

A) 96 through 119 inclusive

B) 92 through 100 inclusive

C) 96 through 100 inclusive

D) 92 through 119 inclusive

Answer: B

Write an absolute value inequality equivalent to the expression.

278) "All real numbers whose distance from 0 is more than 82."

A) $|x - 82| \ge 0$

B) |x - 82| > 0

c) $|x| \ge 82$

D) |x| > 82

Answer: D

279) "All real numbers whose distance from 13 is at most 5"

A) $|y - 13| \le 5$

B) |y - 13| > 5

C) $|y - 5| \le 13$ D) |y - 13| < 5

280) The results of a political poll indicate that the leading candidate will receive 52% of the votes with a margin of error of no more than 5%. Let x represent the true percentage of votes received by this candidate. Write an absolute value inequality that represents an interval in which to estimate x.

A)
$$|x - 52| \ge 0.05$$

B)
$$|x - 0.05| \ge 52$$

C)
$$|x - 0.05| \le 52$$

D)
$$|x - 52| \le 0.05$$

Answer: D

Determine the set of values of x for which the radical expression would produce a real number.

281)
$$\sqrt{15 - x}$$

A)
$$\{x \mid x \le 15\}$$

C)
$$\{x \mid x > 15\}$$

D)
$$\{x \mid x \ge 15\}$$

Answer: A

282)
$$\sqrt[3]{x+15}$$

A) all real numbers

B)
$$\{x \mid x \ge -15\}$$

C)
$$\{x \mid x > -15\}$$

D)
$$\{x \mid x > 15\}$$

Answer: A

In Calculus you will see the symbol y'. Treat y' as a variable and solve the equation for y'.

$$283) \frac{6x}{23} + \frac{6y}{7}y' = 0$$

A)
$$y' = \frac{42x}{23y}$$

A)
$$y' = \frac{42x}{23y}$$
 B) $y' = -\frac{42x}{23y}$

C)
$$y' = -\frac{7x}{23y}$$

D)
$$y' = \frac{7x}{23y}$$

Answer: C

284)
$$3xy^3 + 5x^2y^2y' - y' = 1$$

A)
$$y' = \frac{1 - 3xy^3}{5x^2y^2 - 1}$$
 B) $y' = \frac{1 - 3y}{5x - 1}$ C) $y' = \frac{1 - 3xy^3}{5x^2y^2}$ D) $y' = \frac{3y}{5x}$

B)
$$y' = \frac{1 - 3y}{5x - 1}$$

C)
$$y' = \frac{1 - 3xy^3}{5x^2y^2}$$

$$D) \quad y' = \frac{3y}{5x}$$

Answer: A

285)
$$6y^2y' + 30xy + 6x^2y' = 5y^2 + 25xyy'$$

A)
$$y' = \frac{5y(y - 6x)}{6x^2 - 25xy + 6y^2}$$

C)
$$y' = \frac{y - 6x}{6x^2 - 5x + 6y}$$

B)
$$y' = \frac{y(y - 6x)}{6x^2 - 5xy + 6y^2}$$

D)
$$y' = \frac{5y(y-x)}{x^2 - 25xy + y^2}$$

Answer: A

286)
$$-5(x + y)^2 - 5(x + y)^2y' + 5y^2y' = -5x^2$$

A)
$$-\frac{y(2x+y)}{x(2y+x)}$$
 B) $\frac{x^2+y^2}{(x+y)^2}$

B)
$$\frac{x^2 + y^2}{(x+y)^2}$$

$$C) \frac{x(2x+y)}{y(2y+x)}$$

D)
$$\frac{x^2 - y^2}{(x+y)^2}$$

Simplify the expression. Do not rationalize the denominator.

287)
$$2x\sqrt{3x-4} + x^2 \left(\frac{1}{4}\right) \frac{1}{\sqrt{3x-4}} (4)$$

A)
$$\frac{7x^2 - 8}{\sqrt{3x - 4}}$$

B)
$$\frac{x(7x-4)}{\sqrt{3x-4}}$$

A)
$$\frac{7x^2 - 8}{\sqrt{3x - 4}}$$
 B) $\frac{x(7x - 4)}{\sqrt{3x - 4}}$ C) $\frac{x(7x - 8)}{\sqrt{3x - 4}}$

D)
$$\frac{7x^2 - 4}{\sqrt{3x - 4}}$$

Answer: C

288)
$$\frac{(1)(x^2 - 8)^{1/2} - x \left[\frac{1}{3}\right](x^2 - 8)^{-1/2} (3x)}{\left[(x^2 - 8)^{1/2}\right]^2}$$

A)
$$\frac{1-x^2}{(x^2-8)^{5/2}}$$

B)
$$\frac{1-x^2}{(x^2-8)^{3/2}}$$

C)
$$-\frac{8}{(x^2-8)^{5/2}}$$

A)
$$\frac{1-x^2}{(x^2-8)^{5/2}}$$
 B) $\frac{1-x^2}{(x^2-8)^{3/2}}$ C) $-\frac{8}{(x^2-8)^{5/2}}$ D) $-\frac{8}{(x^2-8)^{3/2}}$

Answer: D

289)
$$\frac{-10x(8x+1) - (-5x^2)(8)}{(8x+1)^2}$$

A)
$$-\frac{10x(4x-1)}{(8x+1)^2}$$
 B) $\frac{40x^2}{(8x+1)^2}$

B)
$$\frac{40x^2}{(8x+1)^2}$$

C) -
$$\frac{40x^2}{(8x+1)^2}$$

C)
$$-\frac{40x^2}{(8x+1)^2}$$
 D) $-\frac{10x(4x+1)}{(8x+1)^2}$

Answer: D

290)
$$\sqrt{16-x^2} - x \left(\frac{1}{2}\right) \frac{1}{\sqrt{16-x^2}} (2x)$$

A)
$$\frac{x^2 - 8}{\sqrt{16 - x^2}}$$
 B) $\frac{2(x^2 - 6)}{\sqrt{16 - x^2}}$

B)
$$\frac{2(x^2 - 6)}{\sqrt{16 - x^2}}$$

C)
$$\frac{8 - x^2}{\sqrt{16 - x^2}}$$

D)
$$\frac{2(8-x^2)}{\sqrt{16-x^2}}$$

Answer: D

Find the values of x for which the expression equals zero.

291)
$$\frac{-8x(7x+1)-(-4x^2)(7)}{(7x+1)^2}$$

A)
$$\left\{0, -\frac{1}{7}\right\}$$
 B) $\left\{0, \frac{2}{7}\right\}$

B)
$$\left\{0, \frac{2}{7}\right\}$$

D)
$$\left\{0, -\frac{2}{7}\right\}$$

292)
$$\sqrt{4-x^2} - x \left(\frac{1}{2}\right) \frac{1}{\sqrt{4-x^2}} (2x)$$
A) $\{\pm\sqrt{2}\}$
B) $\{\sqrt{2}, 2\}$
C) $\{\pm2\}$
D) $\{\pm\sqrt{2}, \pm2\}$
Answer: A

Some applications of calculus use a mathematical structure called a power series. To find the interval of convergence of a power series, it is often necessary to solve an absolute value inequality. Solve the absolute value inequality below to find the interval of convergence

293)
$$\left| \frac{x+1}{4} \right| < 1$$
A) [0, 3]
B) (-5, 3)
C) [-5, 3]
D) (0, 3)
Answer: B

Solve the problem.

294) A 6-ft person walks away from a lamppost. At the instant the person is 14 ft away from the lamppost, the person's shadow is 10 ft long. Find the height of the lamppost

Answer: D

295) A water trough has a cross section in the shape of an equilateral triangle with sides of length 1 m.

The length is 4 m. Determine the volume of water when the water level is $\frac{3}{4}$ m.

A)
$$\frac{3}{8}\sqrt{2} \text{ m}^2$$

B)
$$\frac{3}{8}\sqrt{3} \text{ m}^2$$
 C) $\frac{3}{4}\sqrt{3} \text{ m}^2$ D) $\frac{3}{4}\sqrt{2} \text{ m}^2$

c)
$$\frac{3}{4}\sqrt{3} \text{ m}^2$$

D)
$$\frac{3}{4}\sqrt{2} \text{ m}^2$$

Answer: C

296) A contractor builds a swimming pool with cross section in the shape of a trapezoid. The deep end is 9 ft deep and the shallow end is 3 ft deep. The length of the pool is 60 ft and the width is 25 ft. As the pool is being filled, find the volume of water when the depth is 4 ft.

c)
$$1,620 \text{ ft}^3$$

D)
$$2,000 \text{ ft}^3$$