https://selldocx.com/products

#est-bank-conection-1e-goshaw

Name____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

State whether the following represents a function.

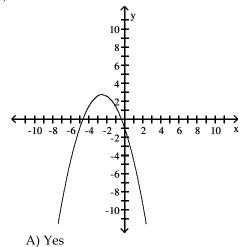
1) Set A: students attending Laughlin Community College Set B: social security number of the student

1) _____

A) Yes

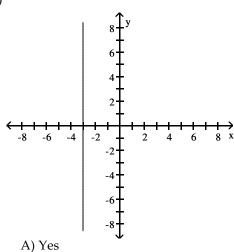
B) No

2) $y = x^3 - 2x + 4$ A) Yes


B) No

State whether the graph represents a function.

3)


3)

B) No

4)

4)

B) No

Evaluate the function at the indicated value.

5)
$$f(x) = -7x^2 + 6x + 9$$
; $f(3)$

A) -36

C) 6

5) _____

6)
$$f(x) = x^2 - 4x + 6$$
; $f(a + h)$

A) $a^2 + 2ah + h^2 - 4a - 4h + 6$

B)
$$a^2 + h^2 - 4a + h + 6$$

C)
$$a^2 + h^2 - 4a - 4h + 6$$

D)
$$a^2 + 2ah + h^2 - 4a + 6$$

Simplify the difference quotient for the given function.

7)
$$f(x) = -3x + 6 + x^2$$

A) $-3 + a^2 + 2a + h$

B)
$$-3 + 2a + h$$

C)
$$-3a + 2ah + h$$

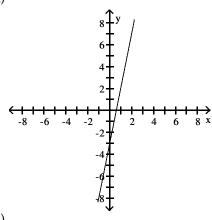
D)
$$-3a + h + 6$$

8)
$$f(x) = 8x^3$$

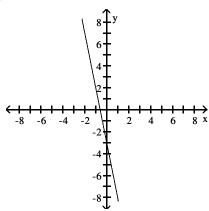
A) $24a^2 + 24ah + 8h$

B)
$$24a^2 + 24ah + 8h^2$$

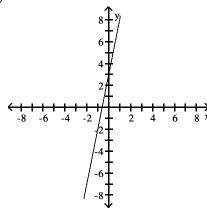
C) 24a²

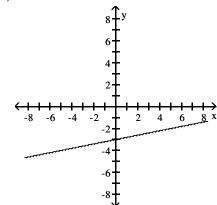

D)
$$24a^2 + h$$

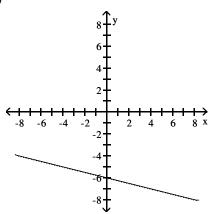
Choose the graph that matches the equation.


9)
$$y = 5x - 3$$

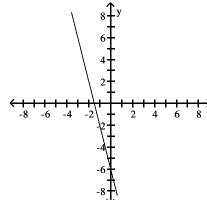
A)




B)

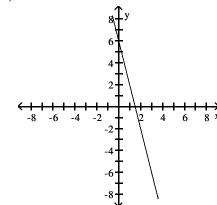


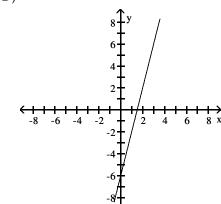
D)

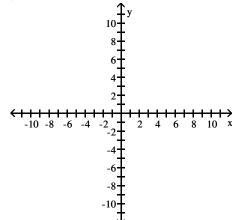


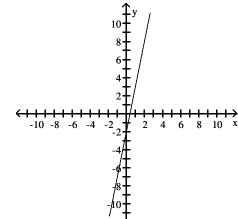
10)
$$y = -4x - 6$$

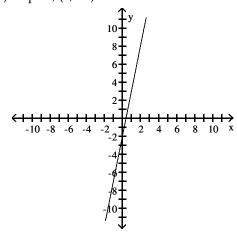
A)

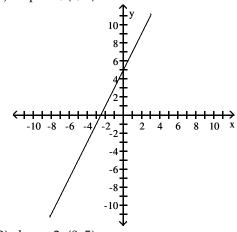


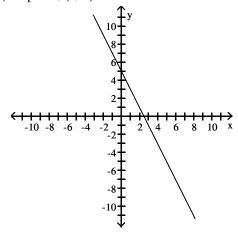



C)

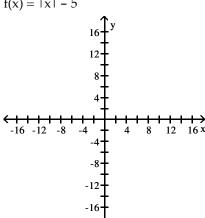

D)

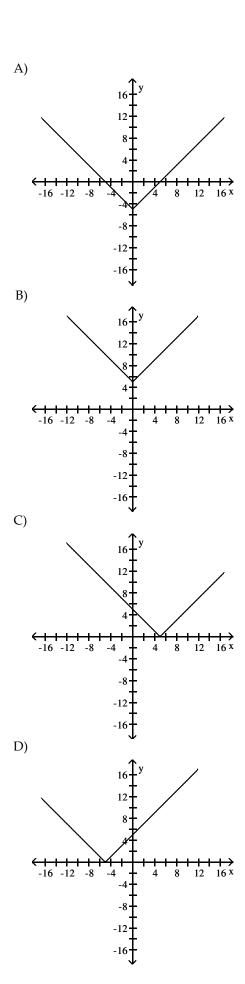


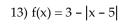

A) slope 5; (0, -2)

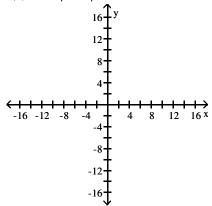

B) slope 2; (0, -5)

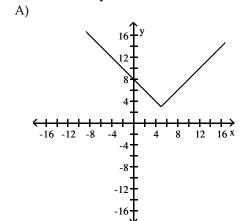
C) slope -2; (0, 5)

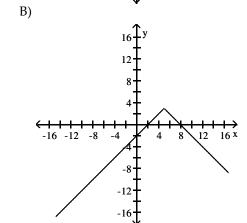


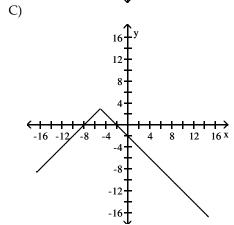

D) slope **-**2; (0, 5)

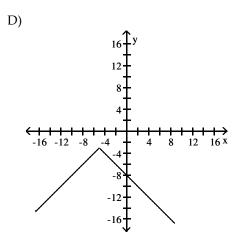


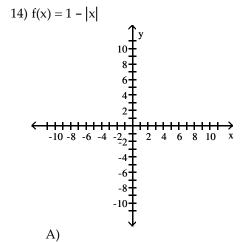

Graph the function.

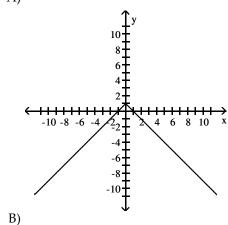

12)
$$f(x) = |x| - 5$$

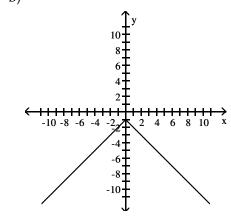


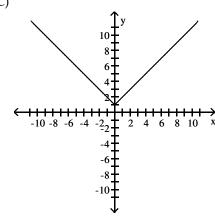


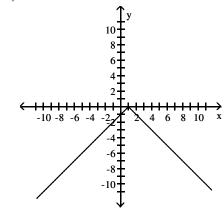












D)

Find the domain and range of the function.

15)
$$f(x) = |x + 4| + 2$$

- A) domain: reals; range: $y \ge 2$
- C) domain: reals; range: reals
- B) domain: reals; range: $y \le 2$
- D) domain: $x \ge 4$; range: $y \ge 2$

16)
$$f(x) = 2 - |x|$$

- A) domain: $x \le 2$; range: reals
- C) domain: reals; range: $y \le 2$
- B) domain: reals; range: reals
- D) domain: reals; range: $y \ge 2$

Solve the problem.

17) A moving firm charges a flat fee of \$35 plus \$30 per hour. Write a function describing the total cost in dollars of using the moving firm for x hours.

A)
$$C(x) = 30x - 35$$

B)
$$C(x) = 30x + 35$$

C)
$$C(x) = 35x + 30$$

D)
$$C(x) = 35x - 30$$

- 18) The cost C, in dollars, to produce graphing calculators is given by the function C(x) = 52x + 3000, where x is the number of calculators produced. What is the cost to produce 2800 calculators?
 - A) \$145,600 B) \$142,600
- C) \$148,600
- D) \$148,950

15)

16)

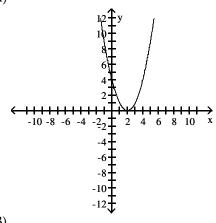
17)

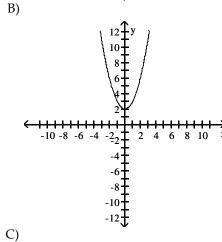
18)

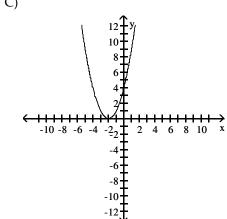
19) A construction company uses the f	unction $S(t) = 30,000 - 2000t$ to determine	19)
the salvage value S(t) of their trucks t years after it is purchases. What was		
the initial value of the truck and ho	w long until it depreciates completely?	
A) \$20000; 15 years	B) \$32,000; 16 years	
C) \$30,000; 15 years	D) \$30,000; 30 years	
20) Midtown Delivery Service delivers packages which cost \$1.90 per package 20)		
to deliver. The fixed cost to run the delivery truck is \$60 per day. If the		20)
company charges \$6.90 per package, how many packages must be delivered		
company charges 40.50 per package	e, now many packages must be delivered	
daily to break even?	e, now many packages must be derivered	
	B) 31 packages	

Answer Key

Testname: UNIT 0 TOPIC 1 QUIZ

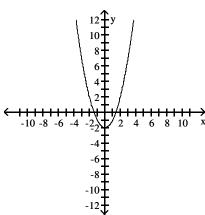

- 1) A
- 2) A
- 3) A
- 4) B
- 5) A
- 6) A
- 7) B
- 8) B
- 9) A
- 10) B
- 11) D
- 12) A
- 13) B
- 14) A
- 15) A
- 16) C
- 17) B
- 18) C
- 19) C
- 20) D

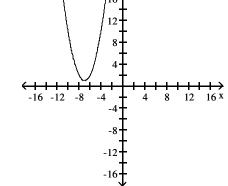

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

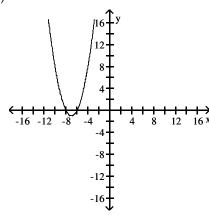

Choose the graph that matches the equation.

1)
$$y = (x + 2)^2$$

A)

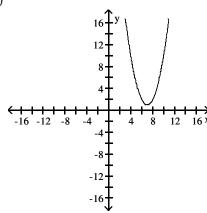


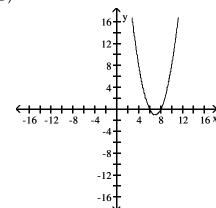


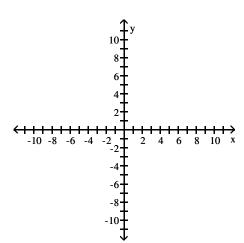


2)
$$y = (x - 7)^2 + 1$$

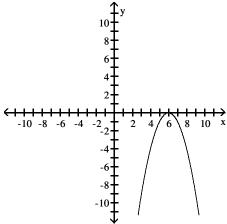
A)



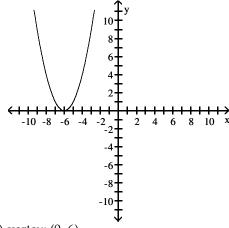

B)

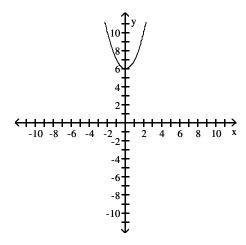


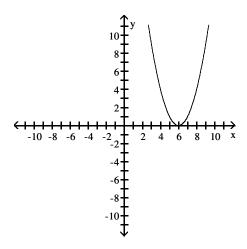
D)



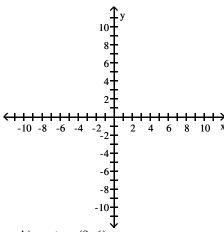
Determine the vertex of the quadratic function. Graph the function and state the domain and range.


3)
$$y = (x + 6)^2$$

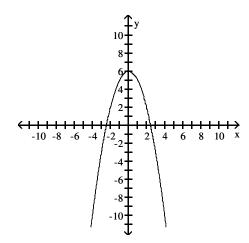

A) vertex: (6, 0)domain: reals range: $y \le 0$


B) vertex: (-6, 0) domain: reals range: $y \ge 0$

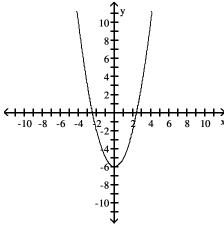
C) vertex: (0, 6)domain: reals range: $y \ge 6$

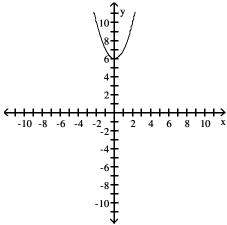


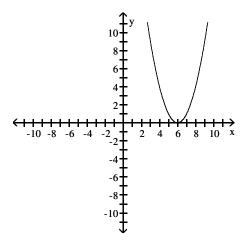
D) vertex: (6, 0)domain: reals range: $y \ge 0$

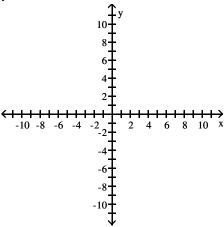


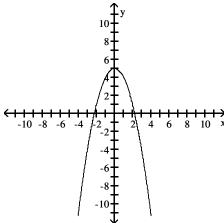
4) $y = x^2 + 6$

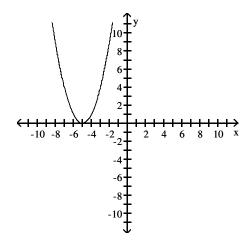

4) _____

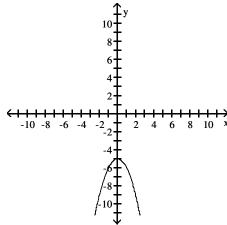

A) vertex: (0, 6)domain: reals range: $y \le 6$

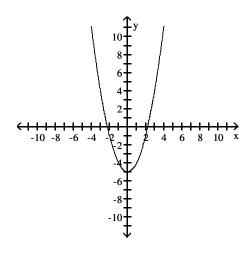

B) vertex: (0, -6) domain: reals range: $y \ge -6$


C) vertex: (0, 6) domain: reals range: $y \ge 6$

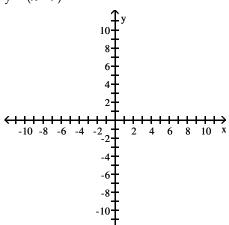

D) vertex: (6, 0)domain: reals range: $y \ge 0$

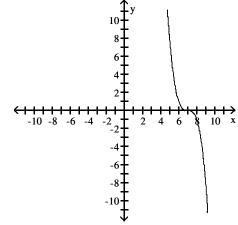

5) _____


A) vertex: (0, 5)domain: reals range: $y \le 5$

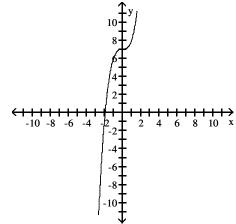

B) vertex (-5, 0)domain: reals range: $y \ge 0$

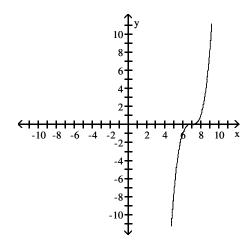
C) vertex: (0, -5) domain: reals range: $y \le -5$

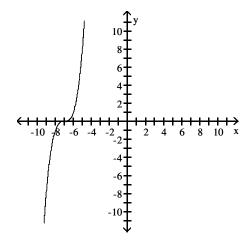

D) vertex: (0, -5) domain: reals range: $y \ge -5$



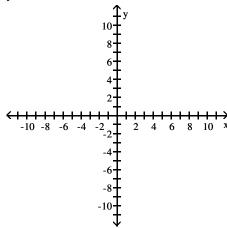
Determine the point of inflection of the cubic function and graph the function.

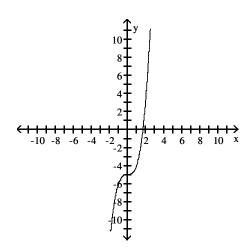

6) $y = (x + 7)^3$

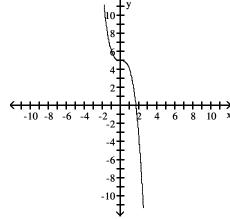



B) (0, 7)

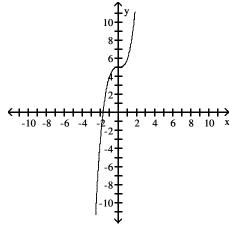
C) (7, 0)

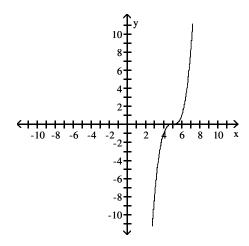



D) (-7, 0)

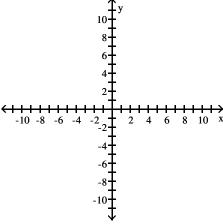

7)
$$y = x^3 + 5$$

7)

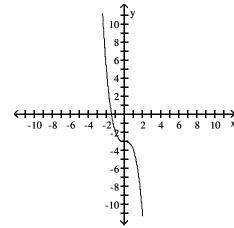



B) (0, 5)

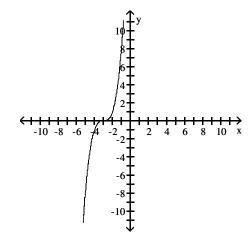
C) (0, 5)

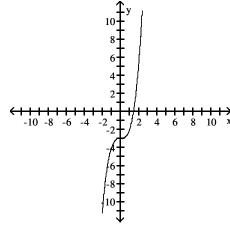


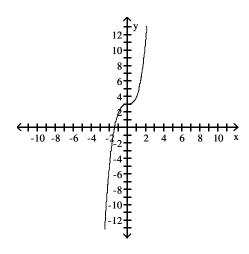
D) (5, 0)

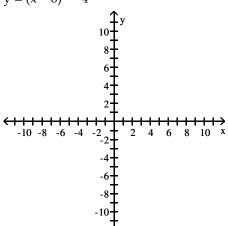


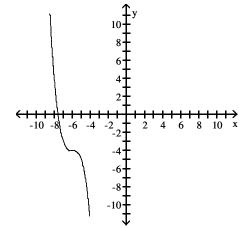
8) $y = x^3 - 3$


8) _____

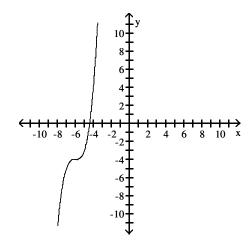

A) (0, -3)


B) (-3, 0)

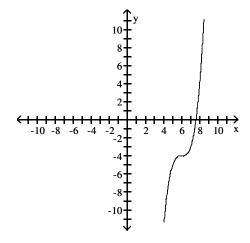

C) (0, -3)

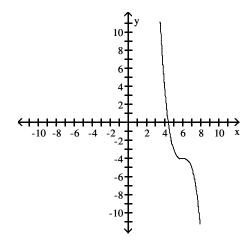


D) (0, 3)

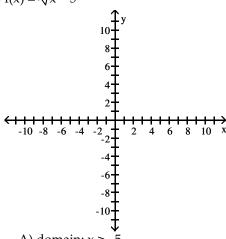


9) $y = (x - 6)^3 - 4$

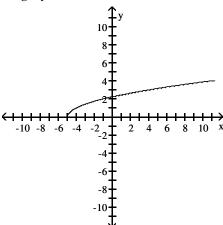



B) (-6, -4)

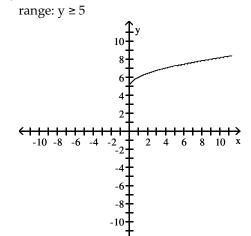
C) (6, -4)


D) (6, -4)

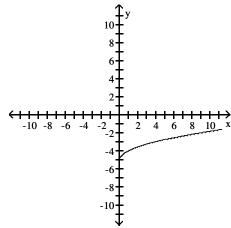
Draw the graph of the square-root function. State the domain and range.

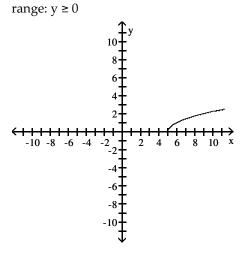

10) $f(x) = \sqrt{x-5}$

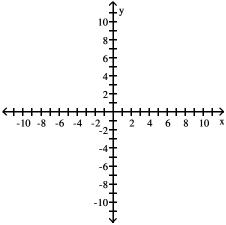
10) _____



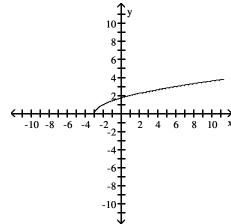
A) domain: $x \ge -5$


range: $y \ge 0$

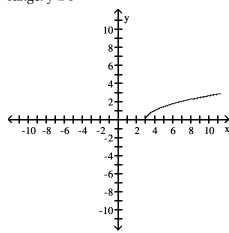

B) domain: $x \ge 0$

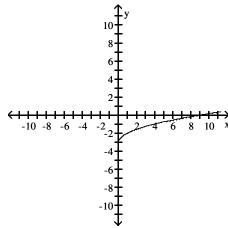


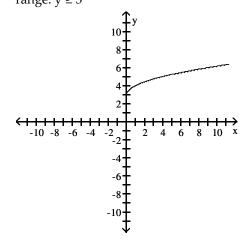
C) domain: $x \ge 0$ range: $y \ge -5$

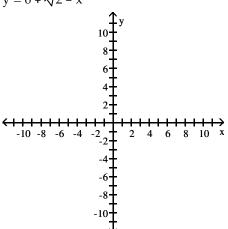


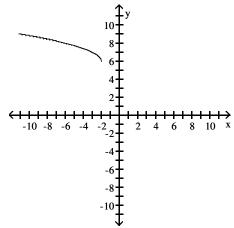
D) domain: $x \ge 5$

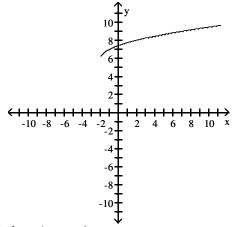


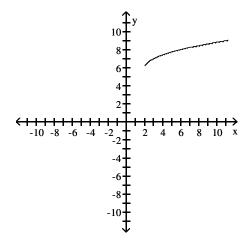

A) domain: $x \ge -3$ range: $y \ge 0$

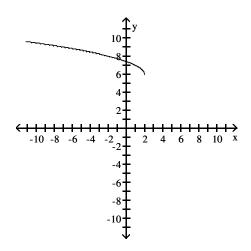

B) domain: $x \ge 3$ range: $y \ge 0$


C) domain: $x \ge 0$ range: $y \ge -3$


D) domain: $x \ge 0$ range: $y \ge 3$


12) $y = 6 + \sqrt{2 - x}$


A) domain: $x \le -2$ range: $y \ge 6$


B) domain: $x \ge -2$ range: $y \ge 6$

C) domain: $x \ge 2$ range: $y \ge 6$

D) domain: $x \le 2$ range: $y \ge 6$

Solve the problem.

- 13) Market supply and market demand, in hundreds of thousands, for a certain book are given by S(x) = x 5 and $D(x) = \sqrt{2x + 5}$, where x is the cost of the book. Find the equilibrium point and interpret its meaning.
 - A) Supply equals demand if the cost of the book is \$10.
 - B) Supply equals demand if the cost of the book is \$5.
 - C) The company will break even if the cost of the book is \$5.
 - D) The company will break even if the cost of the book is \$2 or \$10.
- 14) The time T in seconds for a pendulum of length L feet to make one swing is given by $T = 2\pi \sqrt{\frac{L}{37}}$. Find the time for a pendulum of length 2.4 ft to make one swing. Use 3.14 for π and round to the nearest tenth of a second.
 - A) 1.6 sec
- B) 2.2 sec
- C) 2.4 sec
- D) 1.0 sec
- 15) The height, in feet, of an object t seconds after being thrown upward from a hot air balloon is given by:

15) ___

13)

$$h(t) = -16.1t^2 + 6.3t + 800,$$

Predict the height of the object after 5.5 seconds.

- A) 278.32 ft
- B) 347.63 ft
- C) 746.10 ft
- D) 0 ft
- 16) A company uses the quadratic model $y = -11x^2 + 350x$ to estimate the number of units (y) of a new product that will be sold x weeks after its release. How many units of the product can they expect to sell 8 weeks after release?
- 16) _____

17) _

- A) 3504 units
- B) 2888 units
- C) 2712 units
- D) 2096 units
- 17) John owns a hotdog stand. He has found that his profit can be modeled by $P(x) = -x^2 + 56x + 75$, where x is the number of hotdogs sold. How many hotdogs must he sell to maximize his profit?
 - A) 56 hotdogs

B) 28 hotdogs

C) 47 hotdogs

D) 75 hotdogs

18) In one U.S. city, the quadratic function $A(x) = 0.0041x^2 - 0.48x + 36.42$ models the median age, A, at which men were first married x years after 1900. Find the vertex of the equation and interpret its meaning.

18) _____

- A) (59, 20.9); The median age at which men were first married reached a minimum of 20.9 years in 1959.
- B) (59, 22.4); The median age at which men were first married reached a minimum of 22.4 years in 1959.
- C) (71, 27.1); The median age at which men were first married reached a maximum of 27.1 years in 1971.
- D) (59, 22.4); The median age at which men were first married reached a maximum of 22.4 years in 1959.

19) April shoots an arrow upward into the air at a speed of 32 feet per second from a platform that is 30 feet high. The height of the arrow after t seconds is given by the function $h(t) = -16t^2 + 32t + 30$. What is the maximum height of the arrow?

19) _____

20) _____

A) 29 ft

B) 16 ft

C) 30 ft

D) 46 ft

A function f(x) is given. By using your graphing calculator to estimate the x-intercepts of the graph of the function, estimate the real solutions to the equation f(x) = 0. Round solutions to three decimal places if necessary.

20) $f(x) = x^4 - 13x^2 - 48$

A) x = -16, 3

B) x = 4

C) $x = -\sqrt{3}, \sqrt{3}$

D) x = -4, 4

Answer Key

Testname: UNIT 0 TOPIC 2 QUIZ

- 1) C
- 2) C
- 3) B
- 4) C
- 5) C
- 6) D
- 7) C
- 8) C
- 9) C
- 10) D
- 11) C
- 12) D
- 13) A
- 14) A
- 15) B
- 16) D
- 17) B
- 18) B
- 19) D
- 20) D