https://selldocx.com/products/test-bank-crime-violence-and-global-warming-1e-crank

Crime, Violence, and Global Warming

By John P. Crank & Linda S. Jacoby

Chapter 2 – What Is Global Warming?

Outline

- 1. Global warming defined as process by which the average temperature increases globally
 - A. Calories in calories out metaphor
 - I. If the number of calories taken in exceeds more than those burned, you gain weight
 - II. If the quantity of energy from the sun is greater than the ability of the planet to absorb it, then the planet will heat up
- 2. The atmosphere and heat-trapping greenhouse gases
 - A. The greenhouse effect is necessary for life
 - B. However, too much of a good thing is not always good
 - C. Human contribution to elevation in levels of greenhouse gases
 - I. Burning of fossil fuels and deforestation
 - II. Livestock
 - III. Use of chlorofluorocarbons (CFCs)
 - IV. Agricultural activities
- 3. The problem of feedbacks
 - A. Carbon cycle feedbacks
 - I. Methane gas
 - II. Rain forests releasing CO₂
 - III. Forest fires and CO₂
 - IV. Warmer oceans absorb less CO₂ and could possibly start releasing it
 - B. Ice-albedo feedback
 - I. The fraction of solar energy reflected back into space

- II. Snow and ice reflect energy back
- III. Dark water absorbs more, thereby causing more warming
- C. Water vapor feedback
 - I. A warmer atmosphere has a greater capacity for saturation
- D. Secondary feedbacks
 - I. Occur due to the heating of the planet that has already occurred
 - II. There is nothing that be done about it
- 4. Tipping points
 - A. A temperature at which a climatic change occurs and takes an ecology or state to a new norm
 - B. Concern that we have already reached a tipping point
 - C. Critical tipping points
- 5. Climate sensitivity
 - A. The Charney sensitivity
 - I. The measure of the climate system response to sustained radiative forcing
- 6. Basic evidence for warming
 - A. Global surface temperatures
 - B. Comparison of record highs to record lows
 - C. Arctic sea ice volume over time
- 7. Projected temperature
 - A. How hot will it get?

Multiple-Choice Questions

- 1. The Holocene period is also sometimes referred to as:
 - a. the long summer
 - b. the short winter
 - c. the never ending spring
 - d. the incredibly dull fall
- 2. Based on Figure 2.2 in the text, 51% of incoming solar energy is absorbed by:
 - a. clouds

	b. the atmosphere c. land and oceans
	d. birds
3. So	ome of the most abundant greenhouse gases in the earth's atmosphere include:
	a. nitrous oxide
	b. methane
	c. ozone
	d. all of the above
4. Th	ne use of fertilizers can lead to higher:
	a. methane concentrations
	b. nitrous oxide concentrations
	c. CO ₂ concentrations
	d. none of these
5. M	ethane gas produces about times as much heat as does carbon dioxide.
	a. 30
	b. 60
	c. 10
	d. 50
form	ed 11,000 years ago, is located in:
form	a. Antarctica b. Canada
form	a. Antarctica b. Canada c. Siberia
form	a. Antarctica b. Canada
	a. Antarctica b. Canada c. Siberia
	 a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014
	 a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013
	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012
	 a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013
7. W	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012 d. 2010 civilization-level threat occurs at what level of ppm:
7. W	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012 d. 2010 civilization-level threat occurs at what level of ppm: a. 650
7. W	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012 d. 2010 civilization-level threat occurs at what level of ppm: a. 650 b. 450
7. W	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012 d. 2010 civilization-level threat occurs at what level of ppm: a. 650 b. 450 c. 800
7. W	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012 d. 2010 civilization-level threat occurs at what level of ppm: a. 650 b. 450
7. W 8. A	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012 d. 2010 civilization-level threat occurs at what level of ppm: a. 650 b. 450 c. 800 d. 400 e Charney sensitivity measure has been in use since the early:
7. W 8. A	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012 d. 2010 civilization-level threat occurs at what level of ppm: a. 650 b. 450 c. 800 d. 400 e Charney sensitivity measure has been in use since the early: a. 1940s
7. W 8. A	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012 d. 2010 civilization-level threat occurs at what level of ppm: a. 650 b. 450 c. 800 d. 400 e Charney sensitivity measure has been in use since the early: a. 1940s b. 1960s
7. W 8. A	a. Antarctica b. Canada c. Siberia d. Alaska e passed the milestone of 400 parts per million CO ₂ in the air in May of: a. 2014 b. 2013 c. 2012 d. 2010 civilization-level threat occurs at what level of ppm: a. 650 b. 450 c. 800 d. 400 e Charney sensitivity measure has been in use since the early: a. 1940s

10. Eight of the 10 hottest years ever recorded occurred in which century: a. 18 th b. 19 th c. 20 th d. 21 st
11. Which two years are tied as the two hottest years ever, worldwide? a. 2005 and 2010 b. 2008 and 2009 c. 2001 and 2007 c. 2012 and 2013
12. The hottest year on record for the United States is: a. 2005 b. 2010 c. 2012 d. 2013
13. Richard Alley observed that the Arctic was already melting how many years ahead of schedule? a. 10 b. 100 c. 20 d. 50
 14. In 2012, which state enacted a law prohibiting the inclusion of scientific estimates of ocean rise related to global warming in coastal planning? a. North Carolina b. New York c. California d. Florida
 15. In the United States, what percentage of our greenhouse gas emissions are CO₂? a. 25 b. 63 c. 100 d. 82
16. The current composition of earth's atmosphere is 78% a. oxygen b. methane c. nitrogen d. carbon dioxide
17. During its "daytime," the temperature on the moon is about: a. 100 degrees Celsius

	b. 150 degrees Celsius
	c50 degrees Celsius
	d. 100 degrees Fahrenheit
	w. 100 wag.com 1 mm charact
18. Sor	me researchers claim that the United States will experience significant oil shortages by the
,	a. 2018
	b. 2030
	c. 2080
	d. 2020
10 11:	
19. ПІ	gher concentrations of methane in the atmosphere is the result of: a. newer, vented septic systems
	b. wetland changes
	c. livestock manure management
	d. all of the above
	d. dif of the doore
20. Forest fires add to the atmosphere.	
	a. methane
	b. oxygen
	c. carbon
	d. nothing
Answe	rs
1 -	
1. a	
2. c 3. d	
4. b	
5. a	
5. a 6. c	
7. b	
8. a	
9. c	
10. d	
11. a	
12. c	

13. b 14. a 15. d 16. c

17. a 18. d

19. d 20. c

Essay Questions

- 1. Identify and explain the anthropogenic sources of greenhouse gases that were discussed in the chapter.
- 2. Define the albedo effect and provide examples.
- 3. Identify and describe the four examples of carbon cycle feedbacks.
- 4. Explain why some scientists have an issue with the Charney sensitivity measure.
- 5. List the critical tipping points and their associated consequences.