https://selldocx.com/products/test-bank-electronic-communications-a-system-approach-1e-beasley

Beasley/Electronic Communications

Chapter 2: Amplitude Modulation

Multi	nle	Choice	0	uestions
IVIUILI	DIC	CHUICC	v	ucsuons

_	
1.	What law is represented when current flow through a device increases in direct proportion to voltage?
	A. Hartley's law B. Plank's law C. Ohm's law D. Henry's law
2.	What situation occurs if the modulating signal amplitude continues to increase?
	A. Maximum amplitude B. Overmodulation C. Sideband splatter D. Odd harmonics
3.	A transmitter modulator circuit combines carrier and intelligence signals that are widely separated in
	A. frequencyB. amplitudeC. harmonicsD. voltage
4.	Which of the following is the most important advantage of SSB systems?
	 A. Reducing the noise present at receiver by half. B. All information is contained within varying-amplitude sidebands. C. More effective utilization of the available frequency spectrum. D. The carrier amplitude and frequency always remain constant.
5.	Which of the following is the term that defines when two signals at different frequencies are combined in a nonlinear device?
	A. AliasingB. MixingC. Foldover distortionD. Fluctuating
6.	A phasor rotating at a constant rate will generate a(n)

	B. angular velocityC. waveformD. amplitude
7.	In an AM transmission, why does the carrier contain no information?
	A. It is always changing.B. It is related to sine-wave frequency.C. It never changes.D. The signal is a low frequency compared to the carrier.
8.	Mixing (modulation) is achieved when signals are applied to a(n)
	A. nonlinear deviceB. sidebandC. linear deviceD. intermod
9.	The produces side frequencies or sidebands, one on each side of the carrier.
	A. phasors' angular velocityB. vector sumC. pure sine waveD. modulated AM signal
10.	The rate of phasor rotation is called angular
	A. velocityB. sidebandsC. sine wavesD. frequencies
11.	Which of the following is an example of an application where double-sideband, full-carrier (DSBFC) AM would be used?
	 A. Marine and citizens band (CB) radios B. Military services C. Aircraft-to-tower communication D. Amateur (ham) radios
12.	What is the carrier's job in the modulator?
	A Calculation of the modulation index

A. sine wave

B. Frequency translation

	D.	Transmitting
13.		at was ultimately developed in the search for a communications technique that was nune to noise?
	В. С.	FM AM transmitter Bandwidth Frequency spectrum
14.	All	information contained at the output of the AM modulator is contained within the
	B. b C. t	palanced modulators pandwidth ransmitter sidebands
15.	Wh	y are SSB receivers more difficult to tune than conventional AM receivers?
	В. С.	Need for carrier reinsertion Bandwidth required by SSB cut in half Complete signal cancellation may result Overcrowded high-frequency spectrum
16.	Wh	at type of sideband is used for analog television video transmissions?
	В. С.	Amplitude-compandored Vestigial ISB transmission Pilot carrier
17.	Wh	ich of the following would be a reason why double-sideband AM is still so widely d?
	В. С.	SSB systems more complex Power-savings Noise advantages Effective utilization of available frequency spectrum
18.	Cor	nventional AM transmitters are rated in terms of
	B.	bandwidth amplitude modulating signals modulated waveforms

C. Aliasing

	•		
1).	carrier	nower	outnut
ݐ.	Cui i ici	001101	output

A. Intermod

19.	Transmission of a modulated signal with both the carrier and one sideband removed produces what type of signal?
	A. SSB B. AM C. FM D. HF
20.	The increase and decrease in the AM waveform's amplitude is caused by the frequency difference in the
	 A. intelligence signals B. bandwidth C. side frequencies D. sine waves
21.	Undesired frequencies in close proximity to desired ones, such as a difference frequency appearing within the baseband, are difficult if not impossible to identify and remove after they have been created. What does this occurrence represent?
	 A. Modulation envelope B. Pure sine-wave intelligence C. Foldover distortion D. Modulating signal frequency
22.	Three characteristics of a sine wave carrier are amplitude, frequency, and
	A. phase B. intelligence C. voltage D. bandwidth
23.	What is the gap called that produces distortion and results in the transmission of frequencies outside a station's normal allocated range?
	 A. Odd harmonics B. Sideband splatter C. Square waves D. Intermod
24.	What is the term for undesired mixing?

- B. Peak envelope power
- C. ISB transmission
- D. Amplitude
- 25. Noise is directly proportional to ______.

 - A. total power outputB. peak envelope powerC. available frequency spectrumD. bandwidth