
https://selldocx.com/products

/test-bank-elementary-geometry-for-college-students-7e-alex

Chapter 01: Proof Problems

1. Given: In $\triangle ABC$, $m \angle A + m \angle B + m \angle C = 180$;

∠C is a right angle.

Prove: $\angle A$ and $\angle B$ are complementary.

Provide all *statements and reasons* for this proof.

ANSWER: Proof:

 $S1. m \angle A + m \angle B + m \angle C = 180R1$. Given

S2. ∠Cis a right angle. R2. Given

S3. $m \angle C = 90$ R3. Definition of right angle

S4. $m \angle A + m \angle B + 90 = 180$ R4. Substitution Prop. of Equality

S5. $m \angle A + m \angle B = 90$ R5. Subtraction Property of Equality

S6. $\angle A$ and $\angle B$ are comp. R6. Definition of complementary angles

2. Given: 2(x-3)+5=13

Prove: x = 7

Provide the missing reasons for this proof:

$$S1.2(x-3)+5=13R1.$$

$$S2.2x - 6 + 5 = 13R2.$$

S3.
$$2x - 1 = 13R3$$
.

S4.
$$2x = 14R4$$
.

S5.
$$x = 7R5$$
.

R3. Substitution Property of Equality

R4. Addition Property of Equality

R5. Division (or Multiplication) Prop. of Eq.

3. Given: $(x+5)(x-4) = x^2 - 11$

Prove: x = 9

Provide the *statements* for this proof.

S1. R1. Given

S2. R2. Distributive Law (FOIL)

S3. R3. Substitution Proerty of Equality

S4. R4. Addition Property of Equality

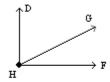
ANSWER:

S1.
$$(x+5)(x-4) = x^2 - 11$$

S2. $x^2 + x - 20 = x^2 - 11$
S3. $x - 20 = -11$
S4. $x = 9$

4. Given:
$$\frac{x}{3} + 5 = 2$$

Prove: $x = -9$


Supply all statements and reasons for the proof.

ANSWER:

Proof:
S1.
$$\frac{x}{3} + 5 = 2$$
 R1. Given

S2.
$$\frac{x}{3} = -3_{\text{R2. Subraction Prop. of Equality}}$$

S3. x = -9R3. Multiplication Property of Equality

5. Given: $\angle DHF$ is a right angle

Prove: ∠DHGand ∠GHF are complementary

Supply missing *statements* and missing *reasons* for this proof.

S1. R1. Given

S2.
$$m \angle DHF = 90$$

S3. $m \angle DHG + m \angle GHF = m \angle DHF$ R3. Angle-Addition Postulate

S4. $m \angle DHG + m \angle GHF = 90$

R4. S5. R5.

ANSWER:

S1. $\angle DHF$ is a right angle

R2. Definition of right angle

R4. Substitution Property of Equality

S5. ∠DHGand ∠GHF are complementary

R5. Definition of complementary angles

6. Given: A-B-C-D as shown Prove: AB + BC + CD = AD

Supply missing *statements* and missing *reasons* for this proof:

S1. R1.

S2. AB + BD = ADR2.

S3. BC + CD = BDR3. Segment-Addition Postulate

S4. R4. Substitution Property of Equality

ANSWER: S1. A-B-C-D as shown

R1. Given

R2. Segment-Addition Postulate

S4. AB + BC + CD = AD

7. Given: ∠lis complementary to ∠2;

 $\angle 3$ is complementary to $\angle 2$ (no drawing provided)

Prove: $\angle 1 \cong \angle 3$

Supply missing *reasons* for this proof.

S1. \angle lis complementary to \angle 2R1.

S2. $\angle 3$ is complementary to $\angle 2R2$.

S3. $m \angle 1 + m \angle 2 = 90$ R3.

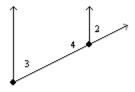
S4. $m \angle 3 + m \angle 2 = 90 \text{ R4}$.

S5. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$ R5.

S6. $m \angle 1 = m \angle 3R6$.

S7, $\angle 1 \cong \angle 3R7$.

ANSWER: R1. Given


R2. Given

R3. Definition of complementary angles R4. Definition of complementary angles

R5. Substitution Property of Equality

R6. Subtraction Prperty of Equality

R7. Definition of Congruent Angles

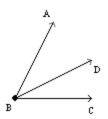
8. Given: ∠3and ∠4are supplementary

Prove: $\angle 3 \cong \angle 2$

Supply missing *statements* and missing *reasons* for this proof.

S1. ∠3and ∠4are supplementary R1.

S2. R2. If the exterior sides of 2 adjacent angles form a straight line, the angles are supplementary.


S3. R3. Two angles that are supplementray to the same angle are congruent.

ANSWER:

R1. Given

S2. ∠2and ∠4are supplementary.

S3. ∠3≅∠2

9. Provide missing *statements* and *reasons* for the following proof.

Given: \overrightarrow{BD} bisects $\angle ABC$ Prove: $m \angle ABC = 2(m \angle ABD)$

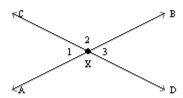
S1. R1. Given

S2. $m \angle ABD = m \angle DBCR2$.

S3. R3. Angle-Addition Postulate

 $S4. m \angle ABC = m \angle ABD + m \angle ABDR4.$

or


ANSWER:

S1. Given

R2. Definition of angle-bisector $S3. m \angle ABC = m \angle ABD + m \angle DBC$

 $S4. m \angle ABC = 2(m \angle ABD)$

R4. Substitution Property of Equality

10. Supply missing *statements* and *reasons* for the following proof.

Given: \overrightarrow{AB} and \overrightarrow{CD} intersect at point X

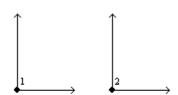
Prove: $\angle 1 \cong \angle 3$

S1. R1.

S2. ∠land ∠2are supp. R2.

S3. R3. If the exterior sides of two adjacent angles form a straight line, these angles are supplementary.

S4. R4. Two angles that are supplementary to the same angle are congruent.


ANSWER:

S1. \overrightarrow{AB} and \overrightarrow{CD} intersect at point X

R1. Given

S3. ∠3and ∠2are supp.

S4. $\angle 1 \cong \angle 3$

11. Prove: Any two right angles are congruent.

Use the following drawing. Provide all statements and reasons.

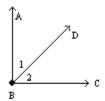
Given: Right angles 1 and 2

Prove: $\angle 1 \cong \angle 2$

ANSWER: S1. Right angles 1 and 2

R1. Given

S2. $m \angle 1 = 90$ and $m \angle 2 = 90$


R2. The measure of a right angle is 90.

S3. $m \angle 1 = m \angle 2$

R3. Substitution Property of Equality

S4. $\angle 1 \cong \angle 2$

R4. Definition of congruent angles.

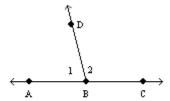
12. Supply all *statements* and *reasons* in the following proof.

Given: ∠ABCis a right angle.

Prove: ∠land ∠2are complementary.

ANSWER: S1. ∠ABCis a right angle. R1. Given

S2. $m \angle ABC = 90$


R2. Definition of right angle

S3. $m \angle ABC = m \angle 1 + m \angle 2R3$. Angle-Addition Postulate

S4. $m \angle 1 + m \angle 2 = 90$

R4. Substitution Property of Equality

S5. ∠land ∠2are complementary. R5. Definition of complementary angles.

13. In the figure, *A-B-C*. Explain why ∠land ∠2must be supplementary.

ANSWER: In the figure, $\angle ABC$ is a straight angle. By definition, $m \angle ABC = 180$.

But $m \angle 1 + m \angle 2 = m \angle ABC$ by the Angle-Addition Postulate.

Then $m \angle 1 + m \angle 2 = 180$ by substitution.

By definition, ∠land ∠2are supplementary.