Essential Organic Chemistry, 3e (Bruice)

Chapter 1 Remembering General Chemistry: Electronic Structure and Bonding

1) What element is represented by the following electronic configuration?

$$1s^2 2s^2 2p^5$$

- A) F
- B) C
- C) N
- D) A1
- E)O

Answer: A Diff: 2

Section: 1-2

Objective: G2, G3

LO: 1.2

- 2) How many unpaired electrons are present in the electronic configuation of carbon (atomic number = 6)?
- A) none
- B) one
- C) two
- D) three
- E) four

Answer: C

Diff: 2

Section: 1-2

Objective: G2, G3

LO: 1.2

- 3) Which of the following is the electronic configuration of the element Fe?
- A) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶
- B) 1s2 2s2 2p6 3s2 3p8 3d6
- C) 1s2 2s2 2p8 3s2 3p6 4s2 3d6
- D) 1s2 2s2 2p6 3s2 3p6 4s2 4d6
- E) 1s2 2s2 2p6 3s2 3p6 4s2 4p6

Answer: A

Diff: 2

Section: 1-2

Objective: G2, G3

- 4) The atomic number of boron is 5. The correct electronic configuration of boron is .
- A) 1s² 2s3
- B) 1s2 2p3
- C) 1s2 2s2 2p1
- D) 2*s*² 2*p*3
- E) 1s2 2s2 3s1

Answer: C

Diff: 2 Section: 1-2

Objective: G2, G3

LO: 1.2

- 5) Which of the following statements correctly describes the third shell that surrounds the nucleus of an atom?
- A) The third shell contains only s and p atomic orbitals.
- B) The maximum number of electrons that can occupy the third shell is 18.
- C) The total number of atomic orbitals present in the third shell is 16.
- D) The third shell can contain *f* orbitals.
- E) All third shell elements must have *d* electrons.

Answer: B

Diff: 2

Section: 1-2

Objective: G2, G3

LO: 1.2

- 6) What is the electronic configuration of N^3 -?
- A) 1s² 2s2
- B) 1s² 2s² 2p³
- C) $1s^2 2s^2 2p^4$
- D) $1s^2 2s^2 2p^6$
- E) 1s2 2s2 2p6 3s1

Answer: D

Diff: 2

Section: 1-2

Objective: G2, G3

7) Which of the following atoms is the least electronegative? A) P B) Na C) I D)B E)O Answer: B Diff: 2 Section: 1-3 Objective: G2, G3 LO: 1.4 8) Which of the following compounds have bonds that are predominantly ionic? A) KCl B) CF₄ C) NH₃ D) both A and B E) both B and C Answer: A Diff: 2 Section: 1-3 Objective: G2, G3 LO: 1.3 9) What type of bonding is found in CH₃CH₂CH₂CH₂CH₂CH₂CH₃? A) ionic B) hydrogen C) covalent D) polar Answer: C Diff: 2 Section: 1-3 Objective: G2, G3 LO: 1.3 10) Which of the following contains polar covalent bonds? A) NH₃ B) Na₂O C) H₂ D) KF E) both A and C Answer: A Diff: 2 Section: 1-3 Objective: G2, G3

11) Which of the following covalent bonds has the largest dipole moment? A) C-C B) C-H C) C-O D) H-N E) H-F Answer: E Diff: 2 Section: 1-3 Objective: G2, G3 LO: 1.3 12) How many nonbonding pairs of electrons are in H2NOH? A)0B) 1 C) 2 D) 3 E) 4 Answer: D Diff: 3 Section: 1-4 Objective: G2, G3 LO: 1.4 13) The compound CH3NH2, contains a C-N bond. Which of the following best describes the charge on the nitrogen atom in this compound? A) +1B) slightly positive C) uncharged D) slightly negative

E) -1

Answer: D Diff: 2 Section: 1-4

LO: 1.4

Objective: G2, G3

14) The formal charge on nitrogen in the following compound is ______.

- A) +2
- B) +1
- C) 0
- D) -1
- E) -2

Answer: B Diff: 2

Section: 1-4

Objective: G2, G3

LO: 1.5

15) Which of the following is the most likely Lewis structure for C₂H₂?

A) H—C=C: H

- B) H——C——C
- | ... | H
- Н—С—С—Н
- D) H—C**=**C—H

E)

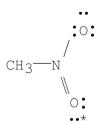
H—C=CH

Answer: D Diff: 2

Section: 1-4

Objective: G2, G3

16) Which of the following Lewis structures is correct for CH₂N₂?


A):
$$CH_2-N=N$$
:

- B)
- Θ Θ
- $CH_2 = N = N$
- C)
- \oplus \ominus
- CH2=N=N:
- D)
- ⊕ ••⊖
- $CH_2 = N = N$:
- E)
 - +3 ••-3
- CH2-N-N:

Answer: D

- Diff: 2
- Section: 1-4
- Objective: G2, G3
- LO: 1.5

17) What are the formal charges on nitrogen and on the starred oxygen in the following species?

- A) N = -1, O = 0
- B) N = +1, O = -1
- C) N = +1, O = +1
- D) N = -1, O = -1
- E) N=+1, O=0

Answer: E

- Diff: 2
- Section: 1-4
- Objective: G2, G3
- LO: 1.5

18) What is the formal charge on the nitrogen in the ammonium ion
A) -2
B) -1
C) 0
D) +1
E) +2
Answer: D
Diff: 2
Section: 1-4
Objective: G2, G3
LO: 1.5
19) How many degenerate <i>p</i> orbitals are in the second shell?
A) 0
B) 1
C) 2
D) 3
E) 4
Answer: D
Diff: 2
Section: 1-5
Objective: G2, G3
LO: 1.7
20) What is the hybridization of the indicated atom?
CH ₃ CH ₂ CH ₂ CH ₃
↑
A) <i>sp</i>
B) sp^2
$C) sp^3$
D) none of the above
Answer: C
Diff: 2
Section: 1-7
Objective: G2, G3
LO: 1.9

- 21) How many sp^2 carbons are present in H₂C=C=CH₂?
- A)0
- B) 1
- C) 1.5
- D) 2
- E) 3

Answer: D

Diff: 2

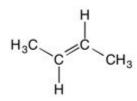
Section: 1-8

Objective: G2, G3

LO: 1.10a

- 22) What orbitals overlap to form the C-H bond in ethene (H₂C=CH₂)?
- A) *s-sp*
- B) s- sp^2
- C) *s-sp*3
- D) *s-p*
- E) *p-p*

Answer: B


Diff: 2

Section: 1-8

Objective: G2, G3

LO: 1.10a

23) Are all the carbons in this structure in the same plane?

- A) Yes
- B) No

Answer: A

Diff: 2

Section: 1-8

Objective: G2, G3

LO: 1.10a

24) Are all the carbons in this structure in the same plane?

$$H_3C$$
 $C=C=C$ CH_3 CH_3

A) Yes

B) No

Answer: B Diff: 2

Section: 1-8

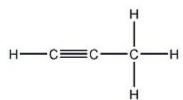
Objective: G2, G3

LO: 1.10a

25) How many sp^2 -hybridized atoms are in the following compound?

- A) Two
- B) Three
- C) Four
- D) Five
- E) Six

Answer: C


Diff: 2

Section: 1-8

Objective: G2, G3

LO: 1.10a

26) How many carbon-carbon sigma bonds are in the following compound?

- A) 1
- B) 2
- C) 3
- D) 4

Answer: B Diff: 3 Section: 1-9

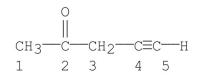
Objective: G2, G3

LO: 1.11

27) CH₃CN contains _____ sigma bonds and _____ pi bonds.

- A) 5; 2
- B) 4; 3
- C) 4; 2
- D) 2; 2
- E) 4; 0

Answer: A


Diff: 2

Section: 1-9

Objective: G2, G3

LO: 1.11

28) Which carbons in the following compound are sp hybridized?

- A) carbon 1
- B) carbon 2
- C) carbons 1, 3
- D) carbons 4
- E) carbons 4, 5

Answer: E

Diff: 2

Section: 1-9

Objective: G2, G3

29) How many carbon-carbon sigma bonds are in the following compound?

- A)0
- B) 1
- C) 2
- D) 3
- E) 4

Answer: C Diff: 3

Section: 1-9

Objective: G2, G3

LO: 1.11

30) How many sp carbons are in the following compound?

н₃с-с≡с-н

- A) Zero
- B) One
- C) Two
- D) Three

Answer: C

Diff: 2

Section: 1-9

Objective: G2, G3

LO: 1.11

31) How many sp-hybridized atoms are in the following compound?

- A) One
- B) Two
- C) Three
- D) Four

Answer: B

Diff: 2

Section: 1-9

Objective: G2, G3

32) Which of the following has an sp^2 carbon?

A)

 \oplus

CH3

- B) · CH₃
- C)
- - :CH3
- D) A and B
- E) A, B and C

Answer: D

Diff: 2

Section: 1-10 Objective: G2, G3

LO: 1.12

33) What is the bond angle and hybridization of the carbon in ⁺CH₃?

- A) 120° , sp^2
- B) 120° , sp^{3}
- C) 109.5°, sp2
- D) 120° , sp^2
- E) 109.5°, *sp*²

Answer: A

Diff: 2

Section: 1-10

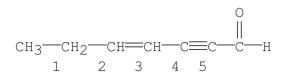
Objective: G2, G3 LO: 1.12

34) What orbitals overlap to form the H-C bond in CH₃⁺?

- A) sp3-sp3
- B) $sp^{2}-sp^{3}$
- C) s-p
- D) s- sp^2
- E) *s-sp*³

Answer: D

Diff: 2


Section: 1-10

Objective: G2, G3

35) The lone-pair electrons of the methyl anion occupy a(n) orbital.
A) s
$\mathbf{B}) p$
C) sp
D) sp^2
$E) sp^3$
Answer: E
Diff: 2
Section: 1-10
Objective: G2, G3
LO: 1.12
36) The N-H bond in CH ₃ NH ₂ is a bond formed by the overlap of a(n)
orbital of N with the orbital of H.
A) σ ; sp^2 ; s
· · · -
B) σ ; sp^3 ; s
C) π ; sp^3 ; s
D) π ; sp^2 ; p
E) π ; p ; p
Answer: B
Diff: 2
Section: 1-11
Objective: G2, G3
LO: 1.13
37) The nitrogen atom in (CH ₃ CH ₂) ₃ N is hybridized and the C-N-C bond angle is
$A) sp^2; >109.5^{\circ}$
B) sp^2 ; <109.5°
C) sp^3 ; >109.5°
D) sp^3 ; <109.5°
E) sp; 109.5°
Answer: D
Diff: 2
Section: 1-11
Objective: G2, G3
LO: 1.13

38) The N-H bond in the ammonium ion, +NH4, is formed by the overlap of what two orbitals?
A) $sp^{3}-sp^{3}$
B) sp^3-sp^2
C) sp^2-sp^2
D) sp^2-s
E) sp^3-s
Answer: E
Diff: 2
Section: 1-11
Objective: G2, G3
LO: 1.13
39) Which of the following angles is closest to the C-O-C bond angle in CH ₃ -O-CH ₃ ?
A) 180°
B) 120°
C) 109.5°
D) 90°
E) 160°
Answer: C
Diff: 2
Section: 1-12
Objective: G2, G3
LO: 1.14
40) Each lone pair on the O in CH3OH occupies a(n) orbital.
A) s
B) <i>p</i>
C) sp
D) sp^2
E) sp^3
Answer: E
Diff: 2
Section: 1-12
Objective: G2, G3
LO: 1.14

- 41) Of the hydrogen halides, the strongest bond is found in _____ and the longest bond is
- found in ___A) HF; HF
- B) HF; HI
- C) HI; HF
- D) HI; HI
- E) HCl; HBr
- Answer: B
- Diff: 2
- Section: 1-13 Objective: G2, G3
- LO: 1.15
- 42) The hydrogen—halogen bond becomes _____ and ____ as the size of the halogen increases.
- A) longer; weaker
- B) longer; stronger
- C) shorter; weaker
- D) shorter; stronger
- Answer: A Diff: 3
- Section: 1-13 Objective: G2, G3
- LO: 1.15
- 43) Which bond in the following compound is the shortest?

- A) bond 1
- B) bond 2
- C) bond 3
- D) bond 4
- E) bond 5
- Answer: E
- Diff: 2
- Section: 1-14
- Objective: G2, G3
- LO: 1.16

44) The carbon-carbon double bond in ethene is _____ and ____ than the carbon-carbon

- triple bond in ethyne. A) stronger; shorter
- B) stronger; longer
- C) weaker; shorter
- D) weaker; longer
- E) stronger; more polar

Answer: D Diff: 2

Section: 1-14 Objective: G2, G3

LO: 1.16

45) What is the C—N—N bond angle in the following compound?

- A) ~60°
- B) ~90°
- C)~110°
- D)~120°
- E)~180°

Answer: D Diff: 2

Section: 1-14 Objective: G2, G3

LO: 1.17

46) What is the hybridization of the carbon in H₂CO?

- A) sp
- B) sp^2
- C) *sp*3
- D) *sp*⁴
- E) s^3p

Answer: B Diff: 3

Section: 1-14 Objective: G2, G3

- 47) What is the H-C-H bond angle in H₂CO?
- A) 60°
- B) 90°
- C) 109.5°
- D) 120°
- E) 180°

Answer: D

Diff: 3

Section: 1-14 Objective: G2, G3

LO: 1.17

- 48) What is the hybridization of the oxygen in CH3OCH3?
- A) sp
- B) sp^2
- C) sp^3
- D) *sp*4
- E) *sp*5

Answer: C

Diff: 3

Section: 1-14 Objective: G2, G3

LO: 1.17

- 49) Which of the following compounds has the weakest bond?
- A) H₂
- B) HF
- C) HCl
- D) HBr
- E) HI

Answer: E

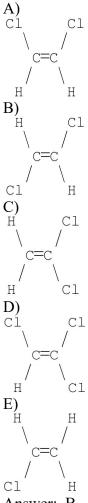
Diff: 1

Section: 1-14 Objective: G2, G3

- 50) In which orbital are the lone-pair electrons of CH₃O⁻?
- A) s
- B) *p*
- C) sp
- D) sp^2
- E) sp^3

Answer: E Diff: 2

Section: 1-14 Objective: G2, G3


LO: 1.17

- 51) Which of the following compounds does not have a dipole moment of zero?
- A) CO₂
- B) CH₄
- C) CCl₄
- D) H₂O
- E) SO₃

Answer: D Diff: 2

Section: 1-15 Objective: G2, G3

52) Which of the following compounds has a dipole moment of zero?

Answer: B Diff: 2

Section: 1-15 Objective: G2, G3

LO: 1.18

53) Which of the following compounds has the smallest dipole moment?

- A) Br₂
- B) NH₃
- C) HCl
- D) HBr
- E) HI

Answer: A Diff: 2

Section: 1-15 Objective: G2, G3

- 54) Which of the following compounds does not have a dipole moment of zero?
- A) CH₃NH₂
- B) CO₂
- C) CH₃OCH₃
- D) $(CH_3)_2C=C(CH_3)_2$
- E) CHCl₃
 Answer: E
 Diff: 2

Section: 1-15 Objective: G2, G3

LO: 1.18

55) Atoms with the same number of protons but different numbers of neutrons are called

Answer: isotopes

Diff: 1 Section: 1-1

Objective: G2, G3

LO: 1.1

56) Ar, K⁺, and Cl⁻ each have 18 electrons. What orbital does the highest-energy electron

occupy?

Answer: a 3p orbital

Diff: 2 Section: 1-2

Objective: G2, G3

LO: 1.2

57) What is the electronic configuration of Ca²⁺?

Answer: 1s2 2s2 2p6 3s2 3p6

Diff: 2

Section: 1-2 Objective: G2, G3

58) Using the symbols δ + and δ -, show the direction of the polarity in the O-H bond.

СН30---Н

Answer:

 $\delta - \delta +$

СН30---Н

Diff: 3

Section: 1-3

Objective: G2, G3

LO: 1.4

59) What atomic property determines the polarity of a chemical bond?

Answer: electronegativity

Diff: 2

Section: 1-3

Objective: G2, G3

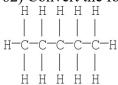
LO: 1.3

60) What two factors determine the size of a bond's dipole moment?

Answer: The size of the charge and the distance between the charges.

Diff: 3

Section: 1-3


Objective: G2, G3

61) Draw the Kekulé structure for each of the following:

- a. CH₃CH₂OH b. CH₃CHO
- c. (CH3)3C+

Answer:

- а. Н Н H---C-—ОН Н Н
- b. н о:
- CH3 сн3—с⊕ ĊH3
- Diff: 3 Section: 1-4
- Objective: G2, G3
- LO: 1.6
- 62) Convert the following Kekulé structure into a condensed structure.

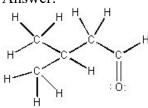
- Answer: CH₃(CH₂)₃CH₃ or CH₃CH₂CH₂CH₂CH₃
- Diff: 3
- Section: 1-4
- Objective: G2, G3
- LO: 1.6
- 63) Draw condensed structures for the four compounds with molecular formula C3H9N.
- Answer: CH₃CH₂CH₂NH₂
- CH3CH2NHCH3
- (CH₃)₂CHNH₂
- $(CH_3)_3N$
- Diff: 3
- Section: 1-4
- Objective: G2, G3
- LO: 1.5

64) Draw the Lewis structure for CH2CO.

Answer:

H C C

Diff: 3


Section: 1-4 Objective: G2, G3

LO: 1.5

65) Expand the condensed structure shown below to show the covalent bonds and the lone-pair electrons.

(CH₃)₂CHCH₂CHO

Answer:

Diff: 3

Section: 1-4

Objective: G2, G3

LO: 1.5

66) Draw the Lewis structure for CH₃N₂⁺.

Answer:

Diff: 3

Section: 1-4

Objective: G2, G3

67) Draw a 2p orbital.

Answer:

Diff: 2

Section: 1-5

Objective: G2, G3

LO: 1.7

68) What orbitals are used to form the covalent bonds in CH₃CH₂CH₂CH₃?

Answer: The carbon-carbon σ bonds are formed by the overlap of an sp^3 orbital of each carbon. The carbon-hydrogen σ bonds are formed by the overlap of an sp^3 orbital of carbon with the s orbital of hydrogen.

Diff: 3

Section: 1-7

Objective: G2, G3

LO: 1.9

69)) Draw the structure of a compound that contains only carbon and hydrogen atoms and that has two sp^2 carbons and one sp carbon.

Answer: H₂C=C=CH₂

Diff: 3

Section: 1-14 Objective: G2, G3

LO: 1.16

70) Why is the C—H bond in ethene (H₂C=CH₂) shorter and stronger than the C—H bond in ethane (CH₃CH₃)?

Answer: The length and strength of a C–H bond depends on the hybridization of the carbon. The more s character in the orbital used by carbon to form the bond, the shorter and stronger the bond. This is because an s orbital is closer to the nucleus than is a p orbital. Ethene uses sp^2 orbitals (1/3 s character) to form its carbon-hydrogen bonds, whereas ethane uses sp^3 orbitals (1/4 s character).

Diff: 3

Section: 1-14 Objective: G2, G3

71) How many nonbonding electron pairs, bonding electron pairs, pi bonds, and sigma bonds are present in CO₂?

Answer: 4 nonbonding electron pairs, 4 bonding electrons pairs, 2 pi bonds, 2 sigma bonds

Diff: 3

Section: 1-14 Objective: G2, G3

LO: 1.16

72) What is the hybridizations of the carbons, going from left to right, in CH3CH=CHCl?

Answer: sp^3 , sp^2 , sp^2

Diff: 3

Section: 1-14 Objective: G2, G3

LO: 1.17

73) What is the hybridization and bond angles of the carbon in CO₂?

Answer: sp, linear, 180

Diff: 3

Section: 1-14 Objective: G2, G3

LO: 1.17

74) What is the hybridization and bond angles of each carbon in CH₃CN?

Answer: $CH_3 - sp^3$, 109.5; C - sp, 180

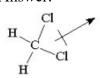
Diff: 3

Section: 1-14 Objective: G2, G3

LO: 1.17

75) What is the hybridization of the nitrogen in (CH₃)₃N?

Answer: sp3


Diff: 2

Section: 1-14 Objective: G2, G3

LO: 1.17

76) Draw the Kekulé structure of CH₂Cl₂ and show the direction of its dipole moment.

Answer:

Diff: 3

Section: 1-15 Objective: G2, G3