
Exam

https://selldocx.com/products/test-bank-essential-university-physics-3e-wolfson-106

nme		
ULTIPLE CHOICE. Choose the one alternative that b	est completes the statement or answers the questic	on.
1) If the acceleration of an object is negative, A) True		1)
If the graph of the position as a function o object cannot be accelerating.	f time for an object is a horizontal line, that	2)
A) True	B) False	
3) If an object is accelerating toward a point, that point.	then it must be getting closer and closer to	3)
A) True	B) False	
4) When can we be certain that the average v instantaneous velocity?	relocity of an object is always equal to its	4)
A) only when the velocity is constant B) only when the acceleration is constant	ut	
C) only when the acceleration is changingD) alwaysE) never	ng at a constant rate	
5) Suppose that an object is moving with confollowing is an accurate statement concern A) A graph of its velocity as a function of B) In equal times its speed changes by e C) In equal times it moves equal distanc D) A graph of its position as a function of E) In equal times its velocity changes by	ning its motion? of time is a horizontal line. qual amounts. es. of time has a constant slope.	5)
 6) Suppose that a car traveling to the west (the approaches a traffic light. Which statement direction is correct? A) Both its acceleration and its velocity B) Both its acceleration and its velocity C) Its acceleration is negative but its velocity 	are positive. are negative.	6)
D) Its acceleration is positive but its velo	•	

7) The motion of a particle is described in the velocity versus time graph shown in the figure. We can say that its speed

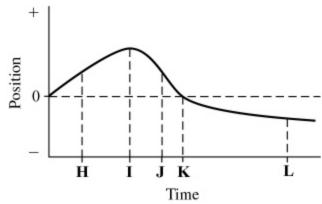
- A) increases.
- C) decreases.

- B) decreases and then increases.
- D) increases and then decreases.
- 8) The motions of a car and a truck along a straight road are represented by the velocity-time graphs in the figure. The two vehicles are initially alongside each other at time t = 0. At time T, what is true about these two vehicles since time t = 0?

- Truck

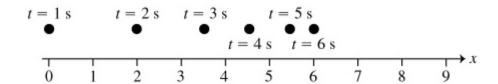
 Car

 Truck

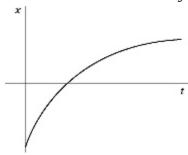

 Truck
- A) The truck and the car will have traveled the same distance.
- B) The car will be traveling faster than the truck.
- C) The car will have traveled further than the truck.
- D) The truck will have traveled further than the car.

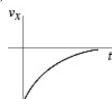
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

9) The graph in the figure shows the position of an object as a function of time. The letters H-L represent particular moments of time. At which moments shown (H, I, etc.) is the speed of the object

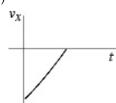

- (a) the greatest?
- (b) the smallest?

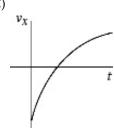
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

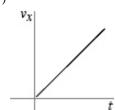

10) The figure shows the position of an object (moving along a straight line) as a function of time. Assume two significant figures in each number. Which of the following statements about this object is true over the interval shown?

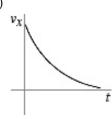


- A) The average speed of the object is 1.0 m/s.
- B) The object is accelerating to the left.
- C) The acceleration of the object is in the same direction as its velocity.
- D) The object is accelerating to the right.
- 11) The figure shows the graph of the position *x* as a function of time for an object moving in the straight line (the *x*-axis). Which of the following graphs best describes the velocity along the *x*-axis as a function of time for this object?

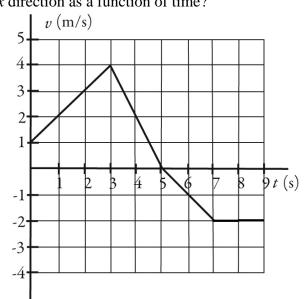


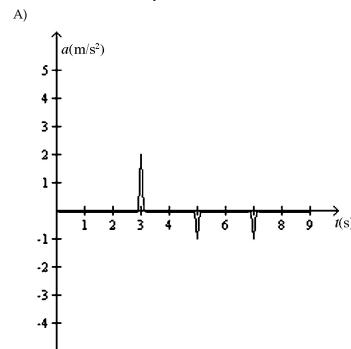


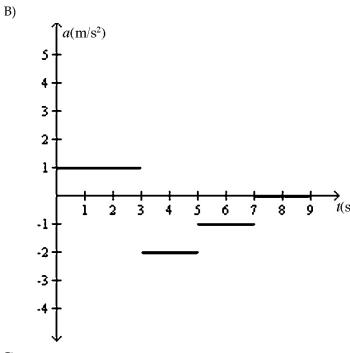

B)

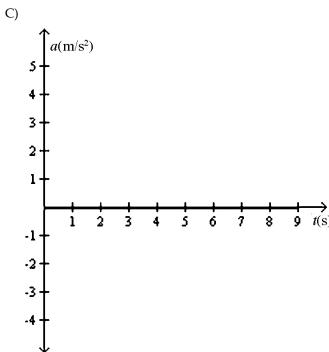

C)

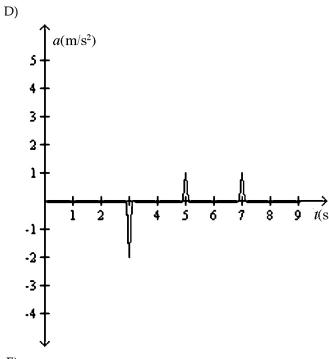
D)

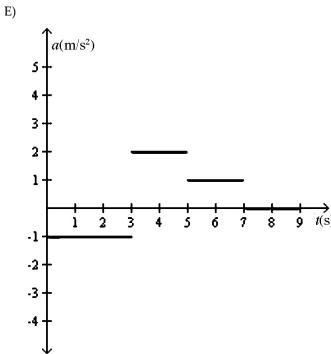


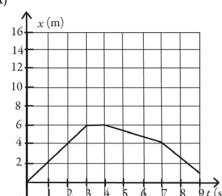

E)

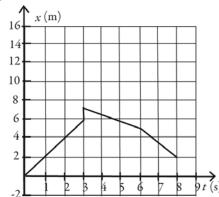



- 12) An object is moving with constant non-zero acceleration along the +x-axis. A graph of the velocity in the x direction as a function of time for this object is
- 12) _____

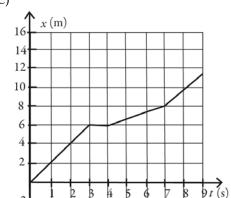

- A) a parabolic curve.
- B) a straight line making an angle with the time axis.
- C) a horizontal straight line.
- D) a vertical straight line.

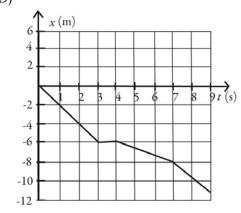


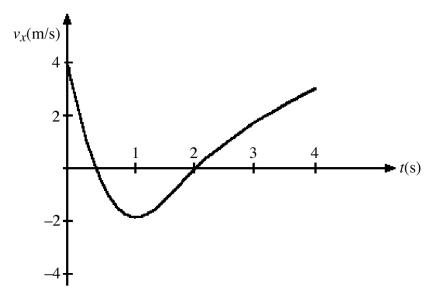




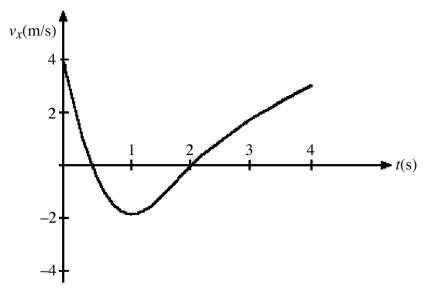
s, the object stops for 1.0 s. The object then moves toward the west a distance of 2.0 m in 3.0 s. The object continues traveling in the same direction, but increases its speed by 1.0 m/s for the next 2.0 s. Which graph below could represent the motion of this object?


A)


B)


C)

D)



15) The figure shows the velocity of a particle as it travels along the *x*-axis. What is the direction of the acceleration at t = 0.5 s?

- A) in the +x direction
- B) in the -x direction
- C) The acceleration is zero.
- 16) The figure represents the velocity of a particle as it travels along the *x*-axis. At what value (or values) of *t* is the instantaneous acceleration equal to zero?

16) _____

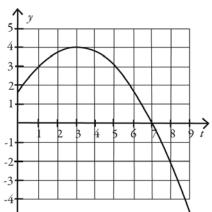
- A) t = 0.5 s and t = 2 s
- B) t = 0

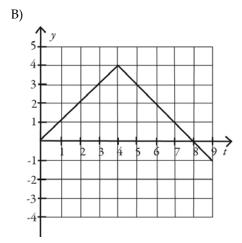
C) t = 1 s

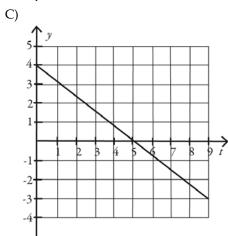
17) A ball is thrown directly upward and experiences no air resistance. Which one of the following statements about its motion is correct?

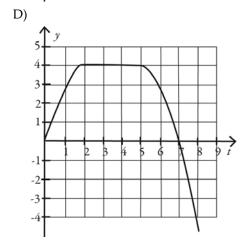
- A) The acceleration of the ball is downward while it is traveling up and downward while it is traveling down but is zero at the highest point when the ball stops.
- B) The acceleration of the ball is upward while it is traveling up and downward while it is traveling down.
- C) The acceleration is downward during the entire time the ball is in the air.
- D) The acceleration of the ball is downward while it is traveling up and upward while it is traveling down.
- 18) Two objects are thrown from the top of a tall building and experience no appreciable air resistance. One is thrown up, and the other is thrown down, both with the same initial speed. What are their speeds when they hit the street?

18) _____


- A) The one thrown down is traveling faster.
- B) The one thrown up is traveling faster.
- C) They are traveling at the same speed.
- 19) Two objects are dropped from a bridge, an interval of 1.0 s apart, and experience no appreciable air resistance. As time progresses, the DIFFERENCE in their speeds


19) _____

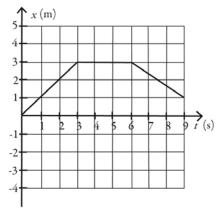

- A) increases at first, but then stays constant.
- B) decreases.
- C) decreases at first, but then stays constant.
- D) increases.
- E) remains constant.
- 20) Which one of the following graphs could possibly represent the vertical position as a function of time for an object in free fall?


20) _____

A)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

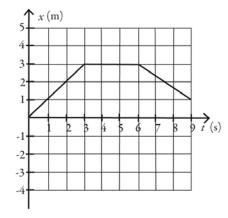
- 21) A cat runs along a straight line (the *x*-axis) from point *A* to point *B* to point *C*, as shown in the figure. The distance between points *A* and *C* is 5.00 m, the distance between points *B* and *C* is 10.0 m, and the positive direction of the *x*-axis points to the right. The time to run from *A* to *B* is 20.0 s, and the time from *B* to *C* is 8.00 s. As the cat runs along the *x*-axis between points *A* and *C*
 - (a) what is the magnitude of its average velocity?
 - (b) what is its average speed?



22) The figure shows the position of an object as a function of time. During the time interval from time t = 0.0 s and time t = 9.0 s

21) _

- (a) what is the length of the path the object followed?
- (b) what is the displacement of the object?


23) As part of an exercise program, a woman walks south at a speed of 2.00 m/s for 60.0 minutes. She then turns around and walks north a distance 3000 m in 25.0 minutes

23) _____

- (a) What is the woman's average velocity during her entire motion?
 - A) 0.824 m/s south
 - B) 1.93 m/s south
 - C) 2.00 m/s south
 - D) 1.79 m/s south
 - E) 800 m/s south
- (b) What is the woman's average speed during her entire motion?
 - A) 0.824 m/s
 - B) 1.93 m/s
 - C) 2.00 m/s
 - D) 1.79 m/s
 - E) 800 m/s
- 24) The figure shows the position of an object as a function of time, with all numbers accurate to two significant figures. Between time t = 0.0 s and time

- t = 9.0 s
- (a) what is the average speed of the object?
- (b) what is the average velocity of the object?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 25) If the fastest you can safely drive is 65 mi/h, what is the longest time you can stop for dinner if you must travel 541 mi in 9.6 h total?
 - A) 1.0 h

B) 1.3 h

C) 1.4 h

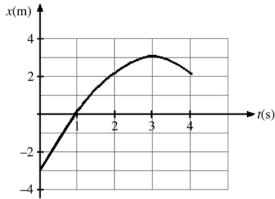
D) You can't stop at all.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 26) Arthur and Betty start walking toward each other when they are 100 m apart. Arthur has a speed of 3.0 m/s and Betty has a speed of 2.0 m/s. Their dog, Spot, starts by Arthur's side at the same time and runs back and forth between them at 5.0 m/s. By the time Arthur and Betty meet, what distance has Spot run?
- 26)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

27) A racing car accelerates uniformly from rest along a straight track. This track has markers spaced at equal distances along it from the start, as shown in the figure. The car reaches a speed of 140 km/h as it passes marker 2. Where on the track was the car when it was traveling at 70 km/h?



- A) Between marker 1 and marker 2
- B) Before marker 1
- C) At marker 1

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

28) The figure represents the position of a particle as it travels along the x-axis. Between t = 2 s and t = 4 s, what is (a) the average speed of the particle and (b) the average velocity of the particle?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 29) The position of an object as a function of time is given by $x = bt^2 ct$, where b = 2.0 m/ s^2 and c = 6.7 m/s, and x and t are in SI units. What is the instantaneous velocity of the object when t = 2.2?

- A) 1.7 m/s
- B) 2.3 m/s
- C) 2.1 m/s
- D) 2.7 m/s

	$b = 2.2 \text{ m/s}^2$, $c = 1.3$	7 m/s, and x and t are in	at3 - bt2 + ct, where $a = $ in SI units. What is the in		30)
		object when $t = 0.7 \text{ s}$? B) -13 m/s ²	C) 4.6 m/s ²	D) 2.9 m/s ²	
	•	•	ime is given by $v(t) = 2$ us acceleration of the ol		31)
	C) -2.00 m/s ² D) 2.00 m/s ² E) -7.00 m/s ²				
SHC	ORT ANSWER. Write the was	-	-	or answers the question.	
MUI	d = 7.0 m. (a) Find the instanta	aneous acceleration at <i>t</i> acceleration over the	first 2.4 seconds.		on.
	33) The velocity of an orwhere t is in second located at $x = 1.00$ in	object is given by the explosion at time $t = 0.000$ s. o m/s) $t + (1.33 \text{ m/s}^3)t^3$ 1.33 m/s3) t^3	est completes the statement $v(t) = 3.00 \text{ m/s}$ ion of the object as a fu	$(s + (4.00 \text{ m/s}^3)t^2,$	33)
		s. If the object is at res	of time is given by $a(t)$ st at time $t = 0.00$ s, what		34)

C) 108 m/s

D) 0.00

m/s

E) 15.0

m/s

A) 18.0

m/s

B) 54.0

m/s

35) The acceleration of	· ·		• • • •	* *	35)
where <i>t</i> is in second	•	•			
displacement of the	=				
A) 30.0 m	B) 33.0 m	C) 2	27.0 m	D) 36.0 m	
36) A car accelerates fr		30.0 m/s at a rate	of 3.00 m/s ² . How	w far does the car	36)
travel while accele A) 80.0 m	B) 399 m	C) 2	226 m	D) 133 m	
37) A dragster starts from its its valueity when			s with constant ac	eceleration. What	37)
is its velocity wher	B) 135 mi		88 mi/h	D) 260 mi/h	
A) 296 mi/h	D) 133 IIII	/n C) I	.88 IIII/II	D) 269 mi/h	
38) A airplane that is f	lying level needs	s to accelerate fro	m a speed of 2.00	\times 10 ² m/s to a	38)
speed of 2.40×10^{6} acceleration of the	² m/s while it fli		=		
A) 4.44 m/s ²					
B) 7.33 m/s ² C) 5.78 m/s ²					
D) 1.34 m/s ²					
E) 2.45 m/s ²					
2) 2. 13 11/3					
39) A runner maintains			•		39)
of 60.0 m. The run	-		m is 9.00 m/s. He	ow much time did	
it take the runner to A) 9.80 s	B) 15.0 s	C) 10.2 s	D) 6.67 s	E) 13.3 s	
11) 7.00 3	b) 13.0 s	C) 10.2 s	D) 0.07 s	<i>L)</i> 13.3 s	
40) An object starts fro	om rest at time t	= 0.00 s and move	es in the $+x$ direct	ion with constant	40)
acceleration. The	•	0 m from time t = 0.0 m	= 1.00 s to time t =	= 2.00 s. What is	
the acceleration of	the object?				
A) 4.00 m/s^2					
B) 24.0 m/s ² C) 8.00 m/s ²					
D) -4.00 m/s ²					
E) -12.0 m/s ²					
E) -12.0 III/S2					
41) A car starts from re	est and accelerate	es with a constant	acceleration of 1	$0.00 \text{ m/s}^2 \text{ for } 3.00$	41)
s. The car continue					
its starting point?	10 -			_,	
A) 24 0 m	B) 19 5 m	C) 9 00 m	D) 15 0 m	E) 4 50 m	

	2) A ball rolls acro	oss a floor with an a	acceleration of 0.1	$00 \text{ m/s}^2 \text{ in a direction}$	ction opposite to	42)
	its velocity. Th	e ball has a velocit	y of 4.00 m/s after	rolling a distance	e 6.00 m across	
	the floor. What	was the initial spe	ed of the ball?			
	A) 4.60	B) 5.85	C) 3.85	D) 5.21	E) 4.15	
	m/s	m/s	m/s	m/s	m/s	
43	3) A car is 200 m t	from a stop sign an	d traveling toward	the sign at 40.0 i	m/s. At this time,	43)
		enly realizes that sh	-			
		kes, what must be t	•			
		are applied so that	the car will come	to rest at the stop	sign?	
	A) 3.42 m/s^2					
	B) 2.89 m/s^2					
	C) 4.17 m/s^2					
	D) 2.08 m/s^2					
	E) 3.89 m/s^2					
4	4) A speeding car	is traveling at a cor	nstant 30.0 m/s wh	nen it passes a stat	tionary police car.	44)
	If the police car	delays for 1.00 s b	efore starting, wh	at must be the ma	agnitude of the	
		ration of the police	car to catch the sp	beeding car after t	the police car	
	travels a distanc	ce of 300 m?				
	A) 1.45 m/s^2					
	B) 7.41 m/s^2					
	C) 3.00 m/s^2					
	D) 6.00 m/s^2					
	E) 3.70 m/s^2					
SHORT	ANSWER. Write t	he word or phrase th	at best completes e	ach statement or ar	nswers the question.	
4	5) A soccer ball is	released from rest	at the top of a gra	ssy incline. After	8.6 45)	
		l travels 87 meters		•		
	of the incline.					
	(a) What was th	e magnitude of the	ball's acceleration	n, assume it to be	constant?	
	(b) How long w	as the incline?				
MULTI	PLE CHOICE. Cho	ose the one alternativ	ve that best comple	tes the statement or	r answers the question.	
40	6) A package is dr	opped from a helic	opter moving upw	ard at 15 m/s. If i	it takes 16.0 s	46)
	before the packa	age strikes the grou	ınd, how high abo	ve the ground wa	s the package	
	when it was rele	eased if air resistan	ce is negligible?		-	
	A) 1000 m	B) 1500 r	m C) 1	200 m	D) 810 m	

47)	A ball is projected	l upward at time	t = 0.0 s, from a p	oint on a roof 90 m	n above the	47)
	ground. The ball r	ises, then falls a	nd strikes the grou	and. The initial velo	ocity of the ball	
	is 36.2 m/s if air r	esistance is negl	igible. The time w	hen the ball strikes	the ground is	
	closest to					
	A) 10 s	B) 9.0 s	C) 9.7 s	D) 9.4 s	E) 8.7 s	
48)		-	_	× 10 ² m tall, one ro of 10 m/s. Both of		48)
	experience negligithe ground?	ible air resistanc	e. How much EAl	RLIER does the thr	own rock strike	
	A) 0.67 s		B) ().95 s		
	C) 0.86 s		D) '	They land at exactly	y the same time.	
49)	Two identical obje	ects A and B fall	from rest from di	fferent heights to th	ne ground and	49)
	feel no appreciabl	e air resistance.	If object B takes	TWICE as long as	object A to reach	
	the ground, what i	s the ratio of the	e heights from whi	ch A and B fell?		
	A) $h_{A}/h_{B} = 1/8$		B) <i>i</i>	$h_{\rm A}/h_{\rm B} = 1/4$		
	C) $h_A/h_B = 1/$	2	D) <i>i</i>	$h_{\rm A}/h_{\rm B}=1/2$		
SHORT A	ANSWER. Write the	word or phrase t	hat best completes 6	ach statement or ans	wers the question.	
50)	A foul ball is hit s	traight up into tl	he air with a speed	of 30.0 m/s.	50)	
,			•	its maximum heigl	ht.	
	(b) Calculate the 1	_				
				t 25.0 m above the	point of	
	contact between th		r r r .		1	
	(d) Explain why t		wers to part (c).			
MULTIP	LE CHOICE. Choose	e the one alternati	ive that best comple	tes the statement or a	answers the question	1.
51) A rock is dropped from the top of a vertical cliff and takes 3.00 s to reach the ground						51)
			•	from the cliff, and i		
	2.00 s to reach the	ground below t	the cliff from the t	me it is released. Y	With what	
	velocity was the s	econd rock thro	wn, assuming no a	ir resistance?		
	A) 4.76 m/s upw	ard				
	B) 4.76 m/s dow	nward				
	C) 12.3 m/s dow	nward				
	D) 5.51 m/s dow	nward				
	E) 12.3 m/s upw	ard				

52) To determine the	0 01	•	•		52)
	• •	-	0 s and then reache	-	
			gh is the pole above	e the point	
	as launched? (You	_		- 10	
A) 13 m	B) 26 m	C) 16 m	D) 18 m	E) 10 m	
53) A test rocket is fi	red straight up fro	m rest with a net	acceleration of 20.0	m/s ² . After	53)
4.00 seconds the	motor turns off, b	ut the rocket conti	nues to coast upwa	rd with no	
appreciable air re	sistance. What ma	aximum elevation	does the rocket rea	ch?	
A) 327 m	B) 320 m	C) 487 m	D) 160 m	E) 408 m	
54) A toy rocket is la	unched vertically	from ground level	(y = 0.00 m), at tin	me $t = 0.00$ s.	54)
The rocket engine	e provides constar	nt upward accelera	tion during the bur	n phase. At the	
	_	_	n and acquired a ve	=	
ŭ			ight, reaches maxir	•	
		-	ance. The speed of	•	
impact on the gro	•	egngiore an resist	unce. The speed of	the rocket upon	
A) 44 m/s	B) 59 m/s	C) 39 m/s	D) 48 m/s	E) 54 m/s	
A) 44 III/S	אן אל אוויא אוויא	C) 39 III/8	D) 40 III/8	E) 54 III/8	
55) A ball is projected	d upward at time	t = 0.00 s. from a	point on a roof 70 r	n above the	55)
	-	-	ball rises, then fal		/
			s. Consider all quar		
•	<u> </u>		-		
•		ne velocity of the	ball when it is 39 n	n above the	
ground is closest					
A) -38 m/s .	B) -30 m/s .	C) -45 m/s.	D) -15 m/s.	E) -23 m/s .	
56) On the earth, who	en an astronaut thr	ows a 0.250-kg st	one vertically upwa	ard, it returns to	56)
his hand a time T	later. On planet X	K he finds that, und	der the same circun	nstances, the	
			ws the stone with the		
velocity and it fee	els negligible air r	esistance. The acc	eleration due to gra	avity on planet	
X (in terms of g)			C	, I	
	_	C) g/2.	D) $2a$	E) g/4.	
11) g/ \ 2.	D) g \ 2.	C) g/2.	D) 2g.	L) g/4.	
57) Two identical sto	* *			•	57)
			om height 2h. If ste	one A takes	
time t to reach the	e ground, stone B	will take time	_	_	
A) $t/2$.	B) 2 <i>t</i> .	C) 4 <i>t</i> .	D) $t\sqrt{2}$.	E) $t/\sqrt{2}$.	
			·	·	
RT ANSWER. Write the	e word or phrase th	at best completes ea	ch statement or ansv	vers the question.	
58) A rock is thrown	directly upward fa	rom the edge of th	e roof of a building	g that is 58) _	
	• •	•	way down, and is o	·	
		_	Neglect any effect		
to surke the groun	na 7.00 seconas a	ici ocing unown.	region any criter	o or an	

resistance. With what speed was the rock thrown?

- 59) A rocket takes off vertically from the launchpad with no initial velocity but a constant upward acceleration of 2.25 m/s². At 15.4 s after blastoff, the engines fail completely so the only force on the rocket from then on is the pull of gravity.
- 59) _____
- (a) What is the maximum height the rocket will reach above the launchpad?
- (b) How fast is the rocket moving at the instant before it crashes onto the launchpad?
- (c) How long after engine failure does it take for the rocket to crash onto the launchpad?

Answer Key

Testname: UNTITLED2

```
1) B
 2) A
 3) B
 4) A
 5) E
 6) D
 7) B
 8) D
 9) (a) J (b) I
10) B
11) E
12) A
13) D
14) A
15) B
16) C
17) C
18) C
19) E
20) A
21) (a) 0.179 m/s (b) 0.893 m/s
22) (a) 5.0 m (b) 1.0 m
23) (a) A (b) C
24) (a) 0.56 m/s (b) 0.11 m/s
25) B
26) 100 m
27) B
28) (a) 1.0 m/s (b) 0.00 m/s
29) C
30) A
31) E
32) (a) 44 m/s<sup>2</sup>
   (b) 18 \text{ m/s}^2
33) A
34) B
35) C
36) D
37) D
38) B
39) D
40) C
41) B
42) E
43) C
44) B
45) a) 2.4 \text{ m/s}^2
                   b) 110 m
```

46) A

Answer Key

Testname: UNTITLED2

```
47) D
48) B
49) B
                (b) 45.9 m
                               (c) 0.995 s and 5.13
50) (a) 3.06 s
   (d) One value is for the ball traveling upward; one value is for the ball traveling downward.
51) C
52) E
53) C
54) D
55) A
56) C
57) D
58) 3.05 m/s
59) (a) 328 m
                 (b) 80.2 \text{ m/s}
                                 (c) 11.7 s
```