CHAPTER 2: The Way the Earth Works: Plate Tectonics

MULTIPLE CHOICE

1. Wegener's evidence for a united Pangaea was so compelling that virtually all geologists agreed with the idea of continental drift during his lifetime.

a. true b. false

ANS: B DIF: Easy REF: 2.1 TOP: I.B

MSC: Applied

2. Without plate tectonics, we would not have

a. plates in constant motion c. formation of new oceans

b. mountain building d. All of the above are correct.

ANS: D DIF: Medium REF: 2.1 TOP: I

MSC: Conceptual

3. Evidence for a united Pangaea comes from the fossil record of which type(s) of organisms?

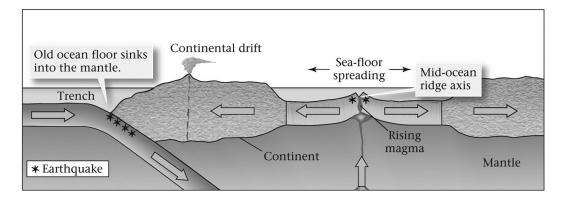
a. various plant types c. freshwater animals

b. large terrestrial animals d. All of the above are correct.

ANS: D DIF: Medium REF: 2.1 TOP: I.A

MSC: Factual

4. Currently, most geologists


a. continue to reject continental drift

- b. agree that continental drift occurs, but they still do not understand why it occurs
- c. agree that continental drift occurs; the mechanisms that drive drift are at work in the ocean basins and upper mantle and were unknown in Wegener's time
- d. agree that continental drift occurs; the mechanisms that drive drift are at work in the lower mantle and outer core and were unknown in Wegener's time

ANS: C DIF: Medium REF: 2.1 TOP: I.B

MSC: Applied

5. The term and concept of sea-floor spreading (see figure below) was developed by

a. Hess and Dietz

c. Wegener and Dietz

b. Hess and Wegener

d. Wegener

ANS: A

DIF: Medium

REF: 2.1

TOP: I.C

MSC: Factual

6. The theory of plate tectonics is a theory because it

a. was discovered so long ago

c. is not widely accepted

b. is widely accepted

d. is commonly regarded as correct

ANS: D

DIF: Medium

REF: 2.1

TOP: I.D

MSC: Conceptual

7. According to Wegener, puzzle pieces are to a jigsaw puzzle as is/are to Pangaea.

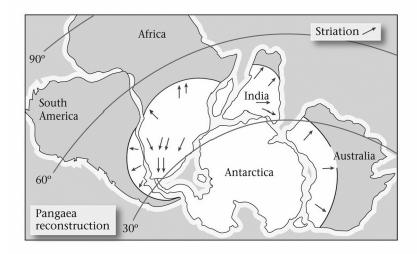
a. continental drift

c. faults

b. continents

d. plate tectonics

ANS: B


DIF: Easy

REF: 2.2

TOP: II.A

MSC: Factual

8. Late Paleozoic glacial deposits are NOT found in which of the following places?

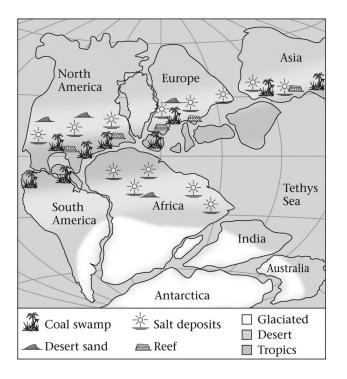
a. India

c. North America

b. southern Africa

d. South America

ANS: C


DIF: Easy

REF: 2.2

TOP: II.B

MSC: Factual

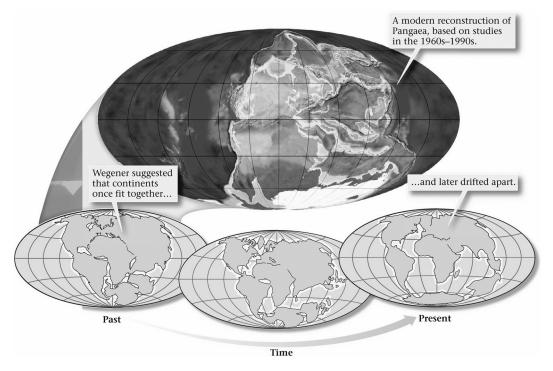
9. Consult the figure below. Abundant swamps led to the formation of coal during the Late Paleozoic in which of the following places?

southern Africa d. South America

ANS: C DIF: Easy REF: 2.2 TOP: II.C

MSC: Factual

10. Wegener's idea of continental drift was rejected by American geologists because ______.


North America

- a. his English was too poor to be understood by them
- b. he could not conceive of a valid mechanism that would cause continents to shift positions
- c. he had relatively little evidence supporting the existence of a supercontinent
- d. the apparent fit of continental coastlines is blurred when the margins are defined by the edges of continental shelves rather than sea level

ANS: B DIF: Medium REF: 2.2 TOP: II

MSC: Applied

11. Wegener proposed continental drift after he observed evidence from fossils, glacial deposits, and the fit of the continents that suggested all of the continents were once ______.

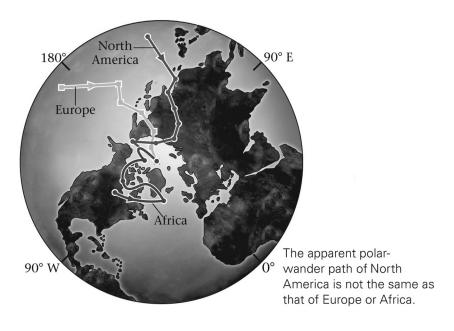
- a. aligned north to south along the prime meridian during the Late Cenozoic
- b. aligned east to west along the equator during the Late Mesozoic through the Cenozoic
- c. combined to form a supercontinent (he termed Rodinia) in the Proterozoic

MSC: Factual

glacial deposits

d. combined to form a supercontinent (he termed *Pangaea*) in the Late Paleozoic through the Mesozoic

	Mesozoic				
	ANS: D DIF: Medium MSC: Conceptual	m REF:	2.2	TOP: II	
12.	. In Wegener's evidence for continent coast of South America with the		_	-	
	 a. west coast of Europe; east coast b. lower west coast of Africa; east c. west coast of Europe; east coast d. lower west coast of Africa; east 	coast of South of North Ame	America rica		
	ANS: D DIF: Medium MSC: Factual	m REF:	2.2	TOP: II.A	
13.	Evidence that glaciers once covered a. till and striations	_	include		
	b. backwash and striations	d.	•	and grabens	
	ANS: A DIF: Medium	m REF:	2.2	TOP: II.B	


14. If we mentally align the continents to fit Wegener's concept of Pangaea, evidence of Late Paleozoic

	b. c.				•		dern continenta onfiguration or		guration dern configuration
		IS: SC:	B Conceptual	DIF:	Medium	REF:	2.2	TOP:	II.B
15.	Ifa	ı ge	ologist discov	vered coa	ıl in a modern-	day colo	d, snowy locati	on, he o	or she could conclude that
	a. b. c. d.	the		ce covere	ed with swamp		r jungles		
		IS: SC:	B Applied	DIF:	Medium	REF:	2.2	TOP:	II.C
16.	the a. b. c. d.	ca tha au mi are de im	n be used to in at are restricted tomatically pro- illion years ag e deposited in posited in col- aply that ancie	onfer the act to war rovide ago warm cl	ancient climate m climate ge information; limates today, l es millions of y	e of the light of	Earth; they are h deposits occu e is good reason o to good snorke	deposit arred be n to thin	on of Earth history because red in environments tween 200 and 400 mk that they were d premium margaritas
17.		ntin A1	ctive rock seq ent of frica irope			ica term c. d.	inate at the Atla North Americ Australia		cean but reappear on the
		IS: SC:	A Factual	DIF:	Difficult	REF:	2.2	TOP:	II.E
18.	Wła.	Gi	n plant genus o inkgo lossopteris	dominate	ed glaciated reg	c.	ring the Late P Neuropteris Quercas	aleozoi	c and Early Mesozoic?
		IS: SC:	B Factual	DIF:	Difficult	REF:	2.2	TOP:	II.D
19.	Wła.		agnetite	egral to p	paleomagnetisn	n? c. d.	quartz potassium fel	dspar	

a. is more difficult to explain than in the modern continental configuration

	ANS: A MSC: Factual	DIF:	Easy	REF:	2.3	TOP:	III
20.	Evidence of paleoma. basalt that has observed b. any rock with note. sedimentary rood. All of the above	cooled from agnetic takes where	om lava minerals prese e minerals form	ent			er
	ANS: D MSC: Factual	DIF:	Easy	REF:	2.3	TOP:	III
21.	without paleomagn a. our compasses b. a compass 90 m c. we would not k d. All of the above	today wo nillion ye now that	ould not point the continents	to what we point to	the same Nor	th we kr	*
	ANS: D MSC: Conceptual	DIF:	Medium	REF:	2.3	TOP:	Ш
22.	rich minerals in	is assumbeen con rocks experienals in roc	ned to have be stant through ced numerous	en identi geologic polarity	cal to today's time, due to r reversals, due	emnant to remn	magnetization of iron- nant magnetization of l calculations
	ANS: C MSC: Applied	DIF:	Easy	REF:	2.3	TOP:	III.A
23.	The apparent tender a. Dipole b. magnetic declin	·	e north (or sou	c.	magnetic inc	lination	osition over time is termed
	ANS: D MSC: Factual	DIF:	Easy	REF:	2.3	TOP:	III.B

24. Why does each continent below have a different polar wander path?

	***			. •	
a.	Wegener	MAC	rioht.	continents	move
а.	WCECHCI	w as	HEIII.	Commissions	movc.

c. Both the poles and continents move.

b.	The	e po	les	mov	e.
----	-----	------	-----	-----	----

ANS: A	DIF:	Easy	REF: 2.3	TOP: III.B
MSC: Applied				

- 25. The apparent polar wander path obtained from magnetite crystals in basalts on the North American continent is now interpreted to be the result of _____.
 - a. wandering of the geomagnetic North Pole
 - b. drifting of the North American continent

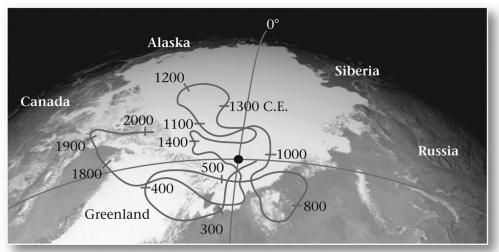
ANS: B DIF: Easy REF: 2.3 TOP: III.B MSC: Applied

26. A compass today points directly to geographic north.

a. true b. false

ANS: B DIF: Medium REF: 2.3 TOP: III.A

MSC: Factual


27. An average everyday compass depicts inclination.

a. true b. false

ANS: B DIF: Medium REF: 2.3 TOP: III.A

MSC: Factual

28. According to the figure below, Earth's magnetic poles move constantly, but don't seem to stray farther than about from the geographic poles.

A map of the magnetic pole position during the past 1,800 years shows that the pole moves, but stays within high latitudes.

a. 500 km

c. 1,500 km

b. 1,000 km

d. 2,000 km

ANS: C MSC: Factual DIF: Medium

REF: 2.3

TOP: III.A

29. If you were using both a compass and a map marked with latitude and longitude to navigate, you might note the angle difference between your compass and what is marked on the map, called

a. magnetic inclination

c. magnetic dipole

b. magnetic declination

d. magnetic reversal

ANS: B

DIF: Medium

REF: 2.3

TOP: III.A

MSC: Applied

30. It is not the continents that move relative to a fixed pole, but rather it is the pole that moves relative to fixed continents.

a. true

b. false

ANS: B

DIF: Medium REF: 2.3

TOP: III.B

MSC: Factual

31. Where Earth's magnetic dipole intersects with the surface of the planet is called the

a. magnetic inclination

c. magnetic dipole

b. geographic pole

d. magnetic pole

ANS: D

REF: 2.3

TOP: III.A

MSC: Factual

32. The deep-ocean floor is flat and nearly featureless.

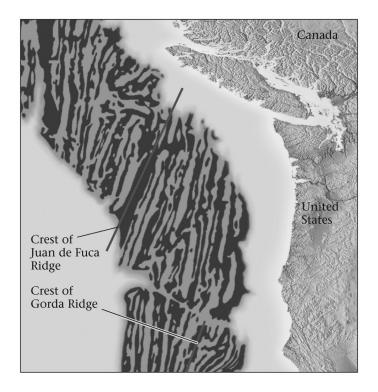
a. true

b. false

ANS: B

DIF: Easy

DIF: Difficult


REF: 2.4

TOP: IV.A

MSC: Factual

33.	Sea-floor spreading is drive a. in the middle of abyssa b. along mid-ocean ridges	l plains	c.	at the edges o		nental shelves
	ANS: B DIF: MSC: Factual	Easy	REF:	2.4	TOP:	IV.A.i
34.	Within the sea floor, the rat	•		_		
	a. along mid-ocean ridges		c.	at the edges o	f ocean	basins
	b. along fracture zones		d.	in the center of	of abys	sal plains
	ANS: A DIF: MSC: Applied	Easy	REF:	2.4	TOP:	IV.A.i
35.	Volcanoes that have subme	rged beneath the	e surface	e of the sea are	termed	
	a. mid-ocean ridges		c.	fracture zones	S	
	b. guyots		d.	continental ris	ses	
	ANS: B DIF: MSC: Factual	Easy	REF:	2.4	TOP:	IV.A.iii

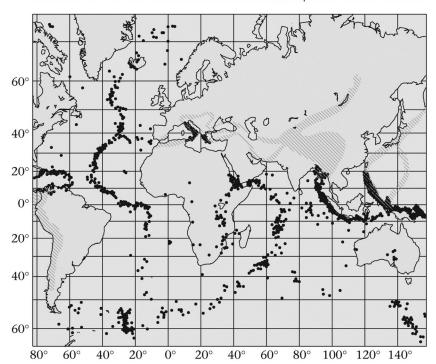
36. According to the figure below, fracture zones lay roughly ______ to mid-ocean ridges.

DIF: Easy

a. perpendicular

c. adjacent

b. parallel


d. at an obtuse angle

ANS: A MSC: Factual

REF: 2.4

TOP: IV.A.iv

A 1953 map showing the distribution of earthquake locations in the ocean basins. Note that earthquakes occur in belts.

	a. volcanoes also re	•						
	b. movements of the	e crust take place	d.	All of the above are correct.				
	ANS: D MSC: Applied	DIF: Easy	REF:	2.4	TOP: IV.A.iv			
38.	The age of oceanic cr	rust	with incre	asing dista	nce from a mid-ocean ridge			
	a. increases		b.	decrease	S			
	ANS: A MSC: Factual	DIF: Easy	REF:	2.4	TOP: IV.B			
39.	A great boost in sea-f	•	d a greater	understan	ding of sea-floor bathymetr	y were a		
	a. scientific advance	es in the 1950s	c.	military 1	needs in World War I			
	b. scientific advance	es in the 1920s	d.	military 1	needs in World War II			
	ANS: D MSC: Factual	DIF: Medium	REF:	2.4	TOP: IV			
40.	Deep-ocean trenches reach depths up to	•	•	•	meter of the Mt. Everest.	and can		

c. Atlantic Ocean; 4–10 km

d. Atlantic Ocean; 8-12 km

a. Pacific Ocean; 4–10 km

b. Pacific Ocean; 8–12 km

	ANS: MSC:	B Factual	DIF:	Medium	REF:	2.4	TOP:	IV.A.ii		
41.	Beneath a blanket of sediments, oceanic crust is primarily composed of two rocks, and									
	•	anite; diorite bbro; basalt			c. d.	sandstone; sh slate; gneiss	ale			
	ANS: MSC:	B Factual	DIF:	Medium	REF:	2.4	TOP:	IV.B		
42.	The ol	dest basalts on	the oce	ean floor are ab	out	yea	ars old.			
	a. 50	thousand			c.	200 million				
	b. 41	billion			d.	2.5 million				
	ANS: MSC:	C Factual	DIF:	Medium	REF:	2.4	TOP:	IV.B		
43.	The th	ickness of clay	and pla	anktonic micro	skeletoi	ns is greatest				
	a. along mid-ocean ridges					at the edges o				
	b. alo	ong fracture zo	nes		d.	in the center of	of abyss	sal plains		
	ANS: MSC:	C Applied	DIF:	Medium	REF:	2.4	TOP:	IV.B		
44.	away ta accuma. pla	from mid-ocean ulating since the ankton and she ankton and she	n ridges ne form lled org lled org s young	and covers mo ation of Earth, ganisms evolved ganisms do not of er toward the m	ost of the suggest d recent often di	te ocean floor, but thattly ie and sink to the	out is to	that gets thicker as it moves to thin to have been om of the ocean		
	ANS: MSC:	B Conceptual	DIF:	Medium	REF:	2.4	TOP:	IV.B		
45.	a. M b. Oc c. Oc tyj	agma primarily ceanic bedrock	does no	to form basalt. ot experience cl	hanges	_	duce di	ifferent rock types. ce different rock		
	ANS: MSC:	D Conceptual	DIF:	Medium	REF:	2.4	TOP:	IV.B		
46.	a. ha	salts younger the ve normal mag ve reverse mag	netic p							

- c. are found on the ocean floor very far from mid-ocean ridges
- d. are found on the continents

ANS: A DIF: Difficult REF: 2.4 TOP: IV.B

MSC: Applied

47. A "stripe" of a particular magnetic orientation that has a very large width could be indicative of

a. a great deal of time spent in a particular magnetic regime

b. higher spreading rates than other points in time

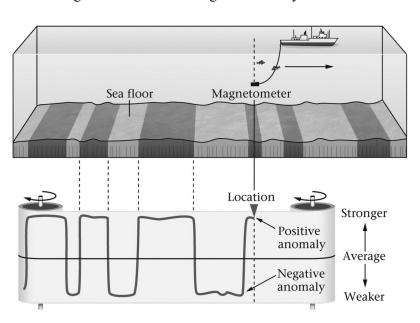
c. Both a and b are correct.

d. None of the above are correct.

ANS: C DIF: Medium REF: 2.5 TOP: V

MSC: Conceptual

48. Marine magnetic anomaly belts run parallel to _____


. mid-ocean ridges c. continental coastlines

b. fracture zones d. continental shelves

ANS: A DIF: Easy REF: 2.6 TOP: V.A

MSC: Factual

49. Consult the figure below. Marine magnetic anomaly belts are widest when and where

- a. continents are joined to form supercontinents
- b. sea-floor spreading rates are relatively rapid
- c. sea-floor spreading rates are relatively slow

ANS: B DIF: Easy REF: 2.6 TOP: V.A

MSC: Applied

50.	Regions of the sea floor with positive magnetic and magnetic field .	malies were formed during times when Earth's
		had normal polarity
		had reversed polarity
	ANS: C DIF: Easy REF: MSC: Applied	2.6 TOP: V.A
51.	magnetic field	-
		had normal polarity had reversed polarity
	ANS: D DIF: Easy REF: MSC: Applied	2.6 TOP: V.A
52.	According to the figure below, the Earth's magnetic	reversals are likely due to
	A ship towing a magnetometer detects changes in the magnetic field.	strength of the
	Sea floor Magnetometer	Ship moves to the right.
	a. meteorite impacts	
	b. lightning strikes	
	c. changes in circulation patterns in the outer cored. changes in circulation patterns in the inner core	
	ANS: C DIF: Easy REF: MSC: Factual	2.6 TOP: V.A.i
53.	Marine magnetic anomalies result from sea-floor sp a. global warming b. magnetic storms on the surface of the Sun c. magnetic polarity reversals d. apparent wander of the magnetic poles	reading in conjunction with
	ANS: C DIF: Easy REF: MSC: Applied	2.6 TOP: V.A.i
54.	By deep-sea drilling, the <i>Glomar Challenger</i> proved was correct, then sea-floor sediment should be from the spreading axis.	
		thinner; younger

	b. thicker; older			d.	thinner; older		
	ANS: B MSC: Factual	DIF:	Easy	REF:	2.6	TOP:	V.B
55.	Continental lithospho a. is thicker than oc b. contains more m c. is denser than oc d. contains no crust	eanic la afic roc eanic li	ithosphere ks than oceanion thosphere	-		er mant	le
	ANS: A MSC: Factual	DIF:	Easy	REF:	2.6	TOP:	VI.A
56.	continental crust.	s are ap	pproximately th			n a con	nbination of oceanic and
	a. true			b.	false		
	ANS: B MSC: Conceptual	DIF:	Easy	REF:	2.6	TOP:	VI.A
57.	Continental coastline a. internal marginsb. passive margins	es that o	occur within the	c.	r of a tectonic p active margin inert margins		e called
	ANS: B MSC: Factual	DIF:	Easy	REF:	2.6	TOP:	VI.B
58.	Broad, sediment-cov	ered co	ntinental shelve	es are fo	ound along		
	a. active margins				internal marg		
	b. passive margins			d.	inert margins		
	ANS: B MSC: Factual	DIF:	Easy	REF:	2.6	TOP:	VI.B
59.	Within the terminolo a. synonymous with b. a 5-mile radius s c. a continental coa d. anywhere on Ear	h "subdurround stline th	uction zone" ling an active v hat coincides w	olcano oith a pl	ate boundary		
	ANS: C MSC: Factual	DIF:	Easy	REF:	2.6	TOP:	VI.B
60.	Earthquakes are mos	t freque	ent near coastli	nes that	are termed		
	a. active margins	•		c.			.
	b. passive margins			d.	geodesic mar	gins	
	ANS: A	DIF:	Easy	REF:	2.6	TOP:	VII

MSC: Applied 61. In a hot-spot volcanic island chain, such as the Hawaiian Islands, all islands possess active volcanoes simultaneously and therefore the risks of volcanic hazards are about the same for all islands. b. false a. true ANS: B DIF: Easy REF: 2.6 TOP: VII MSC: Applied 62. Spreading rates along mid-ocean ridges have . . been remarkably constant through time b. changed through time, but are the same everywhere on Earth today c. changed through time, and today vary between 1 and 10 m/yr d. changed through time, and today vary between 1 and 10 cm/yr ANS: D DIF: Medium REF: 2.6 TOP: V MSC: Applied 63. Under the theory of plate tectonics, the plates themselves are discrete pieces of lithosphere at the surface of the solid Earth that move with respect to one another b. discrete layers of lithosphere that are vertically stacked one atop the other composed only of continental rocks that plow through the weaker oceanic rocks d. very thick (approximately one-quarter of Earth's radius) TOP: VI DIF: Medium REF: 2.6 ANS: A MSC: Conceptual 64. The theory of plate tectonics a. incorporates continental drift but not sea-floor spreading b. incorporates sea-floor spreading but not continental drift incorporates and explains both sea-floor spreading and continental drift d. does not incorporate sea-floor spreading or continental drift ANS: C DIF: Medium REF: 2.6 TOP: VI MSC: Conceptual 65. The average thickness of continental lithosphere is about a. 30 km c. 150 km b. 60 km 10,000 km REF: 2.6 TOP: VI.A ANS: A DIF: Medium MSC: Factual 66. Unlike the lithosphere, the asthenosphere a. is able to flow over long periods of time c. varies in thickness from place to place b. has a density similar to the core d. is relatively cool

ANS: A

DIF: Medium

REF: 2.6

TOP: VI.A

MSC: Applied

67. The lithosphere of Earth can be bent and broken, but will not flow because it ...

a. is too old

c. is too cool

b. is too dense

d. contains radioactive elements

ANS: C

DIF: Medium

REF: 2.6

TOP: VI.A

MSC: Applied

68. Tectonic plates might consist of

- a. continental lithosphere only
- b. oceanic lithosphere only
- c. oceanic or continental lithosphere, or a combination of both
- d. either oceanic or continental lithosphere, but not both

ANS: C

DIF: Medium

REF: 2.6

TOP: VI.A

MSC: Applied

69. The thickness of oceanic lithosphere is . .

a. uniformly 100 km

b. greatest at the geographic poles and least near the equator

- c. greatest near the mid-ocean ridges and thins out away from the ridges
- d. least near the mid-ocean ridges and thickens away from the ridges

ANS: D

DIF: Medium

REF: 2.6

TOP: VI.A

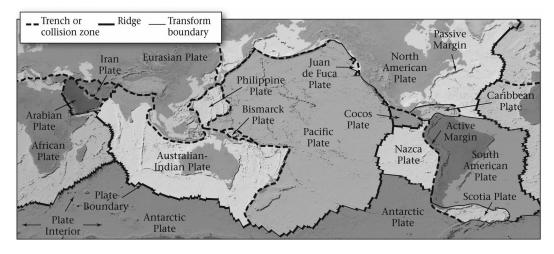
MSC: Applied

70. The number of lithospheric plates on the Earth has been variable through geologic time. Hundreds of millions of years ago, there were plates that no longer exist today.

a. true

b. false

ANS: A


DIF: Medium

REF: 2.6

TOP: VI.A

MSC: Conceptual

71. According to the figure below, every plate boundary can be recognized by

a. the presence of active volcanoes

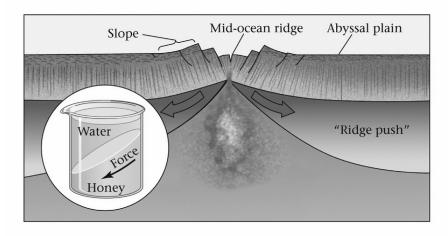
	b. the presence of an earthquake beltc. a deep chasm that can be seen from spaced. None of the above are correct.									
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.6	TOP:	VI.B			
72.	Tectonic plates move a. 1 to 5 cm every 1 b. 1 to 15 cm/year			c.	1 to 15 m/yea 10 to 100 m/y	r				
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.6	TOP:	VI.B			
73.	Deformed (bent, street a. randomly over the b. only at transform ANS: C MSC: Applied	e surfa plate b	ce of Earth	c.	on the margin	s of tec	etonic plates te boundaries			
74.	The pulling forces th a. mid-ocean ridges b. ocean trenches	-	uce the most ra	c.	e velocities are continental co stable contine	ollision	zones			
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.6	TOP:	VII			
75.	Slab pull occurs beca a. less mafic, and the b. cooler, and there c. hotter, and there d. cooler, and there	nerefore fore mo	e less dense, than sere dense, than s	n surro surroun	unding astheno ding asthenosph ding asthenosph	here nere				
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.6	TOP:	VII			
76.	The rate of motion of	f a litho	spheric plate w	ith resp	ect to a stationa	ary hot	spot is termed			
	a. relative plate velob. absolute plate vec. lateral plate velod. Velocity of this n	locity city	cannot be deter	mined.						
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.6	TOP:	VII			
77.	The lithosphere of th	e Earth	is generally thi	innest a	t and near		plate boundaries.			

a. Convergent

c. Transform

b. Divergent

MSC: Factual


ANS: B

DIF: Medium

REF: 2.6

TOP: VII

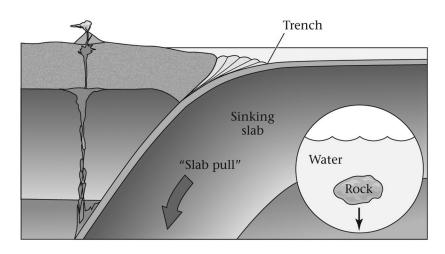
78. Consult the figure below. Most of the pushing force driving plate motion is produced

a. at mid-ocean ridges

c. at collision zones

b. at subduction zones

d. in the interiors of continental plates


ANS: A MSC: Applied

DIF: Medium

REF: 2.6

TOP: VII

79. Consult the figure below. Most of the pulling force driving plate motion is produced .

a. at mid-ocean ridges

c. at collision zones

b. at subduction zones

d. in the interiors of continental plates

ANS: B DIF: Medium REF: 2.6 TOP: VII

MSC: Applied

80. If mid-ocean spreading was to stop, but subduction continue, which of the following would occur?

a. Continents would begin moving toward each other.

- b. The surface area of the Earth would decrease.
- c. Sea level would rise.
- d. Both a and b are correct.
- e. All of the above are correct.

ANS: E DIF: Difficult REF: 2.6 TOP: VI

MSC: Conceptual

81. According to Archimedes' principle of buoyancy, an iceberg sinks until

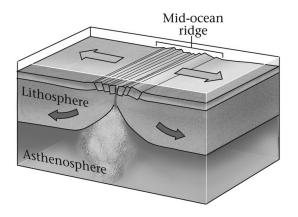
- a. the total mass of the water displaced equals the total mass of the whole iceberg
- b. the total mass of the iceberg is underwater
- c. about 60% of the iceberg is underwater
- d. the total mass of the water displaced equals 80% of the mass of the iceberg

ANS: A DIF: Difficult REF: 2.6 TOP: VI.A

MSC: Factual

- 82. The primary difference between lithospheric and asthenospheric mantle that gives rise to numerous divergent patterns of physical behavior is
 - a. physical state (the lithosphere is solid; the asthenosphere is liquid)
 - b. chemical composition (the lithosphere is mafic; the asthenosphere is felsic)
 - c. temperature (the lithosphere is cooler than the asthenosphere)
 - d. chemical composition (the lithosphere is felsic; the asthenosphere is mafic)

ANS: C DIF: Difficult REF: 2.6 TOP: VI.A


MSC: Conceptual

- 83. Why don't earthquakes occur everywhere?
 - a. Rocks break and slip most often along plate boundaries.
 - b. Plate interiors do not accommodate much movement.
 - c. Earthquake epicenters speckle the globe randomly.
 - d. Both a and b are correct.
 - e. All of the above are correct.

ANS: D DIF: Difficult REF: 2.6 TOP: VI.B

MSC: Conceptual

84. At a divergent plate boundary (shown below), two opposed plates ______.

a.	move toward one another	c.	slide past one another
h.	move away from one another		

ANS: B DIF: Easy REF: 2.7 TOP: VII MSC: Factual

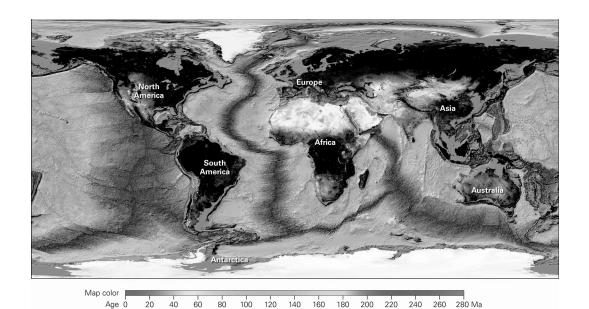
85. All rock produced at the mid-ocean ridges consists of basalt.

a. true b. false

ANS: B DIF: Easy REF: 2.7 TOP: VII.A

MSC: Factual

86. The youngest sea floor occurs _____.

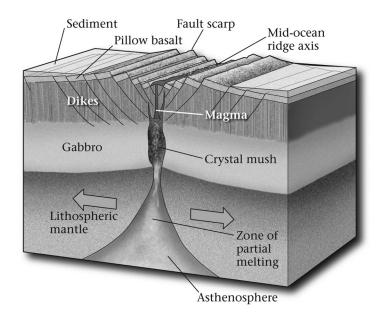

a. along passive margins c. along mid-ocean ridges

b. along active margins d. randomly over the entire ocean basin

ANS: C DIF: Easy REF: 2.7 TOP: VII.A

MSC: Factual

87. The oldest oceanic crust is approximately _______ years old.



a. 1 billion c. 120 million b. 240 million d. 90 million

ANS: B DIF: Medium REF: 2.7 TOP: VII.A

MSC: Factual

88. As compared to a slowly spreading mid-ocean ridge, a rapidly spreading ridge is . .

a. wider

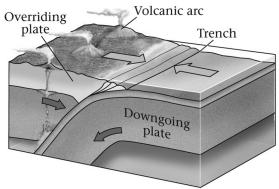
c. more silicic in lava composition

b. narrower

ANS: A

DIF: Medium

REF: 2.7


TOP: VII.A

MSC: Applied

- 89. As compared to the density of the asthenosphere, the oceanic lithosphere is ...
 - a. always more dense
 - b. always less dense

	d. initially less dense at the age of formation but eventually becomes more dense									
	ANS: D MSC: Applied	DIF:	Medium	REF:	2.7	TOP:	VII.A			
90.	As lithosphere cools to the sides of a mid-ocean ridge, it begins to a. rise with respect to material located closer to the ridge axis b. sink with respect to material located closer to the ridge axis									
	ANS: B MSC: Applied	DIF:	Medium	REF:	2.7	TOP:	VII.B			
91.	Oceanic lithosphere a. the addition of n b. the addition of n c. the addition of n d. reasons that geol	ew crus ew crus ew litho	t due to hot-spo t due to sedime espheric mantle	ot volca ntation as a res	nism	arily d	ue to			
	ANS: C MSC: Applied	DIF:	Medium	REF:	2.7	TOP:	VII.B			
92.	summed over the en a. the rate of lithosy consumption at s b. the rate of lithosy lithospheric proc c. rates of lithosphe ANS: C MSC: Conceptual	pheric problems pheric coluction eric pro-	oroduction at rice ion zones consumption at a at ridges	lges is g	greater than the	eater th	•			
93.	Why is the ocean deca. The deeper ocean The deeper ocean The deeper ocean All of the above	n floor : n floor : n floor :	is below 1,280° is older than 80 is thick and den	C. millior		n floor	?			
	ANS: D MSC: Conceptual	DIF:	Medium	REF:	2.7	TOP:	VII.B			
94.	Iceland is one of the plate	few pla		d that is	both above sea	ı level a	and situated atop a			
	a. convergentb. divergent			c.	transform					
	ANS: B MSC: Applied	DIF:	Difficult	REF:	2.7	TOP:	VII.B			

c. initially more dense at the age of formation but eventually becomes less dense

	a. move toward oneb. move away from			c.	slide past one	anothe	r
	ANS: A MSC: Factual	DIF:	Easy	REF:	2.8	TOP:	VIII
96.	Deep-oceanic trenche	es are fe	eatures of		plate bound	aries.	
	a. convergentb. divergent			c.	transform		
	ANS: A MSC: Factual	DIF:	Easy	REF:	2.8	TOP:	VIII
97.	Large, thick, nonvolc	anic m		ke the	Himalayas, hav	e featui	res associated with
	a. convergentb. divergent			c.	transform		
	ANS: A MSC: Applied	DIF:	Easy	REF:	2.8	TOP:	VIII
98.	The volcanoes of theplate			are relat	ted to melting o	f rock a	associated with a
	a. convergentb. divergent			c.	transform		
	ANS: A MSC: Applied	DIF:	Easy	REF:	2.8	TOP:	VIII
99.	Mid-ocean ridges are	:	·				
	a. convergent-plateb. divergent-plate			c. transform-plate boundarie			
	ANS: B MSC: Applied	DIF:	Easy	REF:	2.8	TOP:	VIII
100.	At a subduction zone	, the do	owngoing (subd	ucting)	plate		

is always composed of continental lithosphere b. is always composed of oceanic lithosphere may be composed or either oceanic or continental lithosphere ANS: B DIF: Easy REF: 2.8 TOP: VIII.A MSC: Factual 101. At a subduction zone, the overriding plate a. is always composed of continental lithosphere b. is always composed of oceanic lithosphere may be composed of either oceanic or continental lithosphere ANS: C DIF: Easy REF: 2.8 TOP: VIII.A MSC: Factual 102. Consult the figure below. Subduction zones are Fault belt due Continental Accretionary Forearc basin axis Rising_ magma Lithosphere overriding plate) Lithosphere downgoing plate) Accretionary Asthenosphere prism Rising magma Partial melting The overriding plate acts like a bulldozer, scraping sediment off the downgoing plate to build an accretionary prism. convergent-plate boundaries transform-plate boundaries divergent-plate boundaries b. ANS: A DIF: Easy REF: 2.8 TOP: VIII.A MSC: Applied 103. Virtually all of the sediment atop a downgoing plate becomes subducted into the mantle along with the plate. b. false a. true

plate.
a. true

b. false

ANS: B

MSC: Applied

The lithosphere of the Earth is generally thickest at and near ______-plate boundaries.
a. convergent
b. divergent

ANS: A

MSC: Factual

DIF: Medium

REF: 2.8

TOP: VIII.A.ii

TOP: VIII.A.ii

- 105. Why does the surface area of Earth remain constant throughout time?
 - a. Subduction occurs.
 - b. Rates of sea-floor spreading are equal to sea-floor consumption.
 - c. Plates slip past each other.
 - d. Both a and b are correct.
 - e. Both b and c are correct.

ANS: D DIF: Medium REF: 2.8 TOP: VIII

MSC: Conceptual

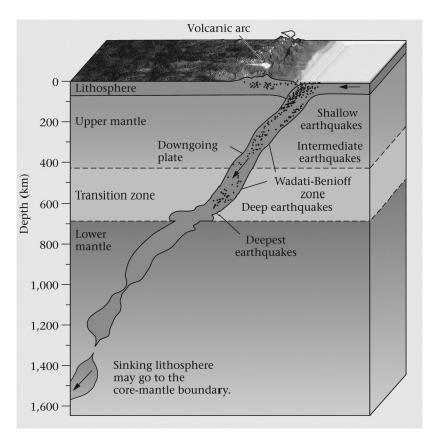
106. Subducted slabs have never been detected below the Wadati-Benioff zone.

a. true b. false

ANS: B DIF: Medium REF: 2.8 TOP: VIII.A

MSC: Factual

107. The Wadati-Benioff zone extends down within the mantle to a maximum depth of _


a. 30 km c. 670 km

b. 150 km d. 990 km

ANS: C DIF: Medium REF: 2.8 TOP: VIII.A

MSC: Factual

108. Consult the figure below. The Wadati-Benioff zone is a belt of earthquakes found _____

within an overriding plate at a subduction zone c. within a downgoing plate at a subduction zone d. along mid-ocean ridges ANS: C DIF: Medium REF: 2.8 TOP: VIII.A MSC: Factual 109. A volcanic island arc forms when an oceanic plate subducts beneath continental lithosphere b. an oceanic plate subducts beneath another oceanic plate c. continental lithosphere subducts beneath an oceanic plate d. two oceanic plates collide ANS: B DIF: Medium REF: 2.8 TOP: VIII.A.iii MSC: Factual 110. At a transform-plate boundary (shown below), two opposed plates ______. Volcanic arc Overriding plate Trench Downgoing plate move toward one another slide past one another move away from one another ANS: C DIF: Easy REF: 2.9 TOP: IX MSC: Factual 111. At transform-plate boundaries ___ earthquakes are common but volcanoes are absent b. volcanoes are common but earthquakes do not occur both earthquakes and volcanoes are common ANS: A DIF: Easy REF: 2.9 TOP: IX MSC: Applied 112. Segments of the mid-ocean ridge system are offset. Between the offset segments we observe a. a second series of ridges, perpendicular to the main set

within an otherwise stable continental interior

b. deep-ocean trenches

- c. transform faults
- d. None of the above are correct.

ANS: C DIF: Easy REF: 2.9 TOP: IX

MSC: Applied

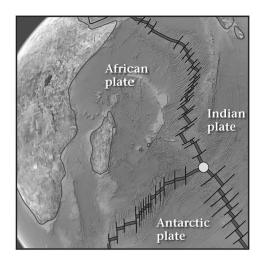
113. The San Andreas Fault zone in southern California is an example of a ______-plate boundary.

a. convergent c. transform

b. divergent

ANS: C DIF: Easy REF: 2.9 TOP: IX

MSC: Applied


114. All portions of the mid-ocean ridge system have a well-defined axial trough (central rift).

a. true b. false

ANS: B DIF: Medium REF: 2.9 TOP: IX.A

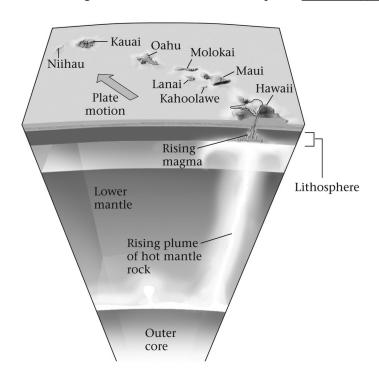
MSC: Factual

115. A triple junction, like the one shown below, is a place on Earth's surface where _____.

- a. three volcanoes form a tight, triangular cluster
- b. glacial ice, continental rocks, and the ocean can be found together
- c. the boundaries of three lithospheric plates meet at a single point
- d. the boundaries of three lithospheric plates meet to form an elongate surface

ANS: C DIF: Easy REF: 2.10 TOP: X.A

MSC: Factual


116. A guyot is .

- a. any portion of the ocean floor that is topographically higher than surrounding sea floor
- b. an extinct oceanic hot-spot volcano that has not yet subsided below sea level
- c. an extinct oceanic hot-spot volcano that has subsided below sea level
- d. synonymous with the term hot spot

ANS: C DIF: Easy REF: 2.10 TOP: X.B

MSC: Factual

117. Consult the figure below. Hawaii is an example of

a. hot-spot volcanism

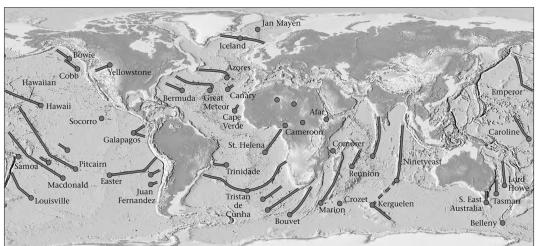
- c. volcanic island arc
- b. mid-ocean ridge volcanism
- d. transform margin

ANS: A MSC: Applied

DIF: Easy

REF: 2.10

TOP: X.B


Misc. Applied

- 118. Hot spots are caused by . .
 - a. friction due to the lithosphere sliding atop the asthenosphere
 - b. unusually dense concentrations of radioactive isotopes at various points in the crust
 - c. hot plumes of mantle material that rises up through cooler, denser surrounding rock
 - d. factors that remain completely unknown at this time

ANS: C DIF: Easy REF: 2.10 TOP: X.B.i

MSC: Factual

119. Consult the figure below. Hot-spot tracks result from moving .

	DOUSVIIIC PCITIAL	Iucz	, Cunha	Bouvet	Marion	guelen	Australia Belleny			
	a. mantle plumes			c.	hot spots					
	b. plates			d.	asthenosphere	•				
	ANS: B D MSC: Factual	DIF: E	Easy	REF:	2.10	TOP:	X.B.ii			
120.	Hot spots can occur a. only within continental plates b. only within oceanic plates c. within either continental or oceanic plates d. only when the thickness of the crust is less than 10 km									
	ANS: C D MSC: Applied	DIF: N	Medium	REF:	2.10	TOP:	X.B			
121.										
	ANS: B D MSC: Conceptual	DIF: N	Medium	REF:	2.10	TOP:	X.B			
122.	The mid-ocean ridges a a. ridge rocks are hot b. the lithospheric place c. rising ocean current d. ridge rocks are maf	and the tes are ts leave	refore of relathickest at the	tively le ridges	ow density so that they state ridge	and up	taller			

123. When two bodies of continental lithosphere are pulled together at a convergent boundary, the result is

REF: 2.10

TOP: X.B.i

DIF: Difficult

-----·

MSC: Conceptual

ANS: A

	a. sub	oduction			b.	collision	n and mounta	in for	mation	
	ANS: MSC:	B Applied	DIF:	Easy	REF:	2.11	TOP:	XI		
124.	is an example of a continental rift and the is/are the result of collision. a. The Basin and Range Province; mid-ocean ridge b. A mid-ocean ridge; Himalayan Mountains c. The Basin and Range Province; Himalayan Mountains d. The San Andreas Fault; Himalayan Mountains								t of	
	ANS: MSC:		DIF:	Medium	REF:	2.11	TOP:	XI		
125.	MSC: Applied Without which of the following principles would it be impossible to drive plate motion? a. Plastic material is pushed downslope by the mass of the material at higher elevations. b. Once plastic material starts to sink, it will bring the entire mass of the material with it. c. Plastic material always flows away from its source. d. Both a and b are correct. e. Both b and c are correct. ANS: D DIF: Difficult REF: 2.11 TOP: XII									
		Conceptual	~ .	2 11110 011	101.		101.	2111		