MULTIPLE CHOICE

- 1. The earliest atomic theory is generally associated with:
 - a. Bohr
 - b. Leucippus
 - c. Democritus
 - d. Dalton

ANS: B

Although his theory was somewhat vague, Leucippus is most often the earliest person associated with atomic theory.

OBJ: 1

- 2. The word *atom* is derived from the Greek word *atomos*, meaning:
 - a. nuclear
 - b. small
 - c. indivisible
 - d. invisible

ANS: C

The Greek word *atomos* means "indivisible."

OBJ: 1

- 3. In the early 1800s English chemist John Dalton theorized that:
 - a. elements form compounds
 - b. atoms are unique to each element in size and mass
 - c. a chemical reaction results from atoms being rearranged
 - d. all of the above

ANS: D

As a result of his experiments, John Dalton theorized that elements form compounds, atoms are unique to each element in size and mass, and that a chemical reaction results from atoms being rearranged.

OBJ: 1

- 4. Discovery of the electron is attributed to:
 - a. Dalton
 - b. Bohr
 - c. Thomson
 - d. Rutherford

ANS: C

Joseph John "J.J." Thomson determined that the electron was a negatively charged part of the atom.

OBJ: 1

- 5. The "plum pudding model" is associated with:
 - a. Bohr
 - b. Rutherford
 - c. Dalton
 - d. Thomson

ANS: D

Based on the physical arrangement of raisins in a plum pudding, Thomson described the atom and surrounding negatively charged particles (electrons).

OBJ: 1

- 6. The earliest atomic theory based on the arrangement of the solar system is attributed to:
 - a. Bohr
 - b. Rutherford
 - c. Dalton
 - d. Thomson

ANS: B

Rutherford developed the theory that the atom consisted of a very dense nucleus with small electrons rotating around, similar to the sun and planets.

OBJ: 1

- 7. The most commonly known modern atomic theory was developed by:
 - a. Bohr
 - b. Rutherford
 - c. Dalton
 - d. Thomson

ANS: A

Niels Bohr refined Rutherford's atomic theory, based on the solar system, into the most commonly known atomic theory today.

OBJ: 1

- 8. The three fundamental particles of the atom are the:
 - a. element, nucleus, and electron
 - b. electron, nucleus, and proton
 - c. neutron, electron, and proton
 - d. nucleus, proton, and neutron

ANS: C

The three fundamental components of the atom are the proton, electron, and neutron.

OBJ: 2

- 9. The atomic nucleus contains:
 - a. protons and neutrons
 - b. protons and electrons
 - c. electrons and neutrons
 - d. all of the above

ANS: A

The atomic nucleus contains varying amounts of protons and neutrons, depending on the element.

OBJ: 2

- 10. The component of the nucleus that has a positive charge and mass is the:
 - a. electron
 - b. neutron
 - c. proton
 - d. none of the above

ANS: C

The proton is the part of the nucleus that has a positive charge and mass.

OBJ: 3

- 11. The component of the nucleus that has mass but no electrical charge is the:
 - a. electron
 - b. neutron
 - c. proton
 - d. none of the above

ANS: B

The neutron is found in the nucleus; it is very similar to the proton but has no electrical charge (neutral).

OBJ: 3

- 12. The fundamental component of the atom that has the smallest mass is the:
 - a. electron
 - b. neutron
 - c. proton
 - d. none of the above

ANS: A

The electron has significantly less mass than the neutron or proton.

- 13. The mass of an atom is primarily due to the mass of the:a. neutronsb. nucleusc. electrons
 - ANS: B

d. protons

The nucleus, consisting of both protons and neutrons, accounts for the majority of the mass of an atom.

OBJ: 3

- 14. If an atom has more protons than electrons it will:
 - a. have a negative charge
 - b. have a positive charge
 - c. be electrically neutral
 - d. have neither a positive not negative charge

ANS: B

An atom with more protons than electrons will have a positive charge.

OBJ: 3

- 15. If an atom has more electrons than protons it will:
 - a. have a negative charge
 - b. have a positive charge
 - c. be electrically neutral
 - d. have neither a positive not negative charge

ANS: A

An atom with more electrons than protons will have a negative charge.

OBJ: 3

- 16. If an atom has the same number of electrons and protons it will:
 - a. have a negative charge
 - b. have a positive charge
 - c. be electrically neutral
 - d. none of the above

ANS: C

Having the same number of protons and electrons will result in a neutral atom, having neither a negative nor a positive electrical charge.

- 17. When an atom becomes negatively or positively charged it is usually due to a change in the number of:
 - a. protons

- b. electrons
- c. neutrons
- d. all of the above

ANS: B

In that there is a weaker bond, the addition or loss of electrons typically produces a charged atom.

OBJ: 3

- 18. A negative ion is:
 - a. an electron
 - b. an atom with more protons than electrons
 - c. an atom with more neutrons that electrons
 - d. an atom with more electrons than protons

ANS: D

A negative ion is a charged atom with more electrons than protons.

OBJ: 3

- 19. A positive ion is:
 - a. a proton
 - b. an atom with more protons than electrons
 - c. an atom with more neutrons that electrons
 - d. an atom with more electrons than protons

ANS: B

A positive ion is a charged atom with more protons than electrons.

OBJ: 3

- 20. The force that holds the protons and neutrons together in the nucleus is the:
 - a. binding energy
 - b. nuclear energy
 - c. atomic energy
 - d. proton/neutron energy

ANS: A

The force that holds the protons and neutrons together in the nucleus is the binding energy.

OBJ: 3

- 21. If a particle strikes an atom with the same amount of energy as the atom's binding energy:
 - a. the atom will become a positive ion
 - b. the atom will become a negative ion
 - c. it can split the atom
 - d. it can fuse the atom

ANS: C

If a particle strikes an atom with the same amount of energy as the atom's binding energy, it can break the atom apart.

OBJ: 3

- 22. The electrons stay in orbit around the nucleus because of:
 - a. their attraction to the protons
 - b. their attraction to the neutrons
 - c. their attraction to the other electrons
 - d. all of the above

ANS: A

The electrons stay in orbit because of their attraction to the positively charged protons in the nucleus.

OBJ: 3

- 23. The electron binding energy depends on:
 - a. how close it is to the nucleus
 - b. how many neutrons there are in the nucleus
 - c. how many protons there are in the nucleus
 - d. A and C

ANS: D

The electron binding energy depends on how close it is to the nucleus and how many protons there are in the nucleus.

OBJ: 3

- 24. The electron binding energy is stronger when:
 - a. there are more protons and the electron is closer to the nucleus
 - b. there are fewer protons and the electron is closer to the nucleus
 - c. there are fewer protons and the electron is farther from the nucleus
 - d. there are more protons and the electron is farther from the nucleus

ANS: A

The electron binding energy is greater when the electron is closer to the nucleus and there are more protons in the nucleus.

OBJ: 3

- 25. The electron shell closest to the nucleus is lettered:
 - a. "E"
 - b. "H"
 - c. "K"
 - d. "M"

ANS: C

The innermost electron shell is the "K" shell.

	OBJ: 3
26.	The L shell can hold electrons. a. 1 b. 2 c. 4 d. 8 ANS: D The L (second) shell can hold 2 × 2² electrons, or 8.
	OBJ: 3
27.	The N shell can hold electrons. a. 4 b. 8 c. 32 d. 64
	ANS: C The N (fourth) shell can hold 2×2^4 electrons, or 32.
	OBJ: 3
28.	Except for the K shell, the maximum number of electrons that can be in the outermost shell of an atom is: a. 4 b. 8 c. 16 d. 32
	ANS: B With the exception of the K shell, no more than 8 electrons can be in the atom's outermost shell.
	OBJ: 3
29.	If an atom has 15 electrons, which will be the outermost shell? a. "L" b. "M" c. "N" d. "O"
	ANS: B With 15 electrons, 2 will fill the K shell, 8 will fill the L shell, and 5 will fill the M shell.
	OBJ: 3

30.	The number of protons in an atom's nucleus is reflected in its: a. atomic number b. atomic mass number c. element d. compound ANS: A The atomic number indicates the number of protons in the nucleus.
	OBJ: 4
31.	The number of protons and neutrons in the atom's nucleus is the: a. atomic number b. atomic mass number c. element d. compound
	ANS: B The sum of the protons and neutrons in an atom's nucleus is its atomic mass number.
	OBJ: 4
32.	The simplest form of the substances that form matter is the: a. atomic number b. atomic mass number c. element d. compound ANS: C
	The element, such as hydrogen or oxygen, is the simplest form of substances that form matter.
	OBJ: 4
33.	Two or more atoms that bond together form a(n): a. atomic number b. atomic mass number c. element d. compound
	ANS: D More than one atom bonded together, such as two atoms of H and one of O (H_2O), form a compound.
	OBJ: 4
34.	In a neutral atom, the atomic number indicates the number of: a. protons b. neutrons

	c. electrons d. A and C
	ANS: D In a neutral atom, the atomic number indicates the number of protons (by definition) but also the number of electrons (which are equal to the number of protons).
	OBJ: 4
35.	An atom of helium (⁴ ₂ He) has: a. two protons b. four protons c. four neutrons d. four electrons
	ANS: A The atomic number, the number of protons, is the lower number, two.
	OBJ: 4
36.	An atom of oxygen (¹⁶ ₈ O) has: a. eight protons b. eight neutrons c. eight electrons d. all of the above
	ANS: D The atomic mass number (16) less the atomic number (number of protons—8) equals the number of neutrons (8). The number of electrons equals the number of protons (8).
	OBJ: 4
37.	How many neutrons does $^{7}_{3}$ Li (lithium) have? a. 3 b. 4 c. 7 d. 10
	ANS: B Subtracting the atomic number (3) from the atomic mass number (7) determines the number of neutrons (4).
	OBJ: 4
38.	How many electrons does a neutral atom of carbon ($^{12}{}_{6}$ C) have? a. 3 b. 6 c. 12 d. 18

ANS: B

A neutral atom has the same number of protons and electrons, in this case 6.

OBJ: 4

- 39. For the chemical element sodium (²²₁₁Na), the atomic number is:
 - a. eleven
 - b. twenty two
 - c. thirty three
 - d. none of the above

ANS: A

The atomic number, number of protons in the nucleus, is the lower number, 11.

OBJ: 4

- 40. For the chemical element sodium (²²₁₁Na), the atomic mass number is:
 - a. 11
 - b. 22
 - c. 33
 - d. none of the above

ANS: B

The atomic mass number, which equals the number of protons and neutrons in the nucleus, is the upper number, 22.

OBJ: 4

- 41. Atoms with the same number of protons but different number of neutrons are:
 - a. isotopes
 - b. isotones
 - c. isobars
 - d. isomers

ANS: A

As isotope is an atom that has the same number of protons but different number of neutrons as compared with the element.

OBJ: 4

- 42. Atoms with the same atomic number but different atomic mass numbers are:
 - a. isotopes
 - b. isotones
 - c. isobars
 - d. isomers

ANS: A

Having the same atomic number (number of protons) and different atomic mass number (number of neutrons are different) results in an atom being classified as an isotope.

OBJ: 4

- 43. Atoms with the same number of neutrons but different number of protons are:
 - a. isotopes
 - b. isotones
 - c. isobars
 - d. isomers

ANS: B

An isotone has the same number of neutrons but different number of protons.

OBJ: 4

- 44. Atoms with different number of protons but the same combined number of protons and neutrons are:
 - a. isotopes
 - b. isotones
 - c. isobars
 - d. isomers

ANS: C

An isobar has a different number of protons but the atomic mass number (protons and neutrons) is the same.

OBJ: 4

- 45. Atoms with different atomic numbers but the same atomic mass numbers are:
 - a. isotopes
 - b. isotones
 - c. isobars
 - d. isomers

ANS: C

Isobars have different number of protons (atomic number) but the atomic mass number (protons and neutrons) is the same.

OBJ: 4

- 46. Atoms with the same atomic number and atomic mass number but have different energy within their nuclei are:
 - a. isotopes
 - b. isotones
 - c. isobars
 - d. isomers

ANS: D

The isomer has the same number of protons and neutrons but the energy level within the nucleus is different.

	OBJ: 4
47.	²³ ₁₁ Na is an of ²² ₁₁ Na. a. isotopes b. isotones c. isobars d. isomers
	ANS: A ²³ ₁₁ Na is an isotope of ²² ₁₁ Na because it has the same number of protons (11) and different number of neutrons, as seen in the increased atomic mass number.
	OBJ: 4
48.	131 ₅₃ I and 132 ₅₄ Xe are: a. isotopes b. isotones c. isobars d. isomers
	ANS: B $^{131}_{53}$ I and $^{132}_{54}$ Xe are isotones because they have the same number of neutrons (131 – 53 = 132 – 54) but different number of protons (53 vs. 54).
	OBJ: 4
49.	 ⁷₃Li and ⁷₄Be are: a. isotopes b. isotones c. isobars d. isomers
	ANS: C ⁷ ₃ Li and ⁷ ₄ Be are isobars because they have the same atomic mass numbers (7) but different numbers of protons (3 vs. 4).
	OBJ: 4
50.	The periodic table of elements classifies by period and group. The period is the: a. row b. column c. group d. type of element
	ANS: A The periodic table of elements includes seven periods, the rows of the table

OBJ: 4

- 51. The periodic table of elements classifies by period and group. The group is the:
 - a. row
 - b. column
 - c. period
 - d. type of element

ANS: B

The periodic table of elements includes eight groups, the columns of the table.

OBJ: 4

- 52. Atoms in each period have the same number of:
 - a. electrons in the outermost shell
 - b. atomic mass number
 - c. electrons
 - d. electron shells

ANS: D

Atoms in each period have the same number of electron shells.

OBJ: 4

- 53. Atoms in each group have the same number of:
 - a. electrons in the outermost shell
 - b. atomic mass number
 - c. electrons
 - d. electron shells

ANS: A

Atoms in each period have the same number of electrons in the outermost shell, increasing from left to right.

OBJ: 4

- 54. A compound consists of:
 - a. at least two molecules
 - b. at least two elements
 - c. at least two different materials
 - d. all of the above

ANS: B

A compound is a molecule that consists of atoms of at least two different elements.

55.	When the bond between two atoms is due to their sharing an outer-shell electron, this is called a: a. molecular bond b. ionic bond c. compounding bond d. covalent bond ANS: D Covalent bond is besed on stores sharing an outer shell electron
	Covalent bonding is based on atoms sharing an outer-shell electron.
	OBJ: 5
56.	When the bond between two atoms is due to one atom giving up an electron and the other atom gaining an electron, it is called a: a. molecular bond b. ionic bond c. compounding bond d. covalent bond
	ANS: B Ionic bonding is based on one atom giving up an electron (becoming a positive ion) and the other gaining an electron (becoming a negative ion) and then being attracted to each other.
	OBJ: 5
TRUI	E/FALSE
1.	The electrons rotate around the nucleus at a single energy level.
	A. True B. False
	ANS: F The electrons rotate around the nucleus at different energy levels, based on their distance from the nucleus.
	OBJ: 2
2.	Electron shells are the hard coating around the electron.
	A. True B. False
	ANS: F Electron shells are the defined energy levels around the atomic nucleus.
	OBJ: 3

3.	Each electron shell has a specific limit to the amounts of electrons it can hold.
	A. True B. False
	ANS: T There is a specific limit to how many electrons each shell can hold.
	OBJ: 3
4.	The outermost shell of an atom can hold fewer than 8 electrons.
	A. True B. False
	ANS: T Although there can be no more than 8 electrons in the outermost shell, there can be fewer than 8.
	OBJ: 3
5.	Each element has an unchanging number of protons.
	A. True B. False
	ANS: T Each element (H, O, C, etc.) has an unchanging number of protons.
	OBJ: 4
6.	Elements can only occur naturally.
	A. True B. False
	ANS: F Although there are 92 naturally occurring elements, more than a dozen have been created artificially.
	OBJ: 4
7.	The atoms of the elements at the top of the periodic table of elements are the most complex.
	A. True B. False
	ANS: F

The atoms at the elements at the bottom of the table have more electron shells and are more complex.

OBJ: 4

- 8. In the middle of the periodic table of elements there are elements that don't fit exactly into one of the eight groups.
 - A. True
 - B. False

ANS: T

The inner transitional metals, located in the middle of the table, do not fit into the eight groups.

OBJ: 4

- 9. All compounds are molecules and all molecules are compounds.
 - A. True
 - B. False

ANS: F

All compounds are molecules, containing atoms of at least two elements, but not all molecules are compounds, occurring when multiple atoms of the same element combine.

OBJ: 5

- 10. An ionic bond results in an electrically charged molecule or compound.
 - A. True
 - B. False

ANS: F

An ionic bond is the result of two charged atoms being attracted to each other, creating a neutral molecule or compound.