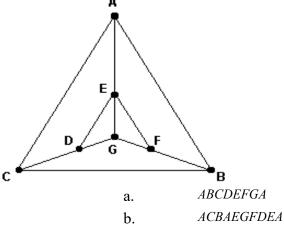

Class Dat Name e:

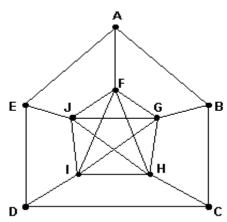
Chapter 2


1. Which of the following describes a Hamiltonian circuit for the graph below?

- **ABCDEFJIHG** a.
- **ABCDEAFJDIHBGFEJICHGA** b.
- **ABCDEAGHIJFA** c.
- **AEDCBGHIJFA** d.

ANSWER: d

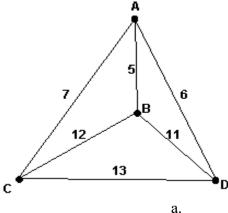
2. Which of the following describes a Hamiltonian circuit for the graph below?



- **ACBFGDEA** c.
- **ABCDGEF** d.

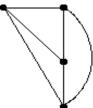
ANSWER: \mathbf{c}

3. Which of the following describes a Hamiltonian circuit for the graph below?


Chapter 2

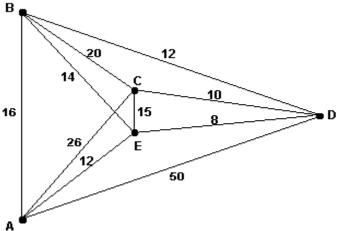
- **ABCDEJHIGF** a.
- b. **AEDCBGIHJFA**
- **ABCDEAFGHIJFA** c.
- d. **ABCDEAFGBGIDIHCHJEJFA**

ANSWER: b


4. On the graph below, which routing is produced by using the nearest-neighbor algorithm to solve the traveling salesman problem, starting at A?

- a.
- ABCDA
- b.
- ABDCA
- c. d.
- ACBDAABCD

ANSWER: b


5. Construct a complete graph on four vertices. ANSWER:

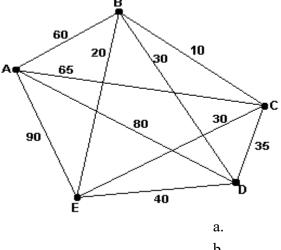
Answers will vary. One solution is:

Chapter 2

6. For the graph below, what is the cost of the Hamiltonian circuit obtained by using the nearest-neighbor algorithm, starting at A?

a.

b.


c. d. 60

54

62 66

ANSWER:

7. For the graph below, what is the cost of the Hamiltonian circuit obtained by using the nearest-neighbor algorithm, starting at A?

215

b.

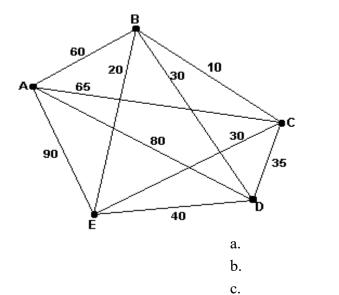
220

c.

235

d.

295


ANSWER:

b

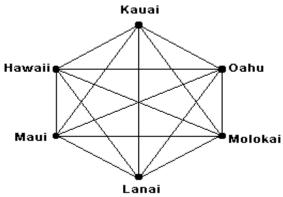
d

8. For the graph below, what is the cost of the Hamiltonian circuit obtained by using the nearest-neighbor algorithm, starting at C?

Chapter 2

ANSWER:

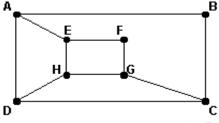
9. Construct a complete graph whose vertices represent the six largest islands of Hawaii: Kauai, Oahu, Molokai, Lanai, Maui, and Hawaii.


215

220

235

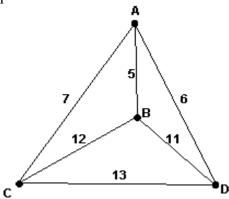
295


ANSWER:

Answers will vary. One solution is:

10. Which path listed forms a Hamiltonian circuit on the graph below?

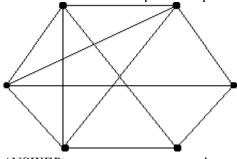
d.


- a. ADCBFGHEA
- b. ABCDHGFE
- c. ABCDHGFEA
- d. ABCDHGFEHDA

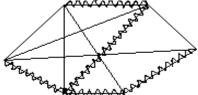
ANSWER:

Name 		Class ::	Dat e:
Chapter 2			
-		length 10, 26, 12, and 50 milerting at Town A , which road	es. Using the nearest-neighbor would be traveled first?
b.	Road of length 26		
c.	Road of length 12		
d.	Road of length 50		
ANSWER:	•		a
12. When the traveling spossible?	salesman problem (Ha	miltonian circuit) is applied t	o six cities, how many tours are
	a.	60	
	b.	120	
	c.	360	
	d.	720	
ANSWER:			b
13. When the traveling scircuits are possible?	salesman problem (Ha	miltonian circuit) is applied t	o six cities, how many distinct
	a.	120	
	b.	60	
	c.	24	
	d.	12	
ANSWER:			b
14. When the traveling sare possible?	salesman problem (Ha	miltonian circuit) is applied t	o four cities, how many distinct tours
	a.	3	
	b.	6	
	c.	12	
	d.	24	
ANSWER:			b
15. When the traveling scircuits are possible?	salesman problem (Ha	miltonian circuit) is applied t	o seven cities, how many distinct
-	a.	360	
	b.	720	
	c.	2520	
	d.	5040	
ANSWER:			a

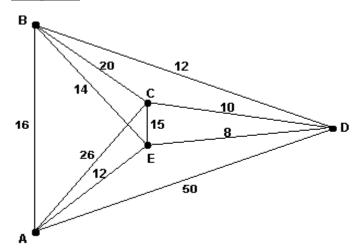
Chapter 2


16. On the graph below, which algorithm has different routing from others to solve the traveling salesman problem?

- a. The sorted-edges algorithm
- b. The nearest-neighbor algorithm starting from A
- c. The nearest-neighbor algorithm starting from B
- d. The nearest-neighbor algorithm starting from D


ANSWER: b

17. Construct an example of a spanning tree on the graph given below.


ANSWER:

Answers will vary. One solution is:

18. For the graph below, what is the cost of the Hamiltonian circuit obtained by using the sorted-edges algorithm?

Chapter 2

a. b

b.

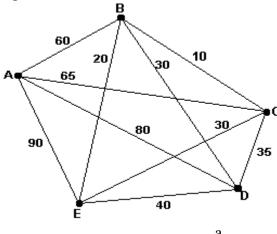
c.

d.

58 60

40

66


ANSWER:

19. Construct an example of a graph with no Hamiltonian circuit.

ANSWER:

Answers will vary. One solution is:

20. For the graph below, what is the cost of the Hamiltonian circuit obtained by using the sorted-edges algorithm?

a.

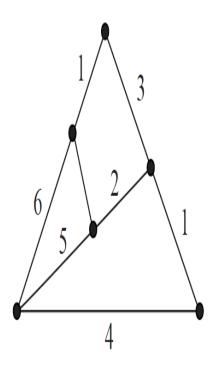
220

b.

225

c.

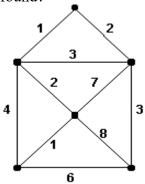
235


d.

295

ANSWER:

Chapter 2


21. Use Kruskal's algorithm for minimum-cost spanning trees on the graph below. What is the cost of the tree found?

- a.
- b.
- c.
- d.
- 10
 - 11
 - 14 15

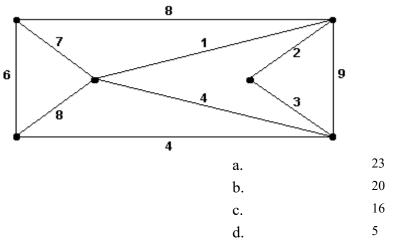
ANSWER: b

22. Use Kruskal's algorithm for minimum-cost spanning trees on the graph below. What is the cost of the tree found?

- a.
- b.
- υ.
- c.
- d.
- - 12

5

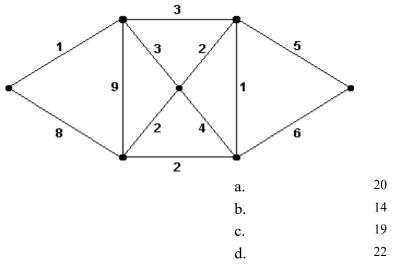
9


- - 15

Chapter 2

ANSWER:

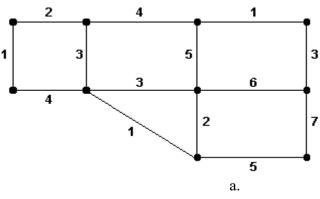
b


23. Use Kruskal's algorithm for minimum-cost spanning trees on the graph below. What is the cost of the tree found?

ANSWER:

c

24. Use Kruskal's algorithm for minimum-cost spanning trees on the graph below. What is the cost of the tree found?



ANSWER:

b

25. Use Kruskal's algorithm for minimum-cost spanning trees on the graph below. What is the cost of the tree found?

Chapter 2

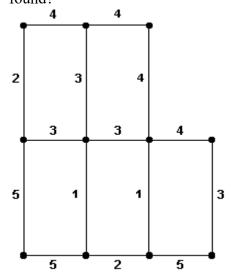
L

b.

c.

d.

47


25

22

15

ANSWER:

26. Use Kruskal's algorithm for minimum-cost spanning trees on the graph below. What is the cost of the tree found?

a.

b.

22 28

c.

32

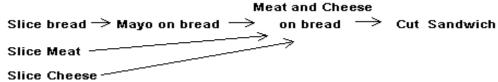
d.

49

ANSWER:

b

c


27. Construct a digraph for the following tasks necessary when building a house: get a building permit, install wiring, pour foundation, build walls, build doghouse, pass final inspection.

ANSWER: Answers will vary. One solution is:

Chapter 2

28. Identify six tasks necessary when building a sandwich and construct a digraph for these tasks.

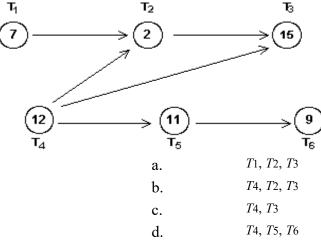
ANSWER: Answers will vary. One solution is:

29. Identify six tasks necessary when preparing for a picnic and construct a digraph for these tasks.

ANSWER:

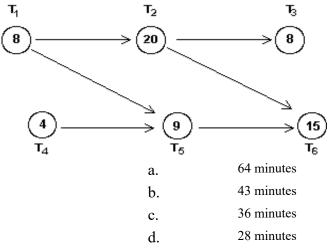
Pack food

Pack chairs


Go to site

Unpack

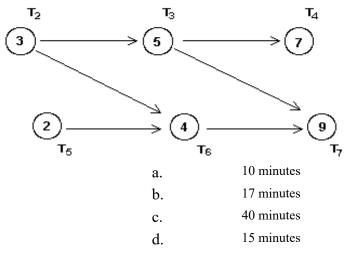
Clean up


Answers will vary. One solution is: Pack umbrella

30. Given the order-requirement digraph for a collection of tasks shown below, what would the critical path be?

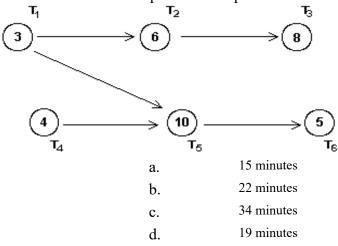
ANSWER:

31. If the order-requirement digraph for a collection of tasks is shown below, what is the minimum completion time for the collection of tasks?



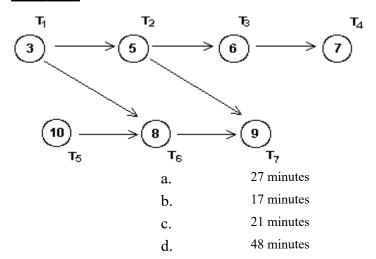
ANSWER: b

Chapter 2

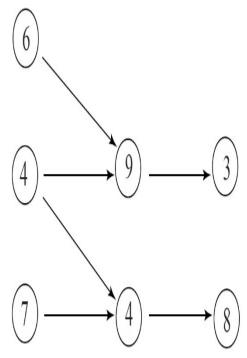

32. What is the earliest possible completion time for a job whose order-requirement digraph is shown below?

10

ANSWER: b


33. What is the earliest possible completion time for a job whose order-requirement digraph is shown below?

ANSWER:

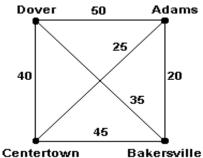

34. What is the earliest possible completion time for a job whose order-requirement digraph is shown below?

Chapter 2

ANSWER: a

35. What is the earliest possible completion time for a job whose order-requirement is shown below?

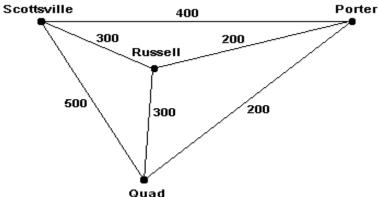
- a. 16 minutes
- b. 19 minutes
- c. 30 minutes


Chapter 2

d. 60 minutes

ANSWER:

d


36. Use the brute force algorithm to solve the traveling salesman problem for the graph of the four cities shown below.

ANSWER:

Routes ABCDA and ACBDA have cost 155. Route ABDCA has (minimum) cost 120.

37. Use the brute force algorithm to solve the traveling salesman problem for the graph of the four cities shown below.

ANSWER:

Routes PORSP and POSRP have (minimum) cost 1200. Route PROSP has cost 1400.

38. Making the best choice at each stage for solving the traveling salesman problem always gives optimal results.

a.

True

b.

False

ANSWER:

b

39. The sorted-edges algorithm for solving the traveling salesman problem always gives optimal results.

a.

True

b.

False

ANSWER:

b

40. Kruskal's algorithm for finding minimum-cost spanning trees always gives optimal results.

a.

True

b.

False

Name :		Class :	Dat e:
Chapter 2			
ANSWER:			a
41. The nearest-neight as the sorted-edges al	_	olving the traveling salesman probl	em always produces the same result
	a.	True	
	b.	False	
ANSWER:			b
42. The path produce dependent on the star		ighbor algorithm when solving the t	raveling salesman problem may be
	a.	True	
	b.	False	
ANSWER:			a
43. The path produce dependent on the star		es algorithm when solving the trave	eling salesman problem may be
	a.	True	
	b.	False	
ANSWER:			b
44. The minimum-co cost edge of the graph		duced by applying Kruskal's algori	thm will always contain the lowest
	a.	True	
	b.	False	
ANSWER:			a
45. The minimum-co expensive edge of the		oduced by applying Kruskal's algori	thm may contain the most
	a.	True	
	b.	False	
ANSWER:			a
46. A heuristic algori	ithm will always pro	oduce optimal results.	
	a.	True	
	b.	False	
ANSWER:			b
47. The best-known gethan one and a half ti			man problem yields a cost no worse
	a.	True	
	b.	False	
ANSWER:			a

Name :		Class :	Dat e:
Chapter 2			
48. When Kruskal's algorithm is false?	is used to find a	minimum-cost spanning tre	ee on a graph, which of the following
a. Circuits are not permit	ted in the tree.		
b. The tree contains the e	dge of the graph of	f minimum cost.	
c. The tree is not necessar	rily connected.		
d. The tree may contain t	he edge of the high	est cost.	
ANSWER:			c
49. A spanning tree of a graph 1	must contain eve	ery vertex of the graph.	
a	a.	True	
ł	o.	False	
ANSWER:			a
50. A digraph is a graph with ex	xactly two vertic	ces.	
a	a.	True	
ł	o.	False	
ANSWER:			ь
51. If a graph of nine vertices is <i>ANSWER</i> :	<u> </u>	many edges are there? $9)(8)/2 = 36$ edges	
52. Suppose an architect needs most likely to be useful in solvia. Finding an Euler circuit on	ing this problem		fice building. Which technique is
		he traveling salesman problem	
c. Applying Kruskal's algorit	thm for finding a m	inimum-cost spanning tree for a	graph
d. None of these techniques i	s likely to apply		
ANSWER:			c
53. Suppose a veteran wants a vis most likely to be useful in so. a. Finding an Euler circuit on	lving this proble		n, D.C., in one day. Which technique
b. Applying the nearest-neigh	nbor algorithm for t	he traveling salesman problem	
c. Applying Kruskal's algorit	thm for finding a m	inimum-cost spanning tree for a	graph
d. None of these techniques i	s likely to apply		
ANSWER:			b
), and you want to plan a trip to visit f a tour, how long will it take to apply

ANSWER:

the brute force algorithm to find the optimal tour?

(11!/2)(1/2) = 9,979,200 minutes, or approximately 19 years

Chapter 2	
55. You own a chain of 10 one-day photo development kiosks and a lab where the photos are developed. Each morning and evening, a delivery truck leaves the lab, visits each kiosk, and returns to the lab. If it takes $1/3$ minute to compute the total length of a tour, how long will it take to apply the brute force algorithm to find the optimal tour for the delivery truck? (9!/2)(1/3) = 60,480 minutes, or 42 days	
56. Suppose an employee of a power company needs to read the electricity meters outside of each house along the streets in a residential area. Which technique is most likely to be useful in solving this problem? a. Finding an Euler circuit on a graph	
b. Applying the nearest-neighbor algorithm for the traveling salesman problem	
c. Applying Kruskal's algorithm for finding a minimum-cost spanning tree for a graph	
d. None of these techniques is likely to apply	
ANSWER:	
57. Suppose a pizza delivery person needs to take pizzas to 10 houses in different neighborhoods and then return to pick up the next set to be delivered. Which technique is most likely to be useful in solving this problem?	
a. Finding an Euler circuit on a graph	
b. Applying the nearest-neighbor algorithm for the traveling salesman problem	
c. Applying Kruskal's algorithm for finding a minimum-cost spanning tree for a graph	
d. None of these techniques is likely to apply	
ANSWER: b	
58. You want to create a mileage grid showing the distance between every pair of the 50 U.S. state capitals. How many numbers will you have to compute? $ANSWER$: $(50)(49)/2 = 1225$	
59. You want to create a mileage grid showing the distance between every pair of the 10 Canadian provincial and territorial capitals. How many numbers will you have to compute? ANSWER: $(10)(9)/2 = 45$	
60. Suppose a college campus decides to install its own phone lines connecting all of the buildings so that calls may be relayed through one or more buildings before reaching their destination. Which technique is most likel to be useful in solving this problem? a. Finding an Euler circuit on a graph	
b. Applying the nearest-neighbor algorithm for the traveling salesman problem.	
c. Applying Kruskal's algorithm for finding a minimum-cost spanning tree for a graph	

Class

Dat e:

61. Suppose that after a storm, an inspection needs to be made of the sewers along the streets in a small village to make sure local flooding is not due to clogging. Which technique is most likely to be useful in solving this

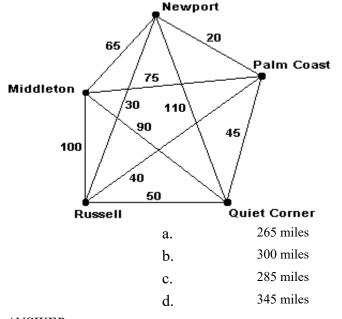
ANSWER:

d. None of these techniques is likely to apply

Name

c

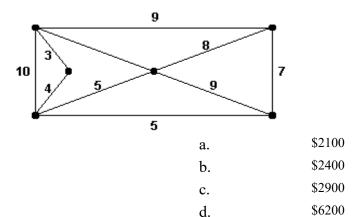
problem?


- a. Finding an Euler circuit on a graph
- b. Applying the nearest-neighbor algorithm for the traveling salesman problem
- c. Applying Kruskal's algorithm for finding a minimum-cost spanning tree for a graph
- d. None of these techniques is likely to apply

ANSWER:

- 62. Suppose a maintenance worker needs to empty garbage dumpsters from five locations on the grounds of a park in the most efficient way possible. Which technique is most likely to be useful in solving this problem?
 - a. Finding an Euler circuit on a graph
 - b. Applying the nearest-neighbor algorithm for the traveling salesman problem
 - c. Applying Kruskal's algorithm for finding a minimum-cost spanning tree for a graph
 - d. None of these techniques is likely to apply

ANSWER: b

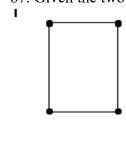

63. Phyllis has her office in Middleton and must visit four clients, each in a different city. The graph below shows each city and the distances between each pair of cities. How many miles will Phyllis travel if she chooses the Hamiltonian circuit for her trip by using the sorted-edges algorithm?

ANSWER:

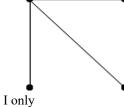
64. The graph below shows the cost (in hundreds of dollars) of installing telephone wires between the work spaces in an office complex. Use Kruskal's algorithm for minimum-cost spanning trees to find the cost for establishing this phone network.

Chapter 2

ANSWER: b


65. There are 3, 4, and 3 distinct paths from the City A to B, B to C, and C to D, respectively. Starting from the City A, you are planning to travel those cities in the order B, C, and D. How many different travel routes are possible?

ANSWER:


66. Kris has three pairs of pants of different colors, five shirts of different colors, and two pairs of shoes. How many different outfits can Kris create?

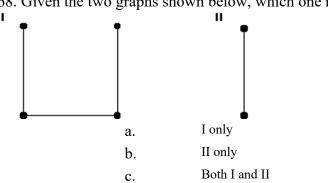
ANSWER:

67. Given the two graphs shown below, which one represents a tree?

11

- a.
- 1
- b.
- c.
- Both I and II

II only

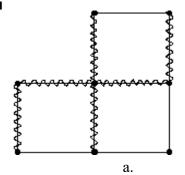

d.

Neither I nor II

ANSWER:

b

68. Given the two graphs shown below, which one represents a tree?



d.

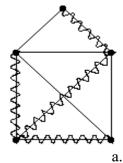
ANSWER:

69. In which of the diagrams below do the wiggly edges represent spanning trees?

Neither I nor II

I only

b.


II only

c. Both I and II

d. Neither I nor II

ANSWER: b

70. In which of the diagrams below do the wiggly edges represent spanning trees?

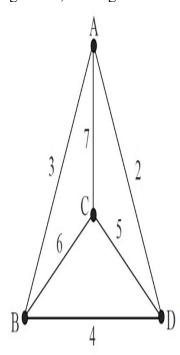
I only

b.

II only

c.

Both I and II


d.

Neither I nor II

ANSWER:

Chapter 2

71. For the graph below, what is the cost of the Hamiltonian circuit obtained by using the nearest-neighbor algorithm, starting at A?

a.

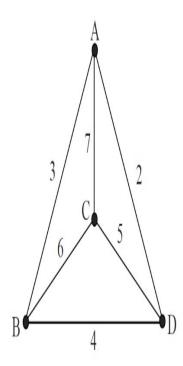
16

b.

17

c.

18


d.

19

ANSWER:

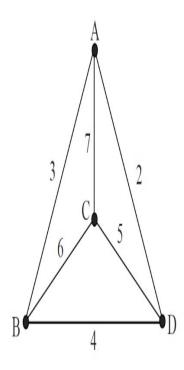
d

72. For the graph below, what is the cost of the Hamiltonian circuit obtained by using the nearest-neighbor algorithm, starting at *B*?

- a.
- b. c.

17 18

16


d.

19

ANSWER:

a

73. For the graph below, what is the cost of the Hamiltonian circuit obtained by using the sorted-edges algorithm?

a.

b. 17

c. 18

d. 19

ANSWER: a

74. A college student has six pairs of pants, eight T-shirts, three sweatshirts, and two pairs of tennis shoes. If an outfit consists of pants, a T-shirt, a sweatshirt, and a pair of tennis shoes, how many different outfits can the student wear before repeating one?

16

a. 19

b. 124

c. 288

d. 328

ANSWER:

75. The local café offers 3 different entrées, 10 different vegetables, and 4 different salads. A "blue plate special" includes an entree, a vegetable, and a salad. How many different ways can a special be constructed? *ANSWER:*

76. A nearby ice cream shop offers 31 different flavors and 3 different types of cones. How many different single scoop cones can be ordered?

ANSWER:

77. An online banking service requires its customers to select a password that is four characters long. The password is case sensitive, so uppercase letters are considered to be different than lowercase letters. The first Copyright Macmillan Learning. Powered by Cognero.

Page 23

Name :			Class :	Dat e:	
Chapter 2					
•				and character must be a digit. The remain case letter. What is the number of possib	_
pusswords.	a.	175,760			
	b.	336,960			
	c.	999,440			
	d.	1,406,080			
ANSWER:	u.	, ,		c	
	, license plates use three letters follow		nerals?	rals. How many possible plates could be	:
	, license plates use three letters follow		erals?	rals. How many possible plates could be	:
80. For a connected	ed graph of 18 vert a.	ices, every poss: Tru		ree has exactly 17 edges.	
	b.	Fals	se		
ANSWER:				a	
81. What is an adv <i>ANSWER:</i>	vantage of a <i>heuris</i>	tic algorithm?		Fast	
82. What is a disa	dvantage of a <i>heur</i>	ristic algorithm?			
ANSWER:		Not alw	ays optimal		
83. What is <i>critice ANSWER</i> : It	al about the critical or requires the critical or	-	-	- -	
84. A connected g	graph G has 32 vert	tices. How many		a spanning tree of G have?	
		a.	30		
		b.	31		
		c.	32		
		d.	33		
ANSWER:				c	
85. Can a graph ha ANSWER:	ave a Hamiltonian	circuit but not a	n Euler circuit	? Yes	
211 W // LA.				2-2-	
86. Will the neare	st-neighbor algorit	hm ever use the	most expensiv	ve edge of a graph?	

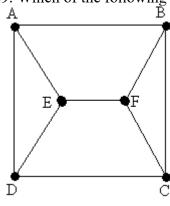
Chapter 2

ANSWER:

Yes

87. The route of a neighborhood garbage truck generally follows an Euler circuit. Under what circumstances should it instead follow a Hamiltonian circuit?

ANSWER:


If it only picks up at the intersection of streets

88. The route of a delivery truck generally follows a Hamiltonian circuit. Under what circumstances should it instead follow an Euler circuit?

ANSWER:

If it delivers to houses on the sides of streets

89. Which of the following describes a Hamiltonian circuit for the graph below?

a.

ABFEDCBA

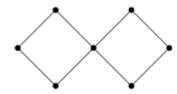
b.

ABCFEA

c.

ABCFBAEDA

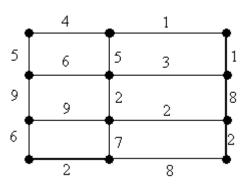
d.


ABCFEDA

ANSWER:

d

90. Construct a graph that has an Euler circuit but not a Hamiltonian circuit.


ANSWER:

Answers may vary. One solution is:

91. Use Kruskal's algorithm for minimum-cost spanning trees on the graph below. What is the cost of the tree found?

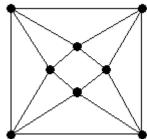
Chapter 2

a.

b.

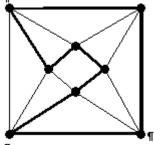
31 35

27

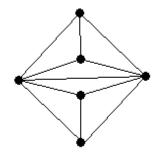

c. d.

39

ANSWER:

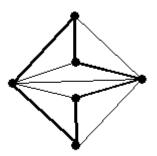

c

92. In the graph below, construct a Hamiltonian circuit.

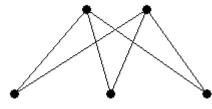


ANSWER:

Answers will vary. One solution is:

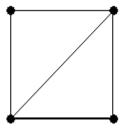

93. In the graph below, construct a Hamiltonian circuit.

ANSWER:

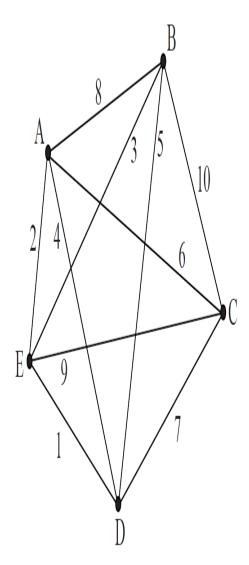

Answers will vary. One solution is:

Chapter 2

94. Construct an example of a connected graph that does not have a Hamiltonian circuit.


ANSWER:

Answers will vary. One solution is:

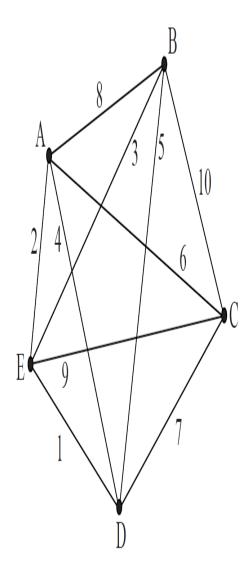

95. Construct an example of a connected graph that has a Hamiltonian circuit but does not have an Euler circuit.

ANSWER:

Answers will vary. One solution is:

96. For the graph below, which routing is produced by using the nearest-neighbor algorithm starting at A?

a. DEABCD


b. AEBDCA

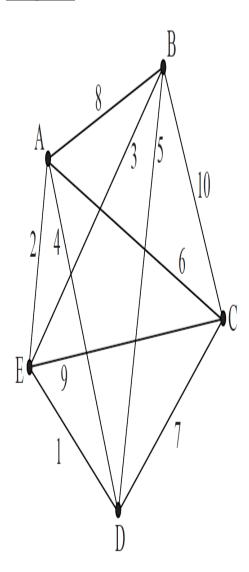
c. AEDBCA

d. DEBACD

ANSWER: c

97. For the graph below, which routing is produced by using the nearest-neighbor algorithm starting at *D*?

a. DEABCD


b. AEBDCA

c. AEDBCA

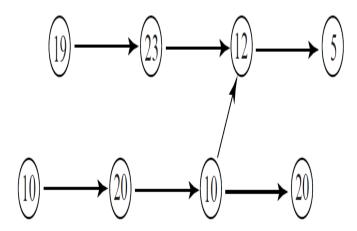
d. DEACBD

ANSWER:

98. For the graph below, which routing is produced by using the sorted-edges algorithm?

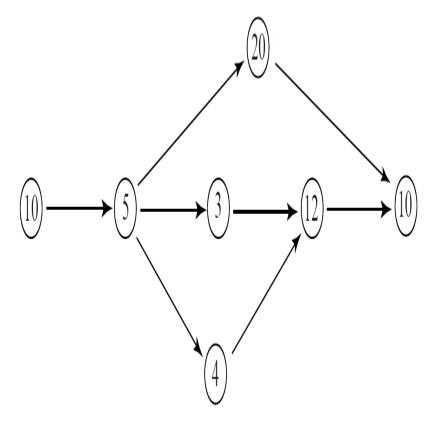
a.	DEABCD
b.	AEBDCA
C	AEDBCA

d. DEBACD


ANSWER:

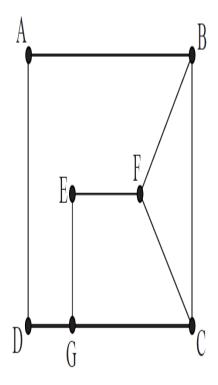
99. A connected graph *H* has a spanning tree with 50 edges. How many vertices does the spanning tree have? How many vertices does *H* have? What can one say about the number of edges *H* has?

ANSWER: The spanning tree has 51 vertices. *H* also has 51 vertices. *H* must have at least 50 edges.


100. Find the earliest completion time for the following order-requirement digraph.

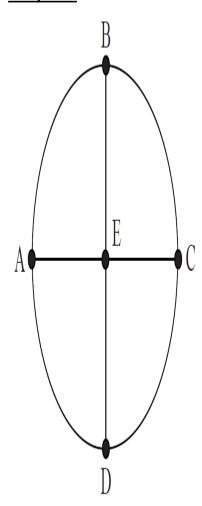
Chapter 2

ANSWER:


101. Find the earliest completion time for the following order-requirement digraph.

ANSWER:

102. How many distinct Hamiltonian circuits can you find on the following graph?


Name	Class	Dat
		e.

ANSWER: One: ADGEFCBA

103. How many distinct Hamiltonian circuits can you find on the following graph? (Do not count a circuit and the reverse of the same circuit as distinct.)

Name	Class	Dat
		۵.

ANSWER:

Four: ABECDA, ABCEDA, AEDCBA, AEBCDA

104. If you add a new vertex to a complete graph of 10 vertices, how many new edges are needed to make the new graph complete?

ANSWER: