Chapter 2

Student:	
1.	The first generation of offspring from the parents is called
	A. B. C. D. E.
2.	Which of the following terms is not a type of mating cross?
	A. B. C. D. E.
3.	A is a cross between an unknown and a homozygous recessive.
	A. B. C. D. E.
4.	If an individual has 10 gene pairs, how many different gametes can be formed if three of the gene pairs are homozygous and the remaining seven gene pairs are heterozygous?
	A. B. C. D. E.

_	
っ	
J	

If the parents of a family already have two boys, what is the probability that the next two offspring will be girls?

A.

B.

C.

D.

E.

In some genetically engineered corn plants, a dominant gene (BT) produces a protein that is lethal to certain flying insect pests that eat the corn plants. It was also found that the pollen could cause death in some flying insects. If the corn plant is heterozygous for BT, what proportion of the pollen would carry the dominant gene?

A.

В.

C.

D.

E.

Suppose that in plants, smooth seeds (S) are dominant to wrinkled seeds (s) and tall plants (T) are dominant to short plants (t). A tall plant with smooth seeds was backcrossed to a parent that was short and wrinkled. Assuming independent assortment, what proportion of the progeny is expected to be homozygous for short and wrinkled?

A.

B.

C.

D.

E.

6.

7.

A rare recessive trait in a pedigree is indicated by which pattern of inheritance?

A.

B.

C.

D.

E.

Sickle cell anaemia is a recessive trait in humans. The gene that causes this disease is not located on the sex chromosomes. In a cross between a father who has sickle cell anaemia and a mother who is heterozygous for the gene, what is the probability that their first three children will have the normal phenotype?

A.

B.

C.

D.

E.

A dominant trait, Huntington disease, causes severe neural/brain damage at approximately age 40. The gene that causes this disease is not located on the sex chromosomes. A female whose mother has Huntington disease marries a male whose parents are normal. It is not known if the female has the disease. Assuming the female's mother was a heterozygote, and her father was normal, what is the probability that their firstborn will inherit the gene that causes Huntington disease?

Α.

B.

C.

D.

E.

9.

10.

11.	In a monohybrid cross $AA \times aa$, what proportion of homozygotes is expected among the F_2 offspring?
	A. B. C. D. E.
12.	An allele that expresses its phenotype even when heterozygous with a recessive allele is termed
	A. B. C. D. E.
13.	Assume that in guinea pigs, dark brown fur (<i>B</i>) is dominant to black fur (<i>b</i>). If you mate a black guinea pig with a homozygous brown guinea pig, what proportion of the progeny will be homozygous?
	A. B. C. D. E.
14.	In the dihybrid cross $AaBb \times aabb$, what proportion of individuals are expected to be homozygotic for both genes in the F_1 generation?
	A. B. C. D. E.

15.	is/are a cross(es) between parents that differ in only one trait.
	A. B. C. D. E.
16.	Assuming independent assortment, which of the crosses below will produce a 1:1 phenotypic ratio among the F ₁ progeny?
	A. B. C. D. E.
17.	The actual alleles present in an individual make up the individual's
	A. B. C. D. E.
18.	In a dihybrid cross $AAbb \times aaBB$, what proportion of the F_2 offspring is expected to be homozygotic for at least one gene?
	A. B. C. D. E.

19.	A phenotype reflecting a new combination of genes occurring during gamete formation is called
	A. B. C. D. E.
20.	Assume that in guinea pigs, dark brown fur (<i>B</i>) is dominant to black fur (<i>b</i>). If you mate a homozygous black guinea pig with a heterozygous brown guinea pig, what proportion of the progeny will be black?
	A. B. C. D. E.
21.	The diploid cell formed by the fertilization of the egg by the sperm during sexual reproduction is a
	A. B. C. D. E.
22.	In a dihybrid cross for which the parental cross is $AABB \times aabb$, what proportion of F_2 offspring will be heterozygous for both genes? Assume independent assortment.
	A. B. C. D. E.

23.	An alternative form of a single gene is known as
	A. B. C. D. E.
24.	Assume that in guinea pigs, dark brown fur (<i>B</i>) is dominant to black fur (<i>b</i>). If you mate a homozygous black guinea pig with a homozygous brown guinea pig, what proportion of the progeny will be heterozygous?
	A. B. C. D. E.
25.	Which of the crosses listed below will give a 1:1:1:1 genotypic ratio in the F ₁ generation? Assume independent assortment.
	A. B. C. D. E.
26.	For the cross $AaBb \times aabb$, what proportion of F_1 offspring will be heterozygous for both gene pairs? Assume independent assortment.
	A. B. C. D. E.

27.	The purposeful control over mating by choice of parents for the next generation is called
	A. B. C. D. E.
28.	When both egg and pollen from the same plant produce a zygote, the process is called
	A. B. C. D. E.
29.	Which of the following was not involved in the rediscovery of Mendel's work?
	A. B. C. D. E.
30.	What does a vertical pattern of inheritance in a pedigree likely indicate?
	A. B. C. D. E.

31.	Calculate the probability of either all-dominant or all-recessive genotypes for the alleles A, B, E, and F in the following cross: AaBbccddEeFf× AaBbCcddEeFf
	A. B. C. D. E.
32.	In some plants, a purple pigment is synthesized from a colourless precursor. In a cross between two plants, one purple and the other colourless, an F_1 generation was produced that was all-purple. The F_2 produced from the F_1 had 775 purple, 200 red, and 65 colourless. What is the genotype of the parents?
	A. B. C. D. E.
33.	Lines that produce offspring carrying specific parental traits that remain constant from generation to generation are called
	A. B. C. D. E.
34.	After a cross between two corn plants, the F_1 plants all had a dwarfed phenotype. The F_2 consisted of 1,207 dwarf plants and 401 tall plants. Identify the phenotypes and genotypes of the two parents.
	A. B. C. D. E.

35.	Rosy coloured eyes and forked bristles are unlinked, recessive traits in Drosophila. A rosyeyed Drosophila with wild-type bristles was crossed with a forked Drosophila with wild-type eyes. All of the F_1 were phenotypically wild-type for both traits, whereas the F_2 consisted of 306 wild-type, 94 rosy-eyed, 102 fork-bristled, and 33 forked-bristled and rosy-eyed flies. Infer the genotypes of the parents.
	A. B. C. D. E.
36.	Which of the following is not a phenotypic description of allele interactions affecting the expression of traits?
	A. B. C. D. E.
37.	An interaction between non-allelic genes that results in the masking of expression of a phenotype is
	A. B. C. D. E.
38.	Which of the following diseases show pleiotropism?
	A. B. C. D. E.

39.	A deviation from normal Mendelian ratios, which may be resolved by counting and/or controlled crosses, is seen in which of the following terms?
	A. B. C. D. E.
40.	Which of the following phenotypic ratios show incomplete dominance?
	A. B. C. D. E.
41.	Which of the following ratios show codominance?
	A. B. C. D. E.
42.	Which of the following ratios indicates a lethal gene?
	A. B. C. D. E.
43.	A person who has type O blood has
	A. B. C. D. E.

44.	If two or more forms of the same gene exist, the different forms are called
	A. B. C. D. E.
45.	The blood groups A, B, and O are different types of
	A. B. C. D. E.
46.	The blood groups A, B, and O show
	A. B. C. D. E.
47.	Which of the following monohybrid ratios can describe incomplete dominance and codominance?
	A. B. C. D. E.
48.	Which of the following ratios demonstrate gene interaction?
	A. B. C. D. E.

49.	A results whenever the nucleotide sequence is changed.
	A. B. C. D. E.
50.	When the same gene is related to respiratory problems and sterility, it can be described as
	A. B. C. D. E.
51.	Another name for a normal gene is
	A. B. C. D. E.
52.	The phenotypic ratio 1:2:1 may indicate
	A. B. C. D. E.
53.	The phenotypic ratio 3:1 may indicate
	A. B. C. D. E.

54.	The phenotypic ratio 2:1 may indicate
	A. B. C. D. E.
55.	The phenotypic ratio 9:7 may indicate
	A. B. C. D. E.
56.	The phenotypic ratio 9:3:4 may indicate
	A. B. C. D. E.
57.	Which of the following phenotypic ratios show independent assortment?
	A. B. C. D. E.
58.	Temperature sensitive (<i>ts</i>) alleles of the Drosophila <i>shibire</i> gene were isolated by David Suzuki. Under permissive conditions, what is the phenotype of flies homozygous for the <i>ts</i> alleles?
	A. B. C. D. E.

59.	People may inherit a specific genotype that predisposes them to cancer. However, not everyone with this genotype develops cancer; the occurrence of cancer in these individuals is dependent on environment. This is an example of:
	A. B. C. D. E.
60.	Which of these is not an example of a continuous trait?
	A. B. C. D. E.
61.	Which of the following statements about continuous traits is not true?
	A. B. C. D. E.
62.	Several alleles at several different loci all contribute additively to the same trait. Therefore, for this trait:
	A. B. C. D. E.

A.

B.

C.

D.

E.

Wild-type pea flowers are purple. You find spontaneous, white-flowered mutants growing nearby in five different locations (numbered a-e). You establish pure breeding lines of each and perform crosses between them, and record the F₁ phenotype in the table below. Based on the data in the table, how many different genes in the pathway for purple flowers have been identified by mutation?

	a	Ъ	С	d	e
a	white	purple	purple	white	purple
b	purple	white	purple	purple	purple
С	purple	purple	white	purple	white
d	white	purple	purple	white	purple
e	purple	purple	white	purple	white

A.

B.

C.

D.

E.

Which of the following is not useful in a complementation test?

A.

B.

C.

D.

E.

65.

66.	If two homozygous recessive mutants show the same phenotype, but are caused by mutations at different loci, what will be the phenotype ratio among their F ₁ progeny?
	A. B. C. D. E.
67.	AA and Aa make red flowers, and aa makes white flowers. BB and Bb make tall plants, and bb makes short plants. What would be the expected ratios of phenotypes among the offspring of the cross of AaBb x aaBb? Note the genotypes in the cross carefully. Assume independent assortment of each gene.
	A. B. C. D. E.
68.	Seeds of some lentils are speckled. A true breeding strain with small speckles is crossed with a true breeding strain with large speckles. All of the F1 progeny have both large and small speckles. Which of the following is true?
	A. B. C. D. E.
69.	The mating of parents with antagonistic traits produces hybrids.
	True False
70.	Mendel's law of segregation states that two alleles for each trait unite in a specific, predictable manner during gamete formation.

True False

71.	Dihybrid crosses helped reveal the law of independent assortment.
	True False
72.	The Punnett square was introduced in 1906 by Reginald Punnett and provides a simple and convenient method of tracking possible combinations of gametes that might be produced in a given cross.
	True False
73.	Using the product rule, one would calculate the probability of parents having six children who are all boys as $(\frac{1}{2})^6$.
	True False
74.	The sum rule states that the probability of both of two mutually exclusive events occurring is the sum of their individual probabilities.
	True False
75.	If you know the phenotype and the dominance relation of the alleles you can predict the genotype.
	True False
76.	An individual can be a heterozygote for one trait and a homozygote for another.
	True False
77.	A testcross is a cross between two heterozygotes.
	True False
78.	At fertilization, in the mating of dihybrids, four different kinds of eggs can combine with four different kinds of pollen, producing a total of sixteen different genotypes.
	True False
79.	During gamete formation, different pairs of alleles on different chromosomes segregate independently of each other.
	True False

80.	If yellow and round phenotypes in peas are dominant, and pea shape and colour are each controlled by a single gene, you know the genotype of all peas that are green and wrinkled.
	True False
81.	Several single-gene disorders are more common in some populations of people than in others.
	True False
82.	A lethal disorder does not include the inheritance of traits that cause death in adulthood.
	True False
83.	Cross-fertilization is the same as reciprocal cross.
	True False
84.	A zygote is a fertilized egg.
	True False
85.	A YY or yy genotype is called heterozygous.
	True False
86.	The progeny of the F_1 generation is also known as the second filial generation
	True False
87.	The law of segregation is a Mendelian law that states that both alleles must separate during gamete formation.
	True False
88.	Multifactorial inheritance is when a phenotype arises as a result of multiple genes interacting with each other and/or the environment.
	True False
89.	The flower colours white, pink, and red indicate codominant inheritance.
	True False

90.	When a late blooming pea and an early blooming pea are crossed and an intermediate phenotype occurs, this result would suggest incomplete dominant inheritance.
	True False
91.	In codominance, F_1 hybrids show the traits of both parents.
	True False
92.	Different alleles indicate unique genes.
	True False
93.	Mutations are the source of new alleles.
	True False
94.	A wild-type allele is any allele whose frequency is closest to 100%.
	True False
95.	A mutant allele has a rare occurrence in a population.
	True False
96.	Genes with more than one wild-type allele are termed polymorphic.
	True False
97.	The mouse <i>agouti</i> gene has one wild-type allele and several mutant alleles.
	True False
98.	The phenomenon of a single gene determining a number of distinct and seemingly unrelated characteristics is known as pleiotropy.
	True False
99.	In epistasis, one gene's alleles mask the effects of another gene's alleles.
	True False

101.

In complementary gene action, dominant alleles of two or more genes are required to generate a particular trait.

True False

You are a judge in a civil trial where a young man is attempting to prove that he is the illegitimate child of a very wealthy man who has recently died. He wishes to be included in the distribution of the wealth. After considering all the testimony about how this person was conceived, the key evidence seems to come down to two main facts. The wealthy man and the mother of the young man are both deaf but the young man is not. Therefore the lawyer of the family suggests that the wealthy man is not the father. The mother, wealthy man, and young man all have O, MM, and Rh Blood Type at the phenotypic level but a genotyping screen indicates that the wealthy man is actually IAIA hh blood type. How do you interpret the evidence presented and how does it influence your decision in this case?

102.

Calculate the probability of the production of a homozygous recessive genotype for the following cross: AaBbccddEeFf × AaBbCcddEeFf

In *Drosophila*, forked (fk) bristles are recessive to normal (fk^+) and glassy eyes (gls) are recessive to normal (gls^+). If an F₁ heterozygous female is backcrossed to the homozygous wild-type male parent, predict the genotypes and phenotypes of the offspring.

104.

A science teacher is attempting to convince her class that alcoholism, which has long been known to be a disease of polygenic inheritance, really is partially genetically determined. You are asked to assist in the design of an experiment that will help show eighth graders genetic transmission of differences in alcohol drinking. You have been given outbred rats as your experimental model. Set up a quantitative experiment that would test the hypothesis that alcoholism, as determined by amount of alcohol drunk, is a quantitative trait.

In corn, liguleless (I) is recessive to ligules (L) and a green leaf (G) is dominant to the normal nongreen (g). If a testcross is performed with a plant that is a dihybrid for both of these genes, what would be the phenotypes and genotypes of the progeny? Assume independent assortment.

106.

Short hair in rabbits is produced by a dominant allele (I^+) and long hair by its recessive allele (I). Black hair results from the action of a dominant allele (I^+) and brown hair from its recessive allele (I^+) and brown hair from its recessive allele (I^+). Determine the genotypic and the corresponding phenotypic ratios of the F₂ offspring, beginning with a parental cross of a rabbit with brown, short hair to a rabbit with long, black hair. Assume that the parent with short hair is homozygous for that allele, and that the parent with black hair is homozygous for that allele. Assume independent assortment.

107.	What does a diamond symbol ◊ in a pedigree indicate?
108.	You wish to know the genotype of some carrot plants that you have grown in your garden so that you might grow more of them. They have reddish orange flesh, are sweet in taste, long in root, and short in leaf. Using classical genetic techniques how would you determine the genotype?
109.	In <i>Drosophila</i> , forked (fk) bristles are recessive to normal (fk^{+}) and glassy eyes (gls) are recessive to normal (gls^{+}). If a homozygous wild-type male is mated to a forked-bristled, glassy-eyed female,

predict the genotypes and phenotypes of the F_2 . Assume independent assortment.

In *Drosophila*, forked (fk) bristles are recessive to normal (fk^+) and glassy eyes (gls) are recessive to normal (gls^+). If a homozygous wild-type male is mated to a forked-bristle, glassy-eye female, predict the genotypes and phenotypes of the F_1 .

111.

Short hair in rabbits is produced by a dominant allele (I^+) and long hair by its recessive allele (I^-). Black hair results from the action of a dominant allele (I^+) and brown hair from its recessive allele (I^-). Determine the genotypic and the corresponding phenotypic ratios of the F₁ offspring, beginning with a parental cross of a rabbit with brown, short hair to a rabbit with long, black hair. Assume that the parent with short hair is homozygous for that allele, and that the parent with black hair is homozygous for that allele. Assume independent assortment.

Stem colour of tomato plants is known to be under the genetic control of at least one pair of alleles such that A_ results in the production of anthocyanin pigment (purple stem). The recessive genotype aa lacks this pigment and hence is green. The production of two locules (seed chambers) in the tomato fruit is controlled by the dominant allele M, and multiple locules is determined by mm. Determine the genotypic and phenotypic ratios of the F_1 from a cross between an inbred tomato plant with a purple stem and fruit with two locules crossed to a tomato plant with a green stem and fruit with multiple locules.

113.

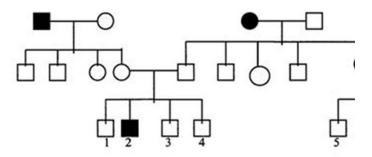
In corn liguleless, (I) is recessive to ligules (L) and a green leaf (G) is dominant to the normal nongreen (g). If a plant homozygous for liguleless and green leaves is crossed to one homozygous for non-green with ligules, predict the phenotypes and genotypes of the F_1 . Assume independent assortment.

A cross in which the traits carried by the male parent and the female parent are reversed.

115.

What are the four general themes that have arisen from Mendel's work?

116.


You are out on a nature walk up in the mountains and you find a pretty wildflower in the lower altitude that is short and bushy with small, fragrant, bright purple flowers. In the higher altitude you find what seems to be the same plant, yet it is tall and sparse with larger flowers of the same colour and fragrance. A) Set up an experiment to test the hypothesis that the plants are different due to genetic but not environmental influences. B) Is it possible to tell if both genetic and environmental effects occur?

In corn liguleless, (I) is recessive to ligules (L) and a green leaf (G) is dominant to the normal nongreen (g). If a plant homozygous for liguleless and green leaves is crossed to one homozygous for non-green with ligules, predict the phenotypes and genotypes of the F_2 .

118.

Stem colour of tomato plants is known to be under the genetic control of at least one pair of alleles such that A_{-} results in the production of anthocyanin pigment (purple stem). The recessive genotype aa lacks this pigment and hence is green. The production of two locules (seed chambers) in the tomato fruit is controlled by the dominant allele M, and multiple locules is determined by mm. Determine the genotypic and phenotypic ratios of the F_{2} offspring beginning with a parental cross between an inbred tomato plant that has a purple stem and fruit with two locules, and a tomato plant that has a green stem and fruit with multiple locules. Assume independent assortment.

Below is a pedigree for a human trait. Shaded symbols are for individuals exhibiting the trait. Identify the mode of inheritance of the trait and apply the laws of probability to calculate the probability that individual #4 is a heterozygous carrier of the trait.

120.

In corn, three dominant genes are necessary for aleurone colour. The genotype $B_D_R_$ is coloured. Any homozygous recessive for one gene is colourless. Predict the genotypes and phenotypes of the offspring of the cross $BbDdRr \times BbDdRr$

Phenotype: 27 coloured; 37 colourless

1	2	1	

In corn, three dominant genes are necessary for aleurone colour. The genotype B_D_R _ is coloured. Any homozygous recessive for one gene is colourless. Predict the genotypes and phenotypes of the offspring of the cross $BbDdRR \times BbDdRR$

122.

In corn, three dominant genes are necessary for aleurone colour. The genotype B_D_R _ is coloured. Any homozygous recessive for one gene is colourless. Predict the genotypes and phenotypes of the offspring of the cross $BbDdRR \times BbDdrr$

In rats, the gene for the pigment (P) is dominant to no pigment (p). The gene for black (B) is dominant to the gene for cream (b). If a pigment gene (P) is absent, genes B and b are inoperative. Predict the genotypes and phenotypes of the F_1 of a cross between a homozygous black rat and an albino homozygous for cream.

124.

In rats, the gene for the pigment (P) is dominant to no pigment (p). The gene for black (B) is dominant to the gene for cream (b). If a pigment gene (P) is absent, genes B and b are inoperative. Predict the genotypes and phenotypes of the F_2 of a parental cross between a homozygous black rat and an albino homozygous for cream.

In the common daisy, the genes A and a and B and b represent two pairs of alleles acting on flower colour. A and B are required for colour. The alleles of these two genes show recessive epistasis. The two gene pairs together thus show duplicate recessive epistasis. Predict the genotypes and phenotypes of the F_1 of a cross between two colourless plants, one homozygous for A and the other homozygous for B.

126.

In the common daisy, the genes A and a and B and b represent two pairs of alleles acting on flower colour. A and B are required for colour. The alleles of these two genes show recessive epistasis. The two gene pairs together thus show duplicate recessive epistasis. Predict the genotypes and phenotypes of the F_2 of a cross between two colourless plants, one homozygous for A and the other homozygous for B.

4	2	7
	_	/

In poultry, if a Black Longshank male with feathered shanks is crossed with a Buff Rock female with unfeathered shanks the F_1 are all feathered and the F_2 show 90 feathered to 6 unfeathered. Infer the genotypes of the parents.

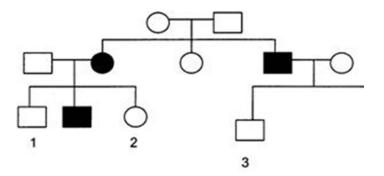
128.

In a certain breed of plants, dark green is determined by the dominant gene G and light green is determined by the recessive gene g. The heterozygote shows 75% penetrance for the dominant phenotype. If the parental cross is $GG \times gg$, what phenotype distribution would be expected in a population of 400 F_2 plants?

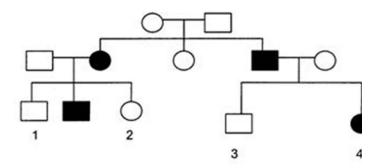
129.

A man with blood type A whose father was blood type O married a woman of blood type B whose mother was blood type O. What are the possible blood types of their offspring?

A	\sim	\sim	
Ί	ંડ	()	


What phenotypes and genotypes would you expect from the following cross of blood-related genotypes?

 $I^{B} i rh^{+} rh^{+} \times I^{A} i rh^{+} rh$


131.

Coat colour in a certain species of rabbit is governed by multiple alleles. The dominance series for these alleles is as follows: coloured (c^+) , chinchilla, (c^{ch}) , himalayan (c^h) and albino (c). Give the phenotypes and ratios from the following crosses: (A) $c^+c \times c^h c^h$ (B) $c^+c^+ \times c^h c^{ch}$ (C) $c^+c \times c^h c^{ch}$ (C) $c^+c \times c^h c^{ch}$ (G) $c \times c^+c^{ch}$.

Affected individuals in the following pedigree are homozygous for the allele that causes the trait. What are the possible genotypes of persons 1, 2, 3 and 4?

The pedigree shown is for a human genetic disease in which solid colour indicates affected individuals. Affected individuals in the pedigree are homozygous for the allele that causes the trait. Apply the laws of probability and calculate the probability, the offspring of the cousin marriage (individual 2 × individual 3) will exhibit the disease.

The following five mothers, (a) through (e), with phenotypes given, each produced one child whose phenotype is described as to blood group (A, B, O), M or N antigens, and Rh factor. For each child, select as the father, one of the five males whose genotypes are given. For some children, more than one male may be a possible father. (ii = Type O blood, $rr = rh & R = rh^+$]

	Maternal Phenotype	Child Phenotype
(a)	AMR	OMR
(b)	BNr	ONr
(c)	OMr	A MN R
(q)	ANR	AB MN R
(e)	AB MN r	A MN r

You have obtained an interesting flower for your garden from your neighbour. The neighbour has given you two pure lines of the plant, one with red flowers and one with yellow flowers. You decide to cross them and find that you obtain all orange flowers. The curious molecular geneticist in you decides to test two independent hypotheses: Hypothesis 1: Incomplete dominance; Hypothesis 2: Recessive epistasis. The first step in your test is to self the F₁ orange plants, which you complete only to find that the results do not statistically distinguish the two hypotheses. a) What ratio of yellow, orange, and red would you expect in the F₂ population for each hypothesis and b) what crosses would you complete next to definitively test your two hypotheses?

136.

Genes A and B are required for colour. If A or B is absent (that is, aa or bb) the result is colourless. Give the genotypes and phenotypes for each F_1 and F_2 progeny of the cross $AAbb \times aabb$

1	2	7	
- 1	J	1	

Genes A and B are required for colour. If A or B is absent (that is, aa or bb) the result is colourless. Give the genotypes and phenotypes for each F_1 and F_2 progeny of the cross $aaBB \times aabb$

138.

Genes A and B are required for colour. If A or B is absent (that is, aa or bb) the result is colourless. Give the genotypes and phenotypes for each F_1 and F_2 progeny of the cross $AAbb \times aaBB$

Chapter 2 Key

1.	The first generation of offspring from the parents is called
	A.
	B. C.
	D.
	E.
	Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #1
	Learning Objective: 02-02 Distinguish between the terms gene and allele and contrast dominant alleles with recessive alleles.
2.	Which of the following terms is not a type of mating cross?
	Δ
	A. B.
	Б. С.
	D.
	<u>E.</u>
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #2 Learning Objective: 02-02 Distinguish between the terms gene and allele and contrast dominant alleles with recessive alleles.
•	
3.	A is a cross between an unknown and a homozygous recessive.
	<u>А.</u> В.
	В.
	C.
	D. E.
	Accessibility: Keyboard Navigation

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #3

Learning Objective: 02-02 Distinguish between the terms gene and allele and contrast dominant alleles with recessive alleles.

4.	If an individual has 10 gene pairs, how many different gametes can be formed if three of the gene pairs are homozygous and the remaining seven gene pairs are heterozygous?
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Appl Hartwell - Chapter 02 # te between the terms homozygous; heterozygous; genotype; and phenotype assortment; and explain how Mendel proposed the law from dihybrid crosses
5.	If the parents of a family already have two boys, what is the probability that the next two offspring will be girls?
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Appl Hartwell - Chapter 02 # Learning Objective: 02-03 Explain Mendels law of segragation
6.	In some genetically engineered corn plants, a dominant gene (BT) produces a protein that is lethal to certain flying insect pests that eat the corn plants. It was also found that the pollen could cause death in some flying insects. If the corn plant is heterozygous for BT, what proportion of the pollen would carry the dominant gene?
	A. <u>B.</u> C. D. E.

7.		Suppose that in plants, smooth seeds (S) are dominant to wrinkled seeds (s) and tall plants (T) are dominant to short plants (t). A tall plant with smooth seeds was backcrossed to a parent that was short and wrinkled. Assuming independent assortment, what proportion of the progeny is expected to be homozygous for short and wrinkled?
		A. <u>B.</u> C. D. E.
	Learning Objective: 02-05 Analyze Mendels law of independent	Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #7 assortment; and explain how Mendel proposed the law from dihybrid crosses.
8.		A rare recessive trait in a pedigree is indicated by which pattern of inheritance?
		A. B. C. D. E.
	Learning Objective: 02-04 Differentia	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #8 ate between the terms homozygous; heterozygous; genotype; and phenotype.
9.		Sickle cell anaemia is a recessive trait in humans. The gene that causes this disease is not located on the sex chromosomes. In a cross between a father who has sickle cell anaemia and a mother who is heterozygous for the gene, what is the probability that their first three children will have the normal phenotype?
		A. B. C. D. E.
		Accessibility: Keyboard Navigation

1	\cap	
-1	υ	

A dominant trait, Huntington disease, causes severe neural/brain damage at approximately age 40. The gene that causes this disease is not located on the sex chromosomes. A female whose mother has Huntington disease marries a male whose parents are normal. It is not known if the female has the disease. Assuming the female's mother was a heterozygote, and her father was normal, what is the probability that their firstborn will inherit the gene that causes Huntington disease?

<u>A.</u>

В.

C.

D. E.

Accessibility: Keyboard Navigation
Blooms: Apply
Hartvall Chapter 93 #10

Hartwell - Chapter 02 #10

Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.

11.

In a monohybrid cross $AA \times aa$, what proportion of homozygotes is expected among the F_2 offspring?

Α.

<u>B.</u>

C.

D.

Ε.

Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #11

Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.

12.

An allele that expresses its phenotype even when heterozygous with a recessive allele is termed

Α.

В.

<u>C.</u>

D.

Ε.

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #12

Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.

13.	Assume that in guinea pigs, dark brown fur (<i>B</i>) is dominant to black fur (<i>b</i>). If you mate a black guinea pig with a homozygous brown guinea pig, what proportion of the progeny will be homozygous?
	<u>А.</u> В. С.
	D. E.
	Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #13 Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.
14.	In the dihybrid cross $AaBb \times aabb$, what proportion of individuals are expected to be homozygotic for both genes in the F_1 generation?
	<u>А.</u> В.
	C. D.
	E.
	Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #14 Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.
15.	is/are a cross(es) between parents that differ in only one trait.
	A. B.
	B. <u>C.</u> D. E.
	Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #15 Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.
	, , , , , , , , , , , , , , , , , , , ,

16.	Assuming independent assortment, which of the crosses below will produce a 1:1 phenotypic ratio among the F₁ progeny?
	A. B. C.
	<u>D.</u> Е.
	Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #16 Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.
17.	The actual alleles present in an individual make up the individual's
	A. B. C. D. <u>E.</u>
	Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #17 Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.
18.	In a dihybrid cross $AAbb \times aaBB$, what proportion of the F ₂ offspring is expected to be homozygotic for at least one gene?
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #18 Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

19.	A phenotype reflecting a new combination of genes occurring during gamete formation is called
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #19 Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.
20.	Assume that in guinea pigs, dark brown fur (<i>B</i>) is dominant to black fur (<i>b</i>). If you mate a homozygous black guinea pig with a heterozygous brown guinea pig, what proportion of the progeny will be black?
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #20 Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.
21.	The diploid cell formed by the fertilization of the egg by the sperm during sexual reproduction is a
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #21 Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

22.		In a dihybrid cross for which the parental cross is <i>AABB</i> × <i>aabb</i> , what proportion of F ₂ offspring will be heterozygous for both genes? Assume independent assortment.
		A. B. C. D. E.
	Learning Objective: 02-05 Analyze Mendels law of independent	Accessibility: Keyboard Navigation Blooms: Appl Hartwell - Chapter 02 #2 assortment; and explain how Mendel proposed the law from dihybrid crosses
23.		An alternative form of a single gene is known as
		A. B. C. D. E.
	Learning Objective: 02-02 Distinguish between	Accessibility: Keyboard Navigation Blooms: Remembe Hartwell - Chapter 02 #2 the terms gene and allele and contrast dominant alleles with recessive alleles
24.		Assume that in guinea pigs, dark brown fur (<i>B</i>) is dominant to black fur (<i>b</i>). If you mate a homozygous black guinea pig with a homozygous brown guinea pig, what proportion of the progeny will be heterozygous?
		A. B. C. D.
		E. Accessibility: Keyboard Navigation

Blooms: Apply

Hartwell - Chapter 02 #24

Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.

25.	Which of the crosses listed below will give a 1:1:1:1 genotypic ratio in the F₁ generation? Assume independent assortment.
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #25 Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.
26.	For the cross <i>AaBb</i> × <i>aabb</i> , what proportion of F ₁ offspring will be heterozygous for both gene pairs? Assume independent assortment.
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #26 Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.
27.	The purposeful control over mating by choice of parents for the next generation is called
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #27 Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

28.	When both egg and pollen from the same plant produce a zygote, the process is called
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #28 Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.
29.	Which of the following was not involved in the rediscovery of Mendel's work?
	A. B. C. <u>D.</u> E.
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #29 Learning Objective: 02-03 Explain Mendels law of segragation.
30.	What does a vertical pattern of inheritance in a pedigree likely indicate?
	A. B. C. D. E.
Learning Objective: 02-05 Analyze M	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #30 lendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

2	1	
J	ı	

Calculate the probability of either all-dominant or all-recessive genotypes for the alleles A, B, E, and F in the following cross: AaBbccddEeFf× AaBbCcddEeFf

Α.

В.

C.

<u>D.</u> □

Accessibility: Keyboard Navigation Blooms: Apply

Hartwell - Chapter 02 #31

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

32.

In some plants, a purple pigment is synthesized from a colourless precursor. In a cross between two plants, one purple and the other colourless, an F_1 generation was produced that was all-purple. The F_2 produced from the F_1 had 775 purple, 200 red, and 65 colourless. What is the genotype of the parents?

Α.

<u>B.</u> C.

D.

Ε.

Accessibility: Keyboard Navigation Blooms: Evaluate Hartwell - Chapter 02 #32

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

33.

Lines that produce offspring carrying specific parental traits that remain constant from generation to generation are called

Α.

В.

C.

<u>D.</u>

Ε.

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #33

Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

2	1	
J	4	

After a cross between two corn plants, the F_1 plants all had a dwarfed phenotype. The F_2 consisted of 1,207 dwarf plants and 401 tall plants. Identify the phenotypes and genotypes of the two parents.

<u>A.</u>

В.

C.

D. E.

> Accessibility: Keyboard Navigation Blooms: Evaluate Hartwell - Chapter 02 #34

Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

35.

Rosy coloured eyes and forked bristles are unlinked, recessive traits in Drosophila. A rosyeyed Drosophila with wild-type bristles was crossed with a forked Drosophila with wild-type eyes. All of the F₁ were phenotypically wild-type for both traits, whereas the F₂ consisted of 306 wild-type, 94 rosy-eyed, 102 fork-bristled, and 33 forked-bristled and rosy-eyed flies. Infer the genotypes of the parents.

Α.

В.

C.

D.

E.

Accessibility: Keyboard Navigation Blooms: Evaluate Hartwell - Chapter 02 #35

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

36.

Which of the following is not a phenotypic description of allele interactions affecting the expression of traits?

Α.

В.

C.

<u>D.</u>

Ε.

37.	An interaction between non-allelic genes that results in the masking of expression of a phenotype is
	A. B. C. D. E.
Learning Objective	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #37 : 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis
38.	Which of the following diseases show pleiotropism?
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Remembe Hartwell - Chapter 02 #38 Learning Objective: 02-08 Describe pleiotropy and how it arises
39.	A deviation from normal Mendelian ratios, which may be resolved by counting and/or controlled crosses, is seen in which of the following terms?
	A. B. C. D.

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #39 Learning Objective: 02-11 Distinguish between penetrance and expressivity.

40.	Which of the following phenotypic ratios show incomplete dominance?
	A. B. C. D. E.
Learning Objective: 02-06 Compare and contrast complete dominance; in	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #40 complete dominance; and codominance relationships; and demonstrate how a dominance series can be established.
41.	Which of the following ratios show codominance?
	A. B. C. D. E.
Learning Objective: 02-06 Compare and contrast complete dominance; in	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #41 complete dominance; and codominance relationships; and demonstrate how a dominance series can be established.
42.	Which of the following ratios indicates a lethal gene?
	A. B. C. D. E. Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #42 Learning Objective: 02-08 Describe pleiotropy and how it arises.
43.	A person who has type O blood has
	A. B. C. <u>D.</u> E.

14.	If two or more forms of the same gene exist, the different forms are called
	A. B. C. D. E.
Learning Objective: 02-02 Distinguish between	Accessibility: Keyboard Navigation Blooms: Remembe Hartwell - Chapter 02 #44 the terms gene and allele and contrast dominant alleles with recessive alleles.
1 5.	The blood groups A, B, and O are different types of
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #45 In the terms gene and allele and contrast dominant alleles with recessive alleles. Incomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established.
16.	The blood groups A, B, and O show
	A. B. C. D. E.
Learning Objective: 02-06 Compare and contrast complete dominance; ir	Accessibility: Keyboard Navigatior Blooms: Understanc Hartwell - Chapter 02 #46 ncomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established

47.	Which of the following monohybrid ratios can describe incomplete dominance and codominance?
	A.
	B. C.
	<u>D.</u> 巨.
Learning Objective: 02-06 Compare ar	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #47 nd contrast complete dominance; incomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established.
48.	Which of the following ratios demonstrate gene interaction?
	A.
	В.
	C. D.
	<u>D.</u> Е.
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #48
	Objective: 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis.
49.	A results whenever the nucleotide sequence is changed.
	A.
	В.
	B. <u>C.</u> D.
	E.
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #49 Learning Objective: 02-07 Explain the terms wild-type allele; mutant allele; monomorphic; and polymorphic.

50.	When the same gene is related to respiratory problems and sterility, it can be described as
	A. B. C. D. E.
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #50 Learning Objective: 02-08 Describe pleiotropy and how it arises.
51.	Another name for a normal gene is
	A. B. C. D. E.
Learning Objective.	Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #51 : 02-07 Explain the terms wild-type allele; mutant allele; monomorphic; and polymorphic.
52.	The phenotypic ratio 1:2:1 may indicate
	A. B. C. D. E.
Learning Objective: 02-06 Compare and contrast complete dom	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #52 inance; incomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established.
53.	The phenotypic ratio 3:1 may indicate
	A. B. C. D. E.
	Accessibility: Keyboard Navigation

54.	The phenotypic ratio 2:1 may indicate
	A. B. C. <u>D.</u> E.
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #54 Learning Objective: 02-08 Describe pleiotropy and how it arises.
55.	The phenotypic ratio 9:7 may indicate
	A. B. C. D. <u>E.</u>
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #55 Learning Objective: 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis.
56.	The phenotypic ratio 9:3:4 may indicate
	A. B. C. D. E.
	— . Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #56 Learning Objective: 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis.
57.	Which of the following phenotypic ratios show independent assortment?
	A. B. C. D. <u>E.</u>

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #57

_	\sim	
^	×	
J	u	

Temperature sensitive (*ts*) alleles of the Drosophila *shibire* gene were isolated by David Suzuki. Under permissive conditions, what is the phenotype of flies homozygous for the *ts* alleles?

Α.

В.

<u>C.</u> D.

E.

Accessibility: Keyboard Navigation Blooms: Understand

Hartwell - Chapter 02 #58

Learning Objective: 02-11 Distinguish between penetrance and expressivity.

People may inherit a specific genotype that predisposes them to cancer. However, not everyone with this genotype develops cancer; the occurrence of cancer in these individuals is dependent on environment. This is an example of:

Α.

<u>B.</u>

C.

Ε.

Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #59

Learning Objective: 02-11 Distinguish between penetrance and expressivity.

Which of these is not an example of a continuous trait?

Α.

<u>B.</u>

C.

D.

E.

Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #60 Learning Objective: 02-12 Explain the inheritance of continuous traits.

59.

60.

61.	Which of the following statements about continuous traits is not true?
	<u>А.</u> В. С.
	D. E.
	Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #61 Learning Objective: 02-12 Explain the inheritance of continuous traits.
62.	Several alleles at several different loci all contribute additively to the same trait. Therefore, for this trait:
	A. B. C. D.
	E. Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #62 Learning Objective: 02-12 Explain the inheritance of continuous traits.
63.	How does penetrance differ from expressivity?
	A. B. C. <u>D.</u> E.
	Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #63 Learning Objective: 02-11 Distinguish between penetrance and expressivity.

Wild-type pea flowers are purple. You find spontaneous, white-flowered mutants growing nearby in five different locations (numbered a-e). You establish pure breeding lines of each and perform crosses between them, and record the F₁ phenotype in the table below. Based on the data in the table, how many different genes in the pathway for purple flowers have been identified by mutation?

	a	b	С	d	e
a	white	purple	purple	white	purple
b	purple	white	purple	purple	purple
С	purple	purple	white	purple	white
d	white	purple	purple	white	purple
e	purple	purple	white	purple	white

Α.

В.

<u>C.</u>

D.

Ε.

Blooms: Evaluate Hartwell - Chapter 02 #64

Learning Objective: 02-10 Evaluate the significance of the complementation test as a tool for genetic analysis.

65.

Which of the following is not useful in a complementation test?

Α.

В.

C.

D.

E.

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #65

Learning Objective: 02-10 Evaluate the significance of the complementation test as a tool for genetic analysis.

\sim	\sim	
n	n	
v	v	

If two homozygous recessive mutants show the same phenotype, but are caused by mutations at different loci, what will be the phenotype ratio among their F₁ progeny?

<u>A.</u>

В.

C.

D. E.

Accessibility: Keyboard Navigation Blooms: Analyze

Hartwell - Chapter 02 #66

Learning Objective: 02-10 Evaluate the significance of the complementation test as a tool for genetic analysis.

67.

AA and Aa make red flowers, and aa makes white flowers. BB and Bb make tall plants, and bb makes short plants. What would be the expected ratios of phenotypes among the offspring of the cross of AaBb x aaBb? Note the genotypes in the cross carefully. Assume independent assortment of each gene.

Α.

В.

<u>C.</u>

D.

Ε.

Accessibility: Keyboard Navigation Blooms: Evaluate Hartwell - Chapter 02 #67

Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.

68.

Seeds of some lentils are speckled. A true breeding strain with small speckles is crossed with a true breeding strain with large speckles. All of the F1 progeny have both large and small speckles. Which of the following is true?

Α.

B.

C.

<u>D.</u>

Ε.

The mating of parents with antagonistic traits produces hybrids.

TRUE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #69

Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

70.

Mendel's law of segregation states that two alleles for each trait unite in a specific, predictable manner during gamete formation.

FALSE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #70

Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

71.

Dihybrid crosses helped reveal the law of independent assortment.

TRUE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #71

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

72.

73.

The Punnett square was introduced in 1906 by Reginald Punnett and provides a simple and convenient method of tracking possible combinations of gametes that might be produced in a given cross.

TRUE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #72 Learning Objective: 02-03 Explain Mendels law of segragation.

Using the product rule, one would calculate the probability of parents having six children who are all boys as $(\frac{1}{2})^6$.

TRUE

Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #73 Learning Objective: 02-03 Explain Mendels law of segragation. 74. The sum rule states that the probability of both of two mutually exclusive events occurring is the sum of their individual probabilities. **FALSE** Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #74 Learning Objective: 02-03 Explain Mendels law of segragation. 75. If you know the phenotype and the dominance relation of the alleles you can predict the genotype. **FALSE** Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #75 Learning Objective: 02-02 Distinguish between the terms gene and allele and contrast dominant alleles with recessive alleles. 76. An individual can be a heterozygote for one trait and a homozygote for another. TRUE Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #76 Learning Objective: 02-02 Distinguish between the terms gene and allele and contrast dominant alleles with recessive alleles. 77. A testcross is a cross between two heterozygotes. **FALSE** Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #77 Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype. 78. At fertilization, in the mating of dihybrids, four

different kinds of eggs can combine with four different kinds of pollen, producing a total of sixteen different genotypes.

FALSE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #78

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

79.

During gamete formation, different pairs of alleles on different chromosomes segregate independently of each other.

TRUE

Accessibility: Keyboard Navigation Blooms: Remember

If yellow and round phenotypes in peas are dominant, and pea shape and colour are each controlled by a single gene, you know the genotype of all peas that are green and wrinkled.

TRUE

Accessibility: Keyboard Navigation Blooms: Apply Hartwell - Chapter 02 #80

Learning Objective: 02-02 Distinguish between the terms gene and allele and contrast dominant alleles with recessive alleles.

81.

Several single-gene disorders are more common in some populations of people than in others.

TRUE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #81

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

82.

83.

A lethal disorder does not include the inheritance of traits that cause death in adulthood.

FALSE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #82 Learning Objective: 02-08 Describe pleiotropy and how it arises.

Cross-fertilization is the same as reciprocal cross.

FALSE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #83

Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

84.

A zygote is a fertilized egg.

TRUE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #84

Learning Objective: 02-02 Distinguish between the terms gene and allele and contrast dominant alleles with recessive alleles.

85.

A YY or yy genotype is called heterozygous.

FALSE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #85

Learning Objective: 02-02 Distinguish between the terms gene and allele and contrast dominant alleles with recessive alleles.

The progeny of the F₁ generation is also known as the second filial generation

FALSE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #86

Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

87.

88.

The law of segregation is a Mendelian law that states that both alleles must separate during gamete formation.

TRUE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #87 Learning Objective: 02-03 Explain Mendels law of segragation.

Multifactorial inheritance is when a phenotype arises as a result of multiple genes interacting with each other and/or the environment.

TRUE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #88 Learning Objective: 02-08 Describe pleiotropy and how it arises. Learning Objective: 02-12 Explain the inheritance of continuous traits.

The flower colours white, pink, and red indicate codominant inheritance.

FALSE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #89 Learning Objective: 02-06 Compare and contrast complete dominance; incomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established.

90.

89.

When a late blooming pea and an early blooming pea are crossed and an intermediate phenotype occurs, this result would suggest incomplete dominant inheritance.

TRUE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #90

Learning Objective: 02-06 Compare and contrast complete dominance; incomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established.

In codominance, F₁ hybrids show the traits of both parents.

TRUE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #91

Learning Objective: 02-06 Compare and contrast complete dominance; incomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established.

92.

Different alleles indicate unique genes.

FALSE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #92

Learning Objective: 02-02 Distinguish between the terms gene and allele and contrast dominant alleles with recessive alleles.

93.

Mutations are the source of new alleles.

TRUE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #93

Learning Objective: 02-07 Explain the terms wild-type allele; mutant allele; monomorphic; and polymorphic.

94.

A wild-type allele is any allele whose frequency is closest to 100%.

FALSE

Accessibility: Keyboard Navigation Blooms: Understand

Hartwell - Chapter 02 #94

Learning Objective: 02-07 Explain the terms wild-type allele; mutant allele; monomorphic; and polymorphic.

95.

A mutant allele has a rare occurrence in a population.

TRUE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #95

Learning Objective: 02-07 Explain the terms wild-type allele; mutant allele; monomorphic; and polymorphic.

96.

Genes with more than one wild-type allele are termed polymorphic.

TRUE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #96

Learning Objective: 02-07 Explain the terms wild-type allele; mutant allele; monomorphic; and polymorphic.

The mouse *agouti* gene has one wild-type allele and several mutant alleles.

TRUE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #97

Learning Objective: 02-07 Explain the terms wild-type allele; mutant allele; monomorphic; and polymorphic.

98.

The phenomenon of a single gene determining a number of distinct and seemingly unrelated characteristics is known as pleiotropy.

TRUE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #98 Learning Objective: 02-08 Describe pleiotropy and how it arises.

99.

In epistasis, one gene's alleles mask the effects of another gene's alleles.

TRUE

Accessibility: Keyboard Navigation Blooms: Remember Hartwell - Chapter 02 #99

Learning Objective: 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis.

100.

In complementary gene action, dominant alleles of two or more genes are required to generate a particular trait.

TRUE

Accessibility: Keyboard Navigation Blooms: Understand Hartwell - Chapter 02 #100

Learning Objective: 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis.

You are a judge in a civil trial where a young man is attempting to prove that he is the illegitimate child of a very wealthy man who has recently died. He wishes to be included in the distribution of the wealth. After considering all the testimony about how this person was conceived, the key evidence seems to come down to two main facts. The wealthy man and the mother of the young man are both deaf but the young man is not. Therefore the lawyer of the family suggests that the wealthy man is not the father. The mother, wealthy man, and young man all have O, MM, and Rh Blood Type at the phenotypic level but a genotyping screen indicates that the wealthy man is actually IAIA hh blood type. How do you interpret the evidence presented and how does it influence your decision in this case?

The fact that the young man can hear is not evidence against his being the son of the wealthy man. Two deaf individuals can, via complementation, give rise to hearing offspring if the mutation they carry is on different genes (hearing is a polygenic trait.) The blood type evidence is definitive in favour of the wealthy man not being the father of the young man. Although both putative parents and the son in question have O blood type, the wealthy man is genetically type A and phenotypically type O because of recessive homozygosity of the h allele which leads to Bombay phenotype; the protein to which the A sugar attaches is missing thereby making the wealthy man phenotypically type O. Any son of his would be highly likely to have A-antigen, as the h allele is very rare in humans, making homozygous recessive offspring extremely unlikely except in consanguineous matings.

Calculate the probability of the production of a homozygous recessive genotype for the following cross: AaBbccddEeFf × AaBbCcddEeFf

$$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{2} \times 1 \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{5}12$$

Blooms: Apply Hartwell - Chapter 02 #102

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

103.

In *Drosophila*, forked (fk) bristles are recessive to normal (fk^+) and glassy eyes (gls) are recessive to normal (gls^+). If an F₁ heterozygous female is backcrossed to the homozygous wild-type male parent, predict the genotypes and phenotypes of the offspring.

Genotype	Phenotype
fk+fk+gls+gls+	Wild type
fk+fk+gls+gls	Wild type
fk+fk gls+gls+	Wild type
fk+fk gls+gls	Wild type

Blooms: Evaluate Hartwell - Chapter 02 #103

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

A science teacher is attempting to convince her class that alcoholism, which has long been known to be a disease of polygenic inheritance, really is partially genetically determined. You are asked to assist in the design of an experiment that will help show eighth graders genetic transmission of differences in alcohol drinking. You have been given outbred rats as your experimental model. Set up a quantitative experiment that would test the hypothesis that alcoholism, as determined by amount of alcohol drunk, is a quantitative trait.

Set up a selective breeding experiment. Provide rats with water and with a solution of water and alcohol in a low concentration. Measure the consumption of the alcohol-containing solution per day for all rats. Breed the high-drinking male rats with the high-drinking females, and the lowdrinking males with low-drinking females. Test the offspring for alcohol solution consumption, and do the same in subsequent generations. If the rats bred for high drinking continue to increase their drinking levels from generation to generation, and the low drinkers decrease their drinking levels in the same way, this is evidence that alcohol consumption is genetically determined. Your data will also show that the individual rats differ in amount of consumption, and when plotted together the data will show a continuous distribution, indicating a quantitative trait (interactions of more than one gene and interactions with the environment contribute to the alcohol drinking trait).

Blooms: Create Hartwell - Chapter 02 #104 Learning Objective: 02-12 Explain the inheritance of continuous traits. In corn, liguleless (I) is recessive to ligules (L) and a green leaf (G) is dominant to the normal nongreen (g). If a testcross is performed with a plant that is a dihybrid for both of these genes, what would be the phenotypes and genotypes of the progeny? Assume independent assortment.

Genotype	Phenotype
LlGg	Ligules/Green
Llgg	Ligules/Non-green
llGg	Liguleless/Green
llgg	Liguleless/Non-green

Blooms: Evaluate Hartwell - Chapter 02 #105

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

106.

Short hair in rabbits is produced by a dominant allele (*I*⁺) and long hair by its recessive allele (*I*). Black hair results from the action of a dominant allele (*b*⁺) and brown hair from its recessive allele (*b*). Determine the genotypic and the corresponding phenotypic ratios of the F₂ offspring, beginning with a parental cross of a rabbit with brown, short hair to a rabbit with long, black hair. Assume that the parent with short hair is homozygous for that allele, and that the parent with black hair is homozygous for that allele. Assume independent assortment.

		Phenotype
1	l+l+ b+b+	Short Black
2	l+l b+b+	Short Black
2	l+l+ b+b	Short Black
4	l+l b+b	Short Black
1	l+l+ bb	Short Brown
2	l+l bb	Short Brown
1	ll b+b+	Long Black
2	ll b+b	Long Black
1	llbb	Long Brown

What does a diamond symbol ◊ in a pedigree indicate?

Sex unspecified

Blooms: Remember Hartwell - Chapter 02 #107

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

108.

You wish to know the genotype of some carrot plants that you have grown in your garden so that you might grow more of them. They have reddish orange flesh, are sweet in taste, long in root, and short in leaf. Using classical genetic techniques how would you determine the genotype?

You need to determine the dominant/recessive nature of each trait. Set up crosses between reddish orange, sweet tasting, long in root, and short in leaf carrot plants and true orange, plain tasting, short in root, and long in leaf carrot plants to determine each dominant trait. Then create a "tester plant" that is recessive for all four traits. Cross your favourite carrot plants with the tester and observe the offspring. The traits shown in the offspring are indicative of the genotype of your original carrot plant.

Blooms: Create Hartwell - Chapter 02 #108

 $Learning\ Objective:\ 02-04\ Differentiate\ between\ the\ terms\ homozygous;\ heterozygous;\ genotype;\ and\ phenotype.$

In *Drosophila*, forked (fk) bristles are recessive to normal (fk^+) and glassy eyes (gls) are recessive to normal (gls^+). If a homozygous wild-type male is mated to a forked-bristled, glassy-eyed female, predict the genotypes and phenotypes of the F₂. Assume independent assortment.

# Genotype	Phenotype
$1 fk^+fk^+ gls^+gls^+$	Wild type
$2fk^+fk^+$ gls $^+$ gls	Wild type
$2fk^+fkgls^+gls^+$	Wild type
4 fk+fk gls+gls	Wild type
1 fk+fk+ gls gls	Glassy eyes
2 fk+fk gls gls	Glassy eyes
1 fk fk gls+gls+	Forked bristles
2 fk fk gls+gls	Forked bristles
1 fk fk gls gls	Forked bristles and glassy eyes

Blooms: Evaluate

Hartwell - Chapter 02 #109

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

110.

In *Drosophila*, forked (fk) bristles are recessive to normal (fk^+) and glassy eyes (gls) are recessive to normal (gls^+). If a homozygous wild-type male is mated to a forked-bristle, glassy-eye female, predict the genotypes and phenotypes of the F_1 .

	Phenotype
fk+fk gls+gls	Wild type

Blooms: Evaluate Hartwell - Chapter 02 #110

 $Learning\ Objective:\ 02-05\ Analyze\ Mendels\ law\ of\ independent\ assortment;\ and\ explain\ how\ Mendel\ proposed\ the\ law\ from\ dihybrid\ crosses.$

Short hair in rabbits is produced by a dominant allele (*I*⁺) and long hair by its recessive allele (*I*). Black hair results from the action of a dominant allele (*b*⁺) and brown hair from its recessive allele (*b*). Determine the genotypic and the corresponding phenotypic ratios of the F₁ offspring, beginning with a parental cross of a rabbit with brown, short hair to a rabbit with long, black hair. Assume that the parent with short hair is homozygous for that allele, and that the parent with black hair is homozygous for that allele. Assume independent assortment.

Genotype	Phenotype
l+l b+b	short, black

Blooms: Evaluate Hartwell - Chapter 02 #111

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

112.

Stem colour of tomato plants is known to be under the genetic control of at least one pair of alleles such that A_{-} results in the production of anthocyanin pigment (purple stem). The recessive genotype aa lacks this pigment and hence is green. The production of two locules (seed chambers) in the tomato fruit is controlled by the dominant allele M, and multiple locules is determined by mm. Determine the genotypic and phenotypic ratios of the F_{1} from a cross between an inbred tomato plant with a purple stem and fruit with two locules crossed to a tomato plant with a green stem and fruit with multiple locules.

Genotype	Phenotype
AaMm	purple, 2 locules

Blooms: Evaluate

Hartwell - Chapter 02 #112

In corn liguleless, (I) is recessive to ligules (L) and a green leaf (G) is dominant to the normal nongreen (g). If a plant homozygous for liguleless and green leaves is crossed to one homozygous for non-green with ligules, predict the phenotypes and genotypes of the F_1 . Assume independent assortment.

Genotype	Phenotype
LlGg	Ligules/Green

Blooms: Evaluate Hartwell - Chapter 02 #113

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

114.

A cross in which the traits carried by the male parent and the female parent are reversed.

Reciprocal cross

Blooms: Understand Hartwell - Chapter 02 #114

Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

115.

What are the four general themes that have arisen from Mendel's work?

Variation, as expressed in alternative forms of a trait, is widespread in nature. Observable variation is essential for following inheritance of traits. Variation is not distributed by chance alone but is inherited according to the genetic tenet that "like begets like." Mendel's laws apply to all sexually reproducing organisms.

Blooms: Understand Hartwell - Chapter 02 #115

Learning Objective: 02-01 Explain how monohybrid crosses led Mendel to infer the law of segregation.

You are out on a nature walk up in the mountains and you find a pretty wildflower in the lower altitude that is short and bushy with small, fragrant, bright purple flowers. In the higher altitude you find what seems to be the same plant, yet it is tall and sparse with larger flowers of the same colour and fragrance. A) Set up an experiment to test the hypothesis that the plants are different due to genetic but not environmental influences. B) Is it possible to tell if both genetic and environmental effects occur?

A) Assuming these are not endangered plants and you are not in a protected area, obtain several specimens from each location. Plant seeds of both types of plants in both low- and high-altitude locations. Observe the offspring. If the offspring look the same as their parental stock, then the differences are simply genetic in nature. If the offspring look short and bushy with small fragrant, bright purple flowers in the lower altitude, but tall and sparse with larger flowers of the same colour and fragrance in the higher altitude, then the differences are due to environmental influences. B) Yes, a combination of the traits would indicate that both environmental and genetic influences play a role in the differences you have identified.

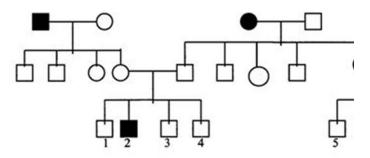
Blooms: Create
Hartwell - Chapter 02 #116
Learning Objective: 02-11 Distinguish between penetrance and expressivity.

In corn liguleless, (I) is recessive to ligules (L) and a green leaf (G) is dominant to the normal nongreen (g). If a plant homozygous for liguleless and green leaves is crossed to one homozygous for non-green with ligules, predict the phenotypes and genotypes of the F_2 .

# Genotype	Phenotype
1 <i>LLGG</i>	Ligules/Green
2 LLGg	Ligules/Green
2 <i>LlGG</i>	Ligules/Green
4 LlGg	Ligules/Green
1 <i>LLgg</i>	Ligules/Non-green
2 Llgg	Ligules/Non-green
1 llGG	Liguleless/Green
2 llGg	Liguleless/Green
1 llgg	Liguleless/Non-green

Blooms: Evaluate Hartwell - Chapter 02 #117

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.


Stem colour of tomato plants is known to be under the genetic control of at least one pair of alleles such that *A*_ results in the production of anthocyanin pigment (purple stem). The recessive genotype *aa* lacks this pigment and hence is green. The production of two locules (seed chambers) in the tomato fruit is controlled by the dominant allele M, and multiple locules is determined by mm. Determine the genotypic and phenotypic ratios of the F₂ offspring beginning with a parental cross between an inbred tomato plant that has a purple stem and fruit with two locules, and a tomato plant that has a green stem and fruit with multiple locules. Assume independent assortment.

#	Genotype	Phenotype
1	AAMM	Purple, 2 locules
2	AaMM	Purple, 2 locules
2	AAMm	Purple, 2 locules
4	AaMm	Purple, 2 locules
1	ааММ	Green, 2 locules
2	ааМт	Green, 2 locules
1	AAmm	Purple, Multi locules
2	AAMm	Purple, Multi locules
1	aamm	Green, Multi locules

Blooms: Evaluate Hartwell - Chapter 02 #118

 $Learning\ Objective:\ 02-05\ Analyze\ Mendels\ law\ of\ independent\ assortment;\ and\ explain\ how\ Mendel\ proposed\ the\ law\ from\ dihybrid\ crosses.$

Below is a pedigree for a human trait. Shaded symbols are for individuals exhibiting the trait. Identify the mode of inheritance of the trait and apply the laws of probability to calculate the probability that individual #4 is a heterozygous carrier of the trait.

Mode of inheritance is recessive. The probability that #4 is a carrier is 1/4, since both of his parents are carriers, and since he does not have the trait himself (i.e. 3 Aa: 1 AA).

Blooms: Evaluate Hartwell - Chapter 02 #119

Learning Objective: 02-04 Differentiate between the terms homozygous; heterozygous; genotype; and phenotype.

In corn, three dominant genes are necessary for aleurone colour. The genotype B_D_R _ is coloured. Any homozygous recessive for one gene is colourless. Predict the genotypes and phenotypes of the offspring of the cross $BbDdRr \times BbDdRr$

Phenotype: 27 coloured; 37 colourless

Ratio of Genotypes 1		
2 BBDdrr 2 BbDDrr 4 BbDdrr 1 BBddrr 2 Bbddrr 1 bbDDrr 2 bbDdrr 1 bbddrr 2 BBDDRr 4 BBDDRr 4 BbDDRr 2 BBddRr 4 BbDDRr 4 BbDDRr 2 BbDDRr 2 BbDDRR 2 BBDDRR 2 BBDDRR 4 BbDRR 2 BBDARR 4 BbDRR 1 BbDRR 2 BBDARR 1 BbDARR 1 BbDARR 2 BbDARR 1 BBAARR 2 BbDARR 3 BbDARR 4 BbDARR 5 BbDARR 6 BbDARR 7 BBAARR	Ratio of	Genotypes
2 BbDDrr 4 BbDdrr 1 BBddrr 2 BbdDrr 1 bbDDrr 2 bbDdrr 1 bbddrr 2 BBDDRr 4 BbDDRr 8 BbDdRr 2 BBddRr 4 BbDDRr 2 BbDDRr 4 BbDDRR 2 BbDDRR 2 BBDDRR 2 BBDARR 4 BbDRR 2 BBDARR 4 BbDRR 1 BbDRR 2 BbDARR 1 BbDARR 1 BBARR 2 BBARR 3 BBARR 4 BBARR 5 BBARR 6 BBARR 7 BBARR 8 BBARR 9 BBARR 1 BBARR 1<	1	BBDDrr
4 BbDdrr 1 BBddrr 2 Bbddrr 1 bbDDrr 2 bbDdrr 1 bbddrr 2 BBDDRr 4 BBDDRr 4 BbDDRr 2 BBddRr 4 BbDDRr 2 bbDDRr 4 bbDARr 2 bbDDRR 2 BBDDRR 2 BBDDRR 2 BBDARR 4 BbDARR 1 BBDARR 2 BBDARR 3 BBDARR 4 BBDARR 5 BBDARR 6 BBDARR 7 BBDARR 8 BBDARR 9 BBDARR <th>2</th> <th><i>BBDdrr</i></th>	2	<i>BBDdrr</i>
1 BBddrr 2 Bbddrr 1 bbDDrr 2 bbDdrr 1 bbddrr 2 BBDDRr 4 BBDDRr 4 BbDDRr 8 BbDdRr 2 BBddRr 4 BbDDRr 2 bbDARr 2 BbDDRR 2 BBDDRR 2 BBDARR 4 BbDARR 2 BBDARR 4 BbDARR 1 BbDARR 1 BbDARR 2 bbDARR 1 BBdARR 2 bbDARR 1 BBAdRR 2 bbDARR 1 BBADRR 2 bbDARR 1 BBADRR	2	<i>BbDDrr</i>
2 Bbddrr 1 bbDDrr 2 bbDdrr 1 bbddrr 2 BBDDRr 4 BBDdRr 4 BbDDRr 8 BbDdRr 2 BBddRr 4 BbDDRr 2 bbDDRr 4 bbDDRR 2 BBDDRR 2 BBDDRR 2 BBDARR 4 BbDARR 1 BbDARR 1 BbDARR 1 BbDARR 2 bbDARR 1 BBdARR 2 bbDARR 1 BBdARR 2 bbDARR 1 BBABARR 2 bbDARR	4	<i>BbDdrr</i>
2 bbDdrr 1 bbddrr 2 BBDDRr 4 BBDDRr 4 BbDDRr 8 BbDdRr 2 BBddRr 4 BbDDRr 2 bbDDRr 4 BBDDRR 2 BBDDRR 2 BBDDRR 2 BBDARR 4 BbDRR 2 BBDARR 1 BbDARR 1 BbDARR 1 BBdARR 2 bbDARR 1 BBdARR 2 bbDARR	1	BBddrr
2 bbDdrr 1 bbddrr 2 BBDDRr 4 BBDDRr 4 BbDDRr 8 BbDdRr 2 BBddRr 4 BbDDRr 2 bbDDRr 4 BBDDRR 2 BBDDRR 2 BBDDRR 2 BBDARR 4 BbDRR 2 BBDARR 1 BbDARR 1 BbDARR 1 BBdARR 2 bbDARR 1 BBdARR 2 bbDARR	2	Bbddrr
1 bbddrr 2 BBDDRr 4 BBDdRr 4 BbDDRr 8 BbDdRr 2 BBddRr 4 BbdDRr 2 bbDDRr 4 bbDdRr 2 BBDDRR 2 BBDDRR 2 BBDDRR 2 BBDARR 4 BbDARR 1 BbDDRR 2 BbDARR 1 BbDARR 1 BBdARR 2 bbDARR 1 BBdARR 2 bbDARR	1	bbDD111
2 BBDDRr 4 BBDDRr 4 BbDDRr 8 BbDdRr 2 BBddRr 4 BbDDRr 2 bbDDRr 4 bbDDRR 2 BBDDRR 2 BBDDRR 2 BBDARR 4 BbDARR 1 BbDDRR 2 BbDARR 1 BbDARR 2 bbDARR 1 BBdARR 2 bbDARR 1 BBdARR 2 bbDARR	2	bbDdrr
4	1	bbddrr
4 BbDDRr 8 BbDdRr 2 BBddRr 4 BbddRr 2 bbDDRr 4 bbDdRr 2 bbbddRr 1 BBDDRR 2 BbDDRR 2 BBDdRR 4 BbDdRR 1 bbDdRR 1 bbDDRR 1 bbDDRR 1 bbDDRR 1 bbDDRR 2 bbDdRR 1 bbDDRR	2	<i>BBDDRr</i>
8 BbDdRr 2 BBddRr 4 BbddRr 2 bbDDRr 4 bbDdRr 2 bbddRr 1 BBDDRR 2 BbDDRR 2 BBDdRR 4 BbDdRR 1 bbDdRR 1 bbDDRR 1 bbDDRR 1 bbDDRR 2 bbDdRR 1 bbDDRR	4	BBDdRr
2 BBddRr 4 BbddRr 2 bbDDRr 4 bbDdRr 2 bbddRr 1 BBDDRR 2 BbDDRR 2 BBDdRR 4 BbDdRR 1 bbDDRR 1 bbDDRR 1 bbDDRR 1 bbDDRR 2 bbDdRR 2 bbDdRR 2 bbDdRR	4	BbDDRr
2 bbDDRr 4 bbDdRr 2 bbddRr 1 BBDDRR 2 BbDDRR 2 BBDdRR 4 BbDdRR 1 bbDDRR 2 bbDdRR 1 bbDDRR 2 bbDdRR 2 bbDdRR	8	BbDdRr
2 bbDDRr 4 bbDdRr 2 bbddRr 1 BBDDRR 2 BbDDRR 2 BBDdRR 4 BbDdRR 1 bbDDRR 2 bbDdRR 1 bbDDRR 2 bbDdRR 2 bbDdRR	2	BBddRr
4 bbDdRr 2 bbddRr 1 BBDDRR 2 BbDDRR 2 BBDdRR 4 BbDdRR 1 bbDDRR 2 bbDdRR 1 bbDDRR 2 bbDdRR 2 bbDdRR	4	BbddRr
2 bbddRr 1 BBDDRR 2 BbDDRR 2 BBDdRR 4 BbDdRR 1 bbDDRR 2 bbDdRR 1 BBddRR 1 BBddRR 2 bbDdRR	2	bbDDRr
1 BBDDRR 2 BbDDRR 2 BBDdRR 4 BbDdRR 1 bbDDRR 2 bbDdRR 1 BBddRR 1 BBddRR 2 bbDdRR	4	bbDdRr
2 BbDDRR 2 BBDdRR 4 BbDdRR 1 bbDDRR 2 bbDdRR 1 BBddRR 2 bbDdRR	2	
2 BBDdRR 4 BbDdRR 1 bbDDRR 2 bbDdRR 1 BBddRR 2 bbDdRR	1	BBDDRR
4 BbDdRR 1 bbDDRR 2 bbDdRR 1 BBddRR 2 bbDdRR	2	
1 bbDDRR 2 bbDdRR 1 BBddRR 2 bbDdRR	2	The second second second second
 2 bbDdRR 1 BBddRR 2 bbDdRR 	4	
1 BBddRR 2 bbDdRR	1	
2 bbDdRR	2	
	1	
1 bbddRR	2	
2 000000	1	bbddRR

In corn, three dominant genes are necessary for aleurone colour. The genotype B_D_R _ is coloured. Any homozygous recessive for one gene is colourless. Predict the genotypes and phenotypes of the offspring of the cross $BbDdRR \times BbDdRR$

Phenotype: 9 colour; 7 colourless

Ratio	Ratio of Genotypes		
1	<i>BBDDRR</i>		
2	BbDDRR		
2 2 4	BBDdRR		
4	BbDdRR		
1	bbDDRR		
2	bbDdRR		
1	<i>BBddRR</i>		
2	bbDdRR		
1	bbddRR		

Blooms: Evaluate Hartwell - Chapter 02 #121

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

In corn, three dominant genes are necessary for aleurone colour. The genotype B_D_R _ is coloured. Any homozygous recessive for one gene is colourless. Predict the genotypes and phenotypes of the offspring of the cross $BbDdRR \times BbDdrr$

Phenotype: 9 colour; 7 colourless

Rat	Ratio of Genotypes		
1	BBDDRr		
2	BBDdRr		
2 2 4	<i>BbDDRr</i>		
4	BbDdRr		
1	BBddRr		
1 2 1	BbddRr		
	bbDDRr		
2	bbDdRr		
1	bbddRr		

Blooms: Evaluate Hartwell - Chapter 02 #122

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

123.

In rats, the gene for the pigment (P) is dominant to no pigment (p). The gene for black (B) is dominant to the gene for cream (b). If a pigment gene (P) is absent, genes B and b are inoperative. Predict the genotypes and phenotypes of the F_1 of a cross between a homozygous black rat and an albino homozygous for cream.

Genotype	Phenotype
PpBb	Black

In rats, the gene for the pigment (P) is dominant to no pigment (p). The gene for black (B) is dominant to the gene for cream (b). If a pigment gene (P) is absent, genes B and b are inoperative. Predict the genotypes and phenotypes of the F_2 of a parental cross between a homozygous black rat and an albino homozygous for cream.

9 Black; 3 cream; 4 colourless

	Genotype	Phenotype
1	<i>PPBB</i>	Black
2	PPBb	Black
2	PpBB	Black
4	PpBb	Black
	ppBB	colourless
2	ppBb	colourless
1	PPbb	cream
2	Ppbb	cream
1	ppbb	colourless

Blooms: Analyze Hartwell - Chapter 02 #124

Learning Objective: 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis.

125.

In the common daisy, the genes A and a and B and b represent two pairs of alleles acting on flower colour. A and B are required for colour. The alleles of these two genes show recessive epistasis. The two gene pairs together thus show duplicate recessive epistasis. Predict the genotypes and phenotypes of the F_1 of a cross between two colourless plants, one homozygous for A and the other homozygous for B.

Genotype	Phenotype
AaBb	Colour

In the common daisy, the genes A and a and B and b represent two pairs of alleles acting on flower colour. A and B are required for colour. The alleles of these two genes show recessive epistasis. The two gene pairs together thus show duplicate recessive epistasis. Predict the genotypes and phenotypes of the F_2 of a cross between two colourless plants, one homozygous for A and the other homozygous for B.

9 Black; 7 colourless

	Genotype	Phenotype
1	AABB	Colour
2	AABb	Colour
2	AaBB	Colour
4	AaBb	Colour
1	aaBB	Colourless
	aabb	Colouress
_	aaBb	Colourless
2		
2	aaBb	Colourless
2 1	aaBb AAbb	Colourless Colourless

Blooms: Apply Hartwell - Chapter 02 #126

Learning Objective: 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis.

127.

In poultry, if a Black Longshank male with feathered shanks is crossed with a Buff Rock female with unfeathered shanks the F_1 are all feathered and the F_2 show 90 feathered to 6 unfeathered. Infer the genotypes of the parents.

AABB × aabb; The ratio is a 15:1 which is a dihybrid ratio; therefore the parents are homozygous and produce a heterozygous F₁.

In a certain breed of plants, dark green is determined by the dominant gene G and light green is determined by the recessive gene g. The heterozygote shows 75% penetrance for the dominant phenotype. If the parental cross is $GG \times gg$, what phenotype distribution would be expected in a population of 400 F_2 plants?

250 dark green (GG + 75% Gg); 150 light green (gg + 25% Gg)

Blooms: Apply Hartwell - Chapter 02 #128 Learning Objective: 02-11 Distinguish between penetrance and expressivity.

A man with blood type A whose father was blood type O married a woman of blood type B whose mother was blood type O. What are the possible blood types of their offspring?

Blood types A, B, AB, and O are possible.

Blooms: Apply
Hartwell - Chapter 02 #129

Learning Objective: 02-06 Compare and contrast complete dominance; incomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established.

130.

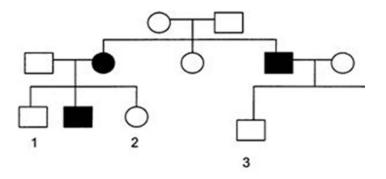
129.

What phenotypes and genotypes would you expect from the following cross of blood-related genotypes?

 $I^{B} i rh^{+} rh^{+} \times I^{A} i rh^{+} rh$

$I^BI^Arh^+rh$	AB positive
$I^BI^Arh^+rh^+$	AB positive
$I^{\mathcal{B}}irh^+rh$	B positive
$I^{B}irh^{+}rh^{+}$	B positive
$I^A irh^+ rh$	A positive
$I^A irh^+ rh^+$	A positive
ii rh ⁺ rh	O positive
ii rh+rh+	O positive

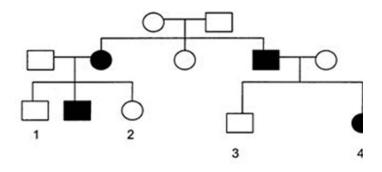
Coat colour in a certain species of rabbit is governed by multiple alleles. The dominance series for these alleles is as follows: coloured (c^+) , chinchilla, (c^{ch}) , himalayan (c^h) and albino (c). Give the phenotypes and ratios from the following crosses: (A) $c^+c \times c^h c^h$ (B) $c^+c^+ \times c^h c^{ch}$ (C) $c^+c \times c^h c^{ch}$ (C) $c^+c \times c^h c^{ch}$ (G) $c \times c^+c^{ch}$.


(A) 2 coloured : 2 himalayan (B) all coloured (C) 2 coloured : 1 himalayan : 1 albino (D) 2 himalayan : 2 chinchilla (E) 2 coloured : 1 himalayan : 1 chinchilla (F) 2 coloured : 2 chinchilla (G) 2 coloured : 2 chinchilla.

Blooms: Evaluate Hartwell - Chapter 02 #131

Learning Objective: 02-06 Compare and contrast complete dominance; incomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established.

132.


Affected individuals in the following pedigree are homozygous for the allele that causes the trait. What are the possible genotypes of persons 1, 2, 3 and 4?

Persons 1, 2, 3 are Aa. Person 4 is AA.

Blooms: Apply

The pedigree shown is for a human genetic disease in which solid colour indicates affected individuals. Affected individuals in the pedigree are homozygous for the allele that causes the trait. Apply the laws of probability and calculate the probability, the offspring of the cousin marriage (individual 2 × individual 3) will exhibit the disease.

The trait is a recessive trait. Individual #2 and individual #3 are both carriers, therefore, there is a ½ chance their offspring will be homozygous for the recessive allele.

Blooms: Analyze Hartwell - Chapter 02 #133

Learning Objective: 02-05 Analyze Mendels law of independent assortment; and explain how Mendel proposed the law from dihybrid crosses.

The following five mothers, (a) through (e), with phenotypes given, each produced one child whose phenotype is described as to blood group (A, B, O), M or N antigens, and Rh factor. For each child, select as the father, one of the five males whose genotypes are given. For some children, more than one male may be a possible father. (ii = Type O blood, $rr = rh \& R = rh^{+}$)

	Maternal Phenotype	Child Phenotype
(a)	AMR	OMR
(b)	BNr	ONr
(c)	ОМт	A MN R
(q)	ANR	AB MN R
(e)	AB MN r	A MN r

For the child of mother (a), the father could be 1 or 4. For the child of mother (b), the father could be 1 or 3. For the child of mother (c), the father could be 5. For the child of mother (d), the father could be 2. For the child of mother (e), the father could be 1 or 3 or 4.

You have obtained an interesting flower for your garden from your neighbour. The neighbour has given you two pure lines of the plant, one with red flowers and one with yellow flowers. You decide to cross them and find that you obtain all orange flowers. The curious molecular geneticist in you decides to test two independent hypotheses: Hypothesis 1: Incomplete dominance; Hypothesis 2: Recessive epistasis. The first step in your test is to self the F₁ orange plants, which you complete only to find that the results do not statistically distinguish the two hypotheses. a) What ratio of yellow, orange, and red would you expect in the F₂ population for each hypothesis and b) what crosses would you complete next to definitively test your two hypotheses?

a) The expected phenotypic ratio for recessive epistasis is 9:3:4, and for incomplete dominance, 1:2:1. b) Cross the yellow F_2 flowers with true breeding red flowers. If the hypothesis for incomplete dominance is correct, the yellow colour will be determined by a single gene and all F_2 yellow flowers will be homozygous recessive and give rise to only orange flowers in the F_3 population [$aa \times AA = Aa$]. However, if the hypothesis for recessive epistasis is correct, a cross of F_2 yellow and true breeding red flowers will give rise to some red and some orange flowers [$Yyrr \times yyRR = either yyRr$ or YyRr].

Hartwell - Chapter 02 #135 Learning Objective: 02-06 Compare and contrast complete dominance; incomplete dominance; and codominance relationships; and demonstrate how a dominance series can be established.

136.

Genes A and B are required for colour. If A or B is absent (that is, aa or bb) the result is colourless. Give the genotypes and phenotypes for each F_1 and F_2 progeny of the cross $AAbb \times aabb$

 $F_1 = Aabb/All$ colourless; $F_2 = 1AAbb$: 2Aabb: 1aabb/All colourless

Blooms: Create

Genes A and B are required for colour. If A or B is absent (that is, aa or bb) the result is colourless. Give the genotypes and phenotypes for each F_1 and F_2 progeny of the cross $aaBB \times aabb$

 F_1 = aaBb/All colourless; F_2 = 1aaBB: 2aaBb: 1aabb/All colourless

Blooms: Evaluate Hartwell - Chapter 02 #137

Learning Objective: 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis.

138.

Genes A and B are required for colour. If A or B is absent (that is, aa or bb) the result is colourless. Give the genotypes and phenotypes for each F_1 and F_2 progeny of the cross $AAbb \times aaBB$

 $F_1 = AaBb$ coloured; $F_2 = 9$ coloured; 7 colourless

	-
Genotype	Phenotype
For F ₁ :	
AaBb	Coloured
For F ₂ :	
1 <i>AABB</i>	Coloured
2AABb	Coloured
2AaBB	Coloured
4AaBb	Coloured
1 aaBB	Colourless
1AAbb	Colourless
2 aaBb	Colourless
2Aabb	Colourless
1 $aabb$	Colourless

Blooms: Evaluate Hartwell - Chapter 02 #138

Learning Objective: 02-09 Compare and contrast complementary gene action; recessive epistasis; and dominant epistasis.

Chapter 2 Summary