
Chapter 2 
Quantum Mechanics and Spectroscopy 

Problem 2.1: Calculate the wavelength and energy of photons necessary to promote an 
electron from the n = 3 state to the n = 4, 5, 6, and 7 states in hydrogen. Label the region of the 
electromagnetic spectrum for each of the emission lines.

ΔE=E photon=  - 2.179  x  10-18  J  (Z2)( 1

nf
2 -  

1

ni
2) Eq. 2.6

For n=3  n=4 :  E photon=[- 2.179  x  10-18  J  (12)( 1

42 -  
1

32)] = 1.0592 x 10-19 J

From Eq. 2.4:

E photon=  
hc
λ

so λ=  
hc
E

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108  m / s )

1.0592  x  10-19  j
 = 1.8754 x 10-

6 m or 1875 nm
this is in the Near IR

For n=3  n=5 :  E photon=[- 2.179  x  10-18  J  (12)( 1

32 -  
1

52)] = 1.5495 x 10-19 J

E photon=  
hc
λ

so λ=  
hc
E

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108  m / s )

1.5495  x  10-19  j
 = 1.2820 x 10-

6 m or 1282 nm
this is in the Near IR

For n=3  n=6 :  E photon=[- 2.179  x  10-18  J  (12)( 1

32 -  
1

62)] = 1.8158 x 10-19 J

E photon=  
hc
λ

so λ=  
hc
E

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108  m / s )

1.8158  x  10-19  j
 = 1.0940 x 10-

6 m or 1094 nm
this is in the Near IR

For n=3  n=7 :  E photon=[- 2.179  x  10-18  J  (12)( 1

32 -  
1

42)] = 1.9764 x 10-19 J

E photon=  
hc
λ

so λ=  
hc
E

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108  m / s )

1.9764  x  10-19  j
 = 1.0051 x 10-

6 m or 1005 nm
this is in the Near IR
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Problem 2.2: Can an electron in a hydrogen atom moving from one energy level to a lower 
energy level cause a transition in the microwave region of the spectrum? Investigate only 
transitions between adjacent states of principal quantum number n.

We know that as n  ∞, Δn  0.  So the largest energy difference will be from n=1  n=2.

For n=2  n=1 :  E photon=[- 2.179  x  10-18  J  (12)( 1

12 -  
1

22)] = -1.6342 x 10-18 J

The negative sign here indicates that this is an exothermic process (emission of a photon as the 
electron drops from n=2 to n=1.

E photon=  
hc
λ

so λ=  
hc
E

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108  m / s )

1.6342  x  10-18  j
 = 1.216 x 10-7 m or 

122 nm
this is in the UV

So on the “bottom” end of energy levels, we know that the transitions are not near the 
microwave (see Problem 2.1).

We know of only 7 main energy levels in any atom, so let’s err on the side of caution and 
investigate a transition between energy levels twice that high, between a theoretical n=14 to 
n=13.  If that energy level difference is higher in energy than the microwave region, we can 
safely assume that no transitions within the H-atom will happen in the microwave region.

For n=14  n=13 :  E photon=[- 2.179  x  10-18  J  (12)( 1

132 -  
1

142)] = 1.776 x 10-21 J

E photon=  
hc
λ

so λ=  
hc
E

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108  m / s )

1.776  x  10- 21  j
 = 1.118 x 10-4 m or 

112 μm
This is in the far IR

So we would not expect any transitions within the H-atom to fall in the microwave region.

Problem 2.3: This problem makes use of the four- level system and associated emission lines 
from Figure 2.5. Assume there is an additional energy level E5 that has an associated emission 
to E4 with a wavelength of 710 nm. Sketch the energy level diagram for this five- level system, 
clearly labeling the energies of all Eexcited to E1 transitions.

From Fig. 2.5 we know the wavelengths of the first three transitions, so we can get the 
energies:



E2  E1E=  
hc
λ

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108 m

s
)

650  x  10- 9  m
 = 3.056 x 10-19 J = 3.1 x 10-19 J

E3  E1E=  
hc
λ

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108 m

s
)

530  x  10- 9  m
 = 3.748 x 10-19 J = 3.8 x 10-19 J

E4  E1E=  
hc
λ

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108 m

s
)

420  x  10- 9  m
 = 4.729 x 10-19 J = 4.7 x 10-19 J

We know that the wavelength of the photon related to the transition between E5 and E4 is 710 
nm, which has an energy of 

E5  E4E=  
hc
λ

=  
(6.626  x  10- 34  J ∙ s )(2.998  x  108 m

s
)

710  x  10- 9  m
 = 2.798 x 10-19 J 

So the energy of the transition from E5 to E1 is the sum of the energies of E5 to E4 and E4 and E1

E5   E1 = 4.729 x 10-19 J + 2.798 x 10-19 J  = 7.527 x 10-19 = 7.5 x 10-19 J

Problem 2.4: 
(a) Calculate the reduced mass for NO and HCl. 
(b) Would the reduced mass of H- 35Cl be different than H- 37Cl? If so, might this lead to a 
difference in infrared absorption? Support your response with a calculation. 
(c) For Example 2.3, would you expect to measure infrared absorption for O2?



(a) μ(NO) =
mN  ∙   mO

mN  +  mO

=  
(14.01

g
mol )  ∙  (16.00

g
mol

)

(14.01
g

mol )+   (16.00
g

mol
)
  = 7.4695 g/mol 

 x  
1  kg

1000  g
 x  

1  mol

6.022  x  1023  atom
 = 1.240 x 10-26 kg

μ(HCl) = 
mH  ∙   mCl

mH  +  mCl

=  
(1.008

g
mol )  ∙  (35.45

g
mol

)

(1.008
g

mol )+   (35.45
g

mol
)
 = 0.98013 g/mol 

 x  
1  kg

1000  g
 x  

1  mol

6.022  x  1023  atom
 = 1.628 x 10-27 kg

(b) Yes.  The reduced masses for the two isotopic forms of the HCl molecule will be different, 
and from equations 2.10 and 2.12, we see that a difference in μ will yield a different νoscillator, 
which is the frequency of the IR absorption.

μ(H35Cl) = 
mH  ∙   mCl

mH  +  mCl

=  
(1.008

g
mol )  ∙  (34.969

g
mol

)

(1.008
g

mol )+   (34.969
g

mol
)
 = 0.97976 g/mol 

 x  
1  kg

1000  g
 x  

1  mol

6.022  x  1023  atom
 = 1.627 x 10-27 kg

μ(H37Cl) = 
mH  ∙   mCl

mH  +  mCl

=  
(1.008

g
mol )  ∙  (36.966

g
mol

)

(1.008
g

mol )+   (36.966
g

mol
)
 = 1.0513 g/mol 

 x  
1  kg

1000  g
 x  

1  mol

6.022  x  1023  atom
 = 1.746 x 10-27 kg

Isotopic differences will have negligible effect on force constant, since the nuclear charge for 
each atom involved remains the same, as does the total electron density. 

2π νH 35Cl

2π νH 37Cl

=  √ k
μH 35Cl

k
μH 37Cl

=  √ μH 37Cl

μH 35Cl

=  √ 1.746  x  10- 27

1.627  x  10- 27
 

νH 35Cl

νH 37Cl

 = 1.036

So the frequency of the H-35Cl absorption would be about 4% higher than that of H-37Cl.



(c) We can calculate a theoretical absorption wavenumber (assuming the n=0  n=1 transition) 
as
c = λν, where ν = 4.73 x 1013 s-1 from Example 2.3, 

so  λ=  
c
ν

=  
2.998  x  108  m / s

4.73  x  1013  / s
 = 6.34 x 10-6 m or 6.34 μm

However, we also know (see text following Example 2.4) that in order to observe a peak in an IR 
spectrum, the associated vibration must exhibit a change in dipole moment, which is not the 
case for O2, so we would not expect to observe a peak for the O2 stretching vibration.

Problem 2.5: The spring constant between atoms in HCl is around 516 N/ m. Calculate the 
angular frequency and vibrational frequency of HCl molecule. Determine the energy difference 
between the n = 0 and n = 1 states for this molecule in joules. Is this an allowed transition? 
What photon wavelength, in units of microns and wave numbers, would be associated with 
absorption from n = 0 to n = 1? Label the region of the electromagnetic spectrum.

We have the reduced mass for HCl as 1.628 x 10-27 kg from Problem 2.4.

ϖosc=  √ k
μ

=  √ 516  N /m

1.628  x  10- 27  kg
=  √ 516  (kg ∙ m

s2 ) /m

1.628  x  10- 27  kg

 = 5.6299 x 1014 rad / s

νosc=
ϖosc

2π  rad
=

(5.6299  x  1014  rad / s )
2π  rad

 = 8.960 x 1013 s-1 = 8.96 x 1013 s-1

For n=0  n=1, 
ΔE = ħωosc = hνosc = (6.626 x 10-34 J·s)(8.960 x 1013 s-1) = 5.937 x 10-20 J = 5.94 x 10-20 J

This is an allowed transition:  it meets both selection rules of (1) Δn = + 1 and (2) the vibration 
entails a change in dipole moment.

λ=  
hc
E

=  
(6.626  x  10- 34  J ∙ s )  ∙   (2.998  x  108  m / s )

5.937  x  10- 20  J
 = 3.346 x 10-6 m = 3.35 μm (around 

3000 cm-1)

This falls in the mid-IR region of the EMS.

Problem 2.6: The absorption from n = 0 to n = 1 occurs at 2170 cm-1 in 12C– 16O. 
(a) Calculate the spring constant between atoms in this molecule. 
(b) State why this is an allowed transition.

(a) Convert υ to λ:  (2170 cm-1)-1 = 4.6083 x 10-4 cm = 4.6083 x 10-6 m



Convert λ to ν:   c = λν 2.998x108 m/s = (4.6083 x 10-6 m)(ν) ν = 6.50566 x 1013 s-1

Convert ν to ω:  ω = 2πν = 2π(6.50566 x 1013 s-1) = 4.0876 x 1014 rad/s

Convert ω to k:  µ=  
mm
m+m

=  
(12 x16 )
12+16

 = 6.857 g/mol x  
1  mol

6.022  x  1023  atoms
 x  

1  kg
1000  g  

= 1.1387 x 10-26 kg 

ω=  √ k
μ

k = 1902.6 = 1.90 x 103 N/m

(b) Since this is a heteroatomic molecule, the stretching vibration will exhibit a change in dipole 
moment.

Problem 2.7: The frequency spacing between rotational levels is 511 MHz in HBr. Calculate the 
difference in energy of the J = 0 and J = 1 states. Calculate the bond length for HBr. 

E= hν = (6.626 x 10-34 J·s) (511 x 106 s-1) = 3.386 x 10-25 J = 3.39 x 10-25 J

∆ E= J (J +1) ℏ 2

2 μ R0
2

μ=  
(1.008 )(79.90 )
(1.008 )+(79.90 )

g
mol

x  
1  kg

1000  g  
 x  

1  mol

6.022  x  1023molecules
 = 1.653 x 10-27 kg

R0
2 = J (J +1) ℏ 2

2 μ∆ E
=1(1+1)

(1.05  x  10- 34  J ∙ s )2

(2)(1.653  x  10- 27  kg )(3.386  x  10- 25  J )
 = 9.849 x 10-18 m2

R= 3.138 x 10-9 m = 31.4 Å = bond length

Problem 2.8: Rotational absorption is observed at 0.13 cm for the CO molecule. The transition 
is associated with the J=1 to J=2 energy levels. Use this information to estimate the rotational 
inertia for CO.

∆ E=  
hc
λ

 =  
(6.626  x  10- 34  J ∙ s )(2.998  x  108 m

s
)

0.13  x  10- 2  m
= 1.528 x 10-22 J

∆ E= J 2 (J 2 +1) ℏ
2

2 I
-  J 1 (J 1 +1) ℏ

2

2 I

∆ E=2 (2+1) ℏ
2

2 I
-  1 (1+1) ℏ

2

2 I



∆ E=6  
ℏ 2

2 I
-  2  

ℏ 2

2 I
= 4  

ℏ 2

2 I
 

I = 4  
ℏ 2

2∆ E
=   4  

(1.0545  x  10- 34  J ∙ s )2

2  (1.528  x  10- 22  J )
=  1.455  x  10- 46  J ∙ s2 =  1.5  x  10- 46  J ∙ s2

Problem 2.9: Suppose two different states (with no degeneracy so that g1 = g2 = 1) have 
energies E2 = 2 × 10–22 J and E1 = 0.5 × 10–22 J. At what temperature will N2 have a population will 
N2/ N1 = 100? Suppose now that the degeneracies are g1 = 3, g2 = 2. Is it possible to find a 
temperature where the population in N2 is larger than N1?

ΔE = 2 x 10-22 – 0.5 x 10-22 J = 1.5 x 10-22 J

N 2

N 1

=  
g2

g1

 e
(-∆ E
kBT )

=  
1
1

 e
(-1.5  x  10- 22

(1.38  x  10- 23 J / K )(T ))
=100

(-1.5  x  10- 22

(1.38  x  10- 23 J / K )(T ))= 4.605

T = –2.36 K That is, it is not possible for the population ratio N2/N1 to equal 100.

When g1 = 3 and g2 = 2, can N2>N1?  If we solve the fundamental equation for temperature, we 
can get a handle on this question:

T =  

-∆ E
kB

ln(N 2

N 1

 ∙  
g1

g2
)

When g1 = 3 and g2 = 2, the function ln(N 2

N 1

 ∙  
g1

g2
) will be positive whenever N2>N1, which 

would yield a negative Kelvin temperature;  Thus, it is not possible for N2 to exceed N1 in this 
case.

Problem 2.10: Suppose an electron is trapped in one dimension to a length of 2 nm, the length 
of some polymer. 

(a) What is the wavelength absorbed by such a system from the ground state to the first 
excited state? Hint: This can be modeled as a particle in a one- dimensional box.
(b) How does the length of the polymer (the length of the box) affect the absorption 
wavelength from the ground state to the first excited state? In order to answer this 
question, use a spreadsheet to calculate the wavelengths associated with this transition 
for one- dimensional boxes that are from 1 to 200 nm in size at intervals of 10 nm. Make a 
plot of wavelength of absorption versus polymer length.



(a) In Footnote 11 (page 42) we are given the pertinent equation for the energy of a particle in a 
box:

En=  
h2n2

8ma2 where n is the principal quantum number, m is the mass, and a is the length of 

the one-dimensional box.  After we calculate the energy, we can use Eq. 2.4 to convert to 
wavelength.

∆ E=  
h2n2

2

8ma2 -  
h2n1

2

8ma2 =  
h2

8ma2 (n2
2 -n1

2)

where, in this case, n1 = 1 (ground state) and n2 = 2 (first excited state)
m= 9.1094  x  10- 31  kg (the mass of an electron)

a=2  nm  x  
1  m

109  nm  = 2 x 10-9 m

∆ E=  
(6.626  x  10- 34  J ∙ s )2

8 ∙(9.1094  x  10- 31kg )(2  x  10- 9m )2 (22 -12) = 4.52 x 10-20 J = Ephoton

λ=  
hc
E

=  
(6.626  x  10- 34 J ∙ s )(2.998  x  108 m

s
)

4.52  x  10- 20  J
 = 4.396 x 10-6 m = 4.4 μm

(b)
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As expected, the wavelength of the absorbed light increases as the square of the 
“box” length.

h =
c =

a (nm)
1

10



Problem 2.11: Carbon- 13 (13C) has a gyromagnetic ratio of 6.73 × 107 T– 1, s– 1. Repeat Example 
2.8 for a carbon-13 nucleus.

Using B = 3 T, assuming that is an exact number.
ΔE=  γBℏ =(1.0546  x  10-34 J ∙ s )(6.73  x  107  T -1 s-1)(3  T ) = 2.129 x 10-26 J
E = hν ν = 3.213 x 107 s-1 = 32.13 MHz
c = λν λ = 9.31 m 

Problem 2.12: Carbon- 13 (13C) has a gyromagnetic ratio of 6.73 × 107 T– 1, s– 1. Repeat Example 
2.9 for a carbon-13 nucleus.

ΔE=  γBℏ =(1.0546  x  10-34 J ∙ s )(6.73  x  107  T -1 s-1)(1.258  T ) = 8.9286 x 10-27 J 
E = hν ν = 1.3475 x 107 s-1 

c = λν λ = 22.25 m 

ΔE=  γBℏ =(1.0546  x  10-34 J ∙ s )(6.73  x  107  T -1 s-1)(1.257  T ) = 8.9215 x 10-27 J 
E = hν ν = 1.346 x 107 s-1 

c = λν λ = 22.27 m 

Problem 2.13: You are considering purchasing a new NMR instrument so that you can do 1H 
NMR. Suppose one instrument would provide a magnetic field of 10 T and another would 
provide a field of 3 T. For a given molecule, would these two instruments have two different 
absorption wavelengths between spin states? If so, calculate the two different wavelengths 
that would cause absorption, ignoring the internal magnetic field of the molecule.

Yes, the energy (an thus, the wavelength) is dependent on the magnetic field strength, B.
Following Example 2.8, and using B = 10 T, assuming that is an exact number.
ΔE=  γBℏ =(1.0546  x  10-34 J ∙ s )(2.675  x  108  T -1 s-1)(10  T ) = 2.821 x 10-25 J 

λ=  
hc
E

=  
(6.626  x  10- 34 J ∙ s )(2.998  x  108 m

s
)

2.821  x  10- 25  J
 = 0.704 m

We can compare this to the wavelength of 2.36 m obtained in Example 2.8 for B = 3 T.

EXERCISE 2.1: The spring constant associated with NO is 1530 N/ m. Calculate the frequency of 
oscillation for this molecule.

µ=  
mm
m+m

=  
(14.01  x  16.00 )

14.01+16.00
 = 7.4695 g/mol x  

1  mol

6.022  x  1023  atoms
 x  

1  kg
1000  g  

= 1.2404 x 10-26 kg 

ω=  √ k
μ

=  √ 1530  kg ∙
m
s

/m

1.2404  x  10- 26  kg

 = 3.5121 x 1014 rad/s



ν=
ω

2π
 = 5.5897 x 1013 s-1 = 5.59 x 1013 s-1

EXERCISE 2.2: The spring constant of the diatomic molecule NO is 1530 N/ m. 
(a) Calculate the energy level difference from n = 0 to n = 1 
(b) Calculate the energy level difference from n = 1 to n = 2.

We have ω = 3.5121 x 1014 rad/s for NO from Exercise 2.1.

(a) ΔE = E2 – E1 = (1 + ½)ћω – (0 + ½) ћω = (1) ћω = (1.0546 x 10-34 J·s)(3.5121 x 1014 s-1)
=  3.703 x 10-20 J = 3.70 x 10-20 J

(b) ΔE = E2 – E1 = (2 + ½)ћω – (1 + ½) ћω = (1) ћω = (1.0546 x 10-34 J·s)(3.5121 x 1014 s-1)
=  3.703 x 10-20 J = 3.70 x 10-20 J

As indicated by Figure 2.8, the energy difference between adjacent vibrational energy levels is 
constant.
EXERCISE 2.3: The spring constant associated with CO is 1860 N/ m. Calculate the frequency of 
oscillation for this molecule.

µ=  
mm
m+m

=  
(12.01  x  16.00 )

12.01+16.00
 = 6.8604 g/mol x  

1  mol

6.022  x  1023  atoms
 x  

1  kg
1000  g  

= 1.1392 x 10-26 kg 

ω=  √ k
μ

=  √ 1860  kg ∙
m
s

/m

1.1392  x  10- 26  kg

 = 4.04066 x 1014 rad/s

ν=
ω

2π
 = 6.431 x 1013 s-1 = 6.43 x 1013 s-1

EXERCISE 2.4: The molecular vibration of HF is well described with a spring constant of 
970 N/m. What is the wavelength of photon absorbed from the n = 1 to n = 2 states?

µ=  
mm
m+m

=  
(1.008 x19.00 )
1.008+19.00

 = 0.9572 g/mol x  
1  mol

6.022  x  1023  atoms
 x  

1  kg
1000  g  

= 1.5898 x 10-27 kg 

ω=  √ k
μ

=  √ 970  kg ∙
m
s

/m

1.5898  x  10- 27  kg

 = 7.8118 x 1014 rad/s



ν=
ω

2π
 = 1.243 x 1014 s-1

ΔE = E2 – E1 = (2 + ½)ћω – (1 + ½) ћω = (1) ћω = (1.0546 x 10-34 J·s)(7.8118 x 1014 s-1)
=  8.2383 x 10-20 J

E=  
hc
λ

λ = 2.41 µm

EXERCISE 2.5: Using spreadsheet software, calculate the energies for vibrational states from n=0 
to n=10 for HI. HI has a spring constant of 320 N/ m. Using your spreadsheet, calculate the energy 
level differences between adjacent levels up to n=10.

For n=0:
Using the vibrational energy level equation 

µ=  
mm
m+m

=  
(1.008 x126.90 )
1.008+126.90

 = 1.00005 g/mol x  
1  mol

6.022  x  1023  atoms
 x  

1  kg
1000  g  

= 1.6607 x 10-27 kg 

ω=  √ k
μ

=  √ 320  kg ∙
m
s

/m

1.6607  x  10- 27  kg

 = 4.3897 x 1014 rad/s

E=(n+
1
2)ћω=(0+

1
2
)(1.0546  x  10- 34  J ∙ s )(4.3897  x  1014 rad / s )   = 2.3146 x 10-20 J

Further calculations done in the spreadsheet:



ħ = 1.0546E-34 ω = 4.3897E+14
n E (J) ΔE (J)
0 2.315E-20
1 6.944E-20 4.629E-20
2 1.157E-19 4.629E-20
3 1.620E-19 4.629E-20
4 2.083E-19 4.629E-20
5 2.546E-19 4.629E-20
6 3.009E-19 4.629E-20
7 3.472E-19 4.629E-20
8 3.935E-19 4.629E-20
9 4.398E-19 4.629E-20
10 4.861E-19 4.629E-20
11 5.324E-19 4.629E-20
12 5.787E-19 4.629E-20
13 6.249E-19 4.629E-20
14 6.712E-19 4.629E-20
15 7.175E-19 4.629E-20
16 7.638E-19 4.629E-20
17 8.101E-19 4.629E-20
18 8.564E-19 4.629E-20
19 9.027E-19 4.629E-20
20 9.490E-19 4.629E-20
21 9.953E-19 4.629E-20

EXERCISE 2.6:  It can be quite useful to move beyond the simple harmonic oscillator model of 
diatomic  molecules.  Using  the  Morse  potential,  a  more  accurate  model  for  the  molecular 
potential that takes into account the asymmetric molecular potential, the energy levels are: 

where De is the bond energy (the energy from the minimum of the potential the energy at which 
the bond is broken). Note that the first term in the equation is what we found using the simple 
harmonic  oscillator  potential.  The  second  term  is  often  referred  to  as  the  anharmonic 
correction. 

The dissociation energy for CO is 11.2 eV (1.79 × 10–18 J) the force constant is 1860 N/ m. 
Calculate the energy difference between the ground state and the first excited state two ways, 
with the energy equation for the simply harmonic oscillator and with the anharmonic 
correction. How large is the correction associated with the anharmonic potential?

The reduced mass of a CO molecule is 1.1392 x 10-26 kg.

ω=  √ k
μ

=  √ 1860  
kg ∙m

m∙ s2  

1.1392  x  10- 26  kg

 = 4.0407 x 1014 rad/s



ν=
ω

2π
 = 6.43097 x 1013 s-1 

Using the simple harmonic oscillator model:
ΔE = E2 – E1 = (1 + ½)ћω – (0 + ½) ћω = (1) ћω = (1.0546 x 10-34 J·s)( 4.0407 x 1014 s-1)
ΔE = 4.261 x 10-20 J = 4.26 x 10-20 J

Using the Morse model:

E(n=0) = (n+
1
2) ωℏ -  

(hν )2

4 De

∙(n+
1
2)

2

E(n=0) 

=  (0+
1
2)(1.0546  x  10- 34 J ∙ s )(4.0407  x  1014 s-1)-  

((6.626  x  10- 34 J ∙ s )(6.431  x  1013 s-1)2

4 (1.79  x  10-18 J )
∙(0+

1
2
)

2

E(n=0) = 2.13066 x 10-20 J – 6.339965 x 10-23 J = 2.1243 x 10-20 J

E(n=1) = (1+
1
2) ωℏ -  

(hν )2

4 De

∙(1+
1
2)

2

E(n=0) 

=  (1+
1
2)(1.0546  x  10- 34 J ∙ s )(4.0407  x  1014 s-1)-  

((6.626  x  10- 34 J ∙ s )(6.431  x  1013 s-1)2

4 (1.79  x  10-18 J )
∙(1+

1
2
)

2

E(n=0) = 6.3915 x 10-20 J – 5.70597 x 10-22 J = 6.3344 x 10-20 J

ΔE = (6.3344 – 2.1243) x 10-20 J = 4.210 x 10-20 J

Assuming the Morse model is the more accurate (i.e., the true value), 

%  difference=  
4.261- 4.210

4.210
 x  100 % = 1.45% difference

EXERCISE 2.7: For two cases, using the energy levels from the harmonic oscillator and then with 
the full Morse potential energy state, use spreadsheet software to produce a plot of energy level 
difference for vibration as a function of quantum number n. Describe the relationship and discuss 
the role of the anharmonic correction. Use values for HCl for your calculation (k = 80 N/ m, 
disassociation energy = 7.0 × 10– 19 J). 

The reduced mass of the HCl molecule is 1.6276 x 10-27 kg.

ω=  √ k
μ

=  √ 80  
kg ∙m

m∙ s2  

1.6276  x  10- 27  kg

 = 2.217 x 1014 rad/s

ν=
ω

2π
 = 3.5285 x 1013 s-1 

We will use a spreadsheet and calculations demonstrated in Ex. 2.6 to create the desired plots.



ħ = 1.0546E-34 ω = 2.2170E+14
h = 6.6260E-34 ν = 3.5285E+13
De = 7.0E-19

Harmonic Oscillator Model Morse Model
n E (J) ΔE (J) n E (J) ΔE (J)
0 1.169E-20 0 1.164E-20
1 3.507E-20 2.338E-20 1 3.463E-20 2.299E-20
2 5.845E-20 2.338E-20 2 5.723E-20 2.260E-20
3 8.183E-20 2.338E-20 3 7.944E-20 2.221E-20
4 1.052E-19 2.338E-20 4 1.013E-19 2.182E-20
5 1.286E-19 2.338E-20 5 1.227E-19 2.143E-20
6 1.520E-19 2.338E-20 6 1.437E-19 2.104E-20
7 1.753E-19 2.338E-20 7 1.644E-19 2.065E-20
8 1.987E-19 2.338E-20 8 1.846E-19 2.026E-20
9 2.221E-19 2.338E-20 9 2.045E-19 1.987E-20
10 2.455E-19 2.338E-20 10 2.240E-19 1.948E-20         

The simple harmonic oscillator predicts that the energy difference between successive energy 
levels remains constant; with the Morse model, we can see that difference between energy 
levels decreases slightly as n increases – that is, the energy levels get closer to each other as n 
increases.  We would expect this to be the case, because as n increases, at some point we 
expect the bond energy to be exceeded, causing the bond to break. 

EXERCISE 2.8: The disassociation energy for NO is 7.0 eV (1.12 × 10– 18 J) and the effective spring 
constant is 1530 N/ m. Calculate the energy level difference between the n = 5 and n = 6 states 
and the associated absorption wavelength using the harmonic oscillator model and the Morse 
potential model (see Exercise 2.7).

The reduced mass of a NO molecule is 1.2404 x 10-26 kg.

ω=  √ k
μ

=  √ 1530  
kg ∙m

m∙ s2  

1.2404  x  10- 26  kg

 = 3.512 x 1014 rad/s

ν=
ω

2π
 = 5.5897 x 1013 s-1 

Using the simple harmonic oscillator model:
ΔE = E2 – E1 = (6 + ½)ћω – (5 + ½) ћω = (1) ћω = (1.0546 x 10-34 J·s)( 3.512 x 1014 s-1)
ΔE = 3.70376 x 10-20 J = 3.70 x 10-20 J

E=  
hc
λ

λ = 5.36 µm

Using the Morse model:

E(n=5) = (5+
1
2) ωℏ -  

(hν )2

4 De

∙(5+
1
2)

2

E(n=5) 

=  (5+
1
2)(1.0546  x  10- 34 J ∙ s )(3.512  x  1014 s-1)-  

((6.626  x  10- 34 J ∙ s )(5.5897  x  1013 s-1)2

4 (1.12  x  10-18 J )
∙(5+

1
2
)

2



E(n=5) = 2.0371 x 10-19 J – 9.26247x 10-21 J = 1.9444x 10-19 J

E(n=6) = (6 +
1
2) ωℏ -  

(hν )2

4 De

∙(6 +
1
2)

2

E(n=6) 

=  (6 +
1
2)(1.0546  x  10- 34 J ∙ s )(3.512  x  1014 s-1)-  

((6.626  x  10- 34 J ∙ s )(5.5897  x  1013 s-1)2

4 (1.12  x  10-18 J )
∙(6 +

1
2
)

2

E(n=6) = 2.4074 x 10-19 J – 1.2936 x 10-20 J = 2.2780 x 10-19 J

ΔE = (2.2780 – 1.9444) x 10-19 J = 3.336 x 10-20 J

E=  
hc
λ

λ = 5.96 µm

EXERCISE 2.9: A gas sample is thought to be either LiBr or LiI. For both molecules calculate the 
difference in energy due to rotation alone between J = 0 and J = 1. Then compare your answer 
to the energy due to rotation alone between J = 1 and J = 2 states. Are these energies above or 
below the thermal energy of 0.04 eV?

The reduced mass of LiBr is 1.0603 x 10-26 kg.
Lithium’s ionic radius is 90 pm and Bromide is 182 pm or the equilibrium separation is
 Ro= 90+182=272 pm 

E=  J ( J +1) ℏ 2

2 μ R0
2

∆ E1,0 =1 (1+1)
(1.0546  x  10- 34 kg ∙m

2

s )
2

2(1.0603  X  10- 26 kg )(272  x  10-12m )2 - 0
 = 1.4178 x 10-23 J

eV = 1.4178  x  10- 23 J  x  
1  eV

1.6022  x  10-19  J   = 8.85 x 10-5 eV

∆ E2,1 =2 (2+1)
(1.0546  x  10- 34 kg ∙m

2

s )
2

2(1.0603  X  10- 26 kg )(272  x  10-12m )2 -1 (1+1)
(1.0546  x  10- 34 kg ∙m

2

s )
2

2(1.0603  X  10- 26 kg )(272  x  10-12m )2

 

= 5.671 x 10-23 J

eV = 5.671  x  10- 23 J  x  
1  eV

1.6022  x  10-19  J   = 3.54x 10-4 eV

Both are well below the thermal energy of 4 x 10-2 eV.

The reduced mass of LiI is 1.093 x 10-26 kg.
Lithium’s ionic radius is 90 pm and Bromide is 206 pm or the equilibrium separation is



 Ro= 90+206 =296 pm 

E=  J ( J +1) ℏ 2

2 μ R0
2

∆ E1,0 =1 (1+1)
(1.0546  x  10- 34 kg ∙m

2

s )
2

2(1.093  X  10- 26 kg )(296  x  10-12m )2 - 0
 = 1.161 x 10-23 J

eV = 1.161  x  10- 23 J  x  
1  eV

1.6022  x  10-19  J   = 7.25 x 10-5 eV

∆ E2,1 =2 (2+1)
(1.0546  x  10- 34 kg ∙m

2

s )
2

2(1.093  X  10- 26 kg )(296  x  10-12m )2 -1 (1+1)
(1.0546  x  10- 34 kg ∙m

2

s )
2

2(1.093  X  10- 26 kg )(296  x  10-12m )2

 

= 4.644 x 10-23 J

eV = 4.644  x  10- 23 J  x  
1  eV

1.6022  x  10-19  J   = 2.90 x 10-4 eV

Both are well below the thermal energy of 4 x 10-2 eV.

EXERCISE 2.10: We have now plotted energy level diagrams for several systems (hydrogen 
atom, vibrating diatomic molecules, and rotating diatomic molecules) in this chapter. Make 
such an energy level sketch of the particle in a box system described in Problem 2.10.

In Problem 2.10, we determined the energy for the transition from the ground state (n=1) to 
the first excited state (n=2) thus:
m= 9.1094  x  10- 31  kg (the mass of an electron)

a=2  nm  x  
1  m

109  nm  = 2 x 10-9 m

∆ E2,1 =  
(6.626  x  10- 34  J ∙ s )2

8 ∙(9.1094  x  10- 31kg )(2  x  10- 9m )2 (22 -12) = 4.52 x 10-20 J = Ephoton

We can do this for the next few energy levels:

∆ E3,1 =  
(6.626  x  10- 34  J ∙ s )2

8 ∙(9.1094  x  10- 31kg )(2  x  10- 9m )2 (32 -12) = 1.20 x 10-19 J = Ephoton

∆ E4,1 =  
(6.626  x  10- 34  J ∙ s )2

8 ∙(9.1094  x  10- 31kg )(2  x  10- 9m )2 (42 -12) = 2.26 x 10-19 J = Ephoton



EXERCISE 2.11: At what temperature might you expect to have populated an excited state E2 to 
about 10% of N1 from a ground state E1 when the energy level difference is 5 × 10–20 J? What 
wavelength  photon  would  be  associated  with  the  absorption  between  these  two  states? 
Degeneracies can be assumed to be one. 

N 2

N 1

=  
g2

g1

 e
-
ΔE
kT

0.10=(1)  e
-

5  x  10- 20

(1.38  x  10- 23 J / k )T  

- 2.3026 =  -
5  x  10- 20 J

(1.38  x  10- 23 J
K )T  

T = 1573 K = 1300 oC

E=  
hc
λ

λ = 3.97 µm

EXERCISE 2.12:  Produce a spreadsheet tool that can be used to investigate the relationship 
between temperature, energy level difference, and populations in N1 and N2. Your tool should 
allow you to input the temperature and then plot the ratio of the populations for a range of  
energy level differences. What other relationships can you explore with your tool? 



H atom? (Y/N) = Y We must assume that g Hi  / g Lo  = 1

Temperature (K)= 1000 kB = 1.38E-23 J/K

[n to n=1] [n to (n-1)] [n to n=1] [n to (n-1)] EH User-entered

n E (J) ΔE (J) ΔE (J) NHi / NLo NHi / NLo (J) Energy (J)
1 -2.2E-18 -2.179E-18 1.50613E-20 *Note - this user-entered data is for the
2 -5.4E-19 1.634E-18 1.634E-18 3.708E-52 3.708E-52 -5.448E-19 6.02453E-20 particle in a box from Problem 2.10
3 -2.4E-19 1.937E-18 3.026E-19 1.109E-61 2.991E-10 -2.421E-19 1.35552E-19
4 -1.4E-19 2.043E-18 1.059E-19 5.146E-65 4.640E-04 -1.362E-19 2.40981E-19
5 -8.7E-20 2.092E-18 4.903E-20 1.474E-66 2.865E-02 -8.716E-20 3.76533E-19
6 -6.1E-20 2.118E-18 2.663E-20 2.140E-67 1.452E-01 -6.053E-20 5.42208E-19
7 -4.4E-20 2.135E-18 1.606E-20 6.684E-68 3.123E-01 -4.447E-20 7.38005E-19
8 -3.4E-20 2.145E-18 1.042E-20 3.141E-68 4.699E-01 -3.405E-20 9.63925E-19
9 -2.7E-20 2.152E-18 7.146E-21 1.871E-68 5.958E-01 -2.690E-20 1.21997E-18

10 -2.2E-20 2.157E-18 5.111E-21 1.292E-68 6.905E-01 -2.179E-20 1.50613E-18
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EXERCISE 2.13: You are doing proton NMR and would like to investigate the role of the 
magnetic field on the ratio of populations N2/N1 between two spin states in proton NMR at 
300K. Ignore any particular local magnetic field contributions for the molecule being 
investigated. Use a spreadsheet tool to produce a plot of N1/ N2 as a function of magnetic field. 
Use your tool to determine the B field at which N1 = 1.02 N2. The largest NMR magnets can 
achieve a B field of around 23 T. Comment on the viability of getting to your B field.



γH = 2.675E+08 (Ts)-1

ħ = 1.055E-34 J·s
kB = 1.38E-23 J/K
T = 300 K

B (T) N2/N1 N1/N2

1 0.999993 1.000007
5 0.999966 1.000034
10 0.999932 1.000068
15 0.999898 1.000102
20 0.999864 1.000136
25 0.999830 1.00017
30 0.999796 1.000204

3000 0.979765 1.020653
We would need a field of B = 3,000 T in order to achieve N1/N2 = 1.02.  With current technology, 
this is not possible.


