MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine whether the number is a solution of the equation.

1)
$$-30$$
; $\frac{x}{-5} = 6$

A) Yes

B) No

Answer: A

2) -2; x - 22 = 24

A) Yes

B) No

Answer: B

3) -4; 2 + 3x = -10

A) Yes

B) No

Answer: A

4) -2; 8 - 4x = 0

A) Yes

B) No

Answer: B

5) -1; x - 1 = x + 1

A) Yes

B) No

Answer: B

6) -1; x - 9 = x - 9

A) Yes

B) No

Answer: A

7) 7; 2(x - 8) = 16

A) Yes

B) No

Answer: B

8) -12; 2x - 7 = 3x + 5

A) Yes

B) No

Answer: A

Solve the equation.

9) -4x = 12

A) {-16}

B) {1}

C) $\{-3\}$

D) {16}

Answer: C

10) 10 = x + 3

A) {-7}

B) {7}

C) {13}

D) {-13}

11) y - 5 = 18 A) {-13} Answer: B	B) {23}	C) {-23}	D) {13}
12) 5x + 7 = 22 A) {10} Answer: B	B) {3}	C) {14}	D) {2}
13) 9z - 2 = 43 A) {36} Answer: D	B) {40}	C) {6}	D) {5}
14) 6 = 2x - 8 A) {7} Answer: A	B) {11}	C) {16}	D) {12}
15) 11x - 27 = 2x + 27 A) {-6} Answer: B	B) {6}	C) {-3}	D) {3}
16) 4y + 4 = 8 - 4y A) (- 2) Answer: D	B) {0}	C) {2}	D) $\left\{\frac{1}{2}\right\}$
17) $4x - 8 = 7 - 6x$ A) $\left\{-\frac{2}{3}\right\}$ Answer: B	B) $\left\{\frac{3}{2}\right\}$	C) {2}	D) $\left\{\frac{2}{3}\right\}$
18) 8(y - 7) = 10y - 56 A) {0} Answer: A	B) {-56}	C) {-112}	D) {56}
19) 7x - 6 = 8(x - 2) A) {10} Answer: A	B) {22}	C) {-22}	D) {-10}
20) 3(5x - 2) - 58 = 8x - 1 A) {441}	B) {-9}	C) {9}	D) {63}

2

Answer: C

Answer: C

21) -5x + 2 - 6x - 8 = 8A) $\{14\}$

22)
$$9x = 5(5x + 3)$$

A) $\left\{\frac{5}{3}\right\}$

B) $\left\{-\frac{15}{16}\right\}$

C) $\left\{\frac{16}{15}\right\}$

D) $\left\{\frac{15}{16}\right\}$

Answer: B

23) 15(5x - 2) = 5x - 9

A) $\left\{ \frac{39}{70} \right\}$

B) $\left\{-\frac{3}{10}\right\}$

C) $\left\{\frac{21}{80}\right\}$

D) $\left\{\frac{3}{10}\right\}$

Answer: D

24) -63(x + 8) = -72(x + 7)

A) {0}

C) {x | x is a real number}

B) {-135}

D) {Ø}

Answer: A

25) 4(x + 7) = 5(x - 3)

A) {43}

C) {x | x is a real number}

B) {13}

D) {Ø}

Answer: A

26) (x - 8) - (x + 2) = 9x

A) $\left\{-\frac{5}{3}\right\}$

B) $\left\{-\frac{5}{4}\right\}$

C) $\left\{ -\frac{10}{9} \right\}$

D) $\left\{-\frac{7}{9}\right\}$

Answer: C

27) 8(y + 4) - (7y - 9) = -3

A) {44}

B) {16}

C) {38}

D) {- 44}

Answer: D

28) -6(z + 7) - (-7z - 6) = -4

A) {- 40}

B) {17}

C) {- 32}

D) {32}

Answer: D

29) 4x - 3 - 6x = x + 13 + x

A) {-4}

B) $\left\{-\frac{5}{2}\right\}$

C) {4}

D) Ø

Answer: A

30) -(2x - 5) - (3x - 6) + 5 = -5(x - 1) - (2x + 1) + 2

A) {5}

B) {11}

C) $\{-\frac{5}{2}\}$

D) {-5}

Answer: D

31) x - 21.9 = -13.8

A) $\{-8.1\}$

B) {35.7}

C) {-35.7}

D) {8.1}

Answer: D

- 32) 21.9 = 21.7 x
 - A) {-43.6}
- B) {-0.2}

C) {43.6}

D) {0.2}

Answer: A

- 33) 1.3x + 2.1 = 0.8x 2.7
 - A) {-9.5}

B) {-9.6}

C) {0.104}

D) {-8.64}

Answer: B

- 34) $\frac{x}{3} \frac{x}{4} = 6$
 - A) {24}

B) {12}

C) {72}

D) {18}

Answer: C

- 35) $\frac{1}{2} \frac{x}{3} = \frac{11}{6}$
 - A) $\{4\}$

- B) $\left\{-\frac{8}{3}\right\}$
- C) $\left\{\frac{8}{3}\right\}$

D) (- 4)

Answer: D

- 36) $\frac{x}{5} = \frac{x}{3} + \frac{9}{5}$
 - A) $\left\{-\frac{2}{27}\right\}$
- B) {0}

C) $\left\{-\frac{9}{5}\right\}$

D) $\left\{-\frac{27}{2}\right\}$

Answer: D

- 37) $\frac{x}{3} \frac{x}{7} = 9$
 - A) {21}

B) {27}

C) {63}

D) $\left\{\frac{189}{4}\right\}$

Answer: D

- 38) $\frac{2x}{5} \frac{x}{3} = 4$
 - A) {-60} Answer: B

B) {60}

C) {120}

D) {-120}

- $39) \ \frac{15x}{4} + \frac{3}{2} = \frac{7x}{2}$
 - A) {-20}

B) {6}

C) {20}

D) {-6}

Answer: D

- 40) $\frac{x+9}{2} + \frac{x-2}{4} = \frac{19}{4}$
 - A) {38}

B) {0}

C) {1}

D) $\left\{ \frac{31}{2} \right\}$

41)
$$\frac{x+2}{2} - \frac{5x-12}{7} = 1$$

A) $\{8\}$

B) {4}

C) {- 8}

D) {-24}

Answer: A

42)
$$\frac{1}{5}(x + 15) - \frac{1}{9}(x - 9) = x + 7$$

A) $\left\{-\frac{135}{41}\right\}$

B) $\left\{ -\frac{495}{41} \right\}$

C) $\left\{ -\frac{225}{41} \right\}$

D) $\left\{ -\frac{405}{41} \right\}$

Answer: A

43) 0.01y + 0.12(800 - y) = 0.14y

A) {240}

B) {384}

C) {24}

D) {768}

Answer: B

44)
$$\frac{2x-1}{6} + x = \frac{2x+1}{2} + 4$$

A) {14}

B) {6}

C) {- 13}

D) $\left\{-\frac{8}{3}\right\}$

Answer: A

45) 1.8(2 - x) = 1.6(2 - x)

A) {2}

B) {0.4}

C) {0}

D) {34}

Answer: A

46) 2x - 1 - 9x - 8 = 5x - 12x - 12

A) Ø

C) $\{0\}$

B) {-288}

D) $\{x \mid x \text{ is a real number}\}$

Answer: A

47) 5(x + 5) = (5x + 25)

A) {50}

C) $\{0\}$

B) {x | x is a real number}

D) Ø

Answer: B

48) 3(x + 4) - (3x + 12) = 0

A) $\{x \mid x \text{ is a real number}\}$

C) {4}

B) ∅

D) {0}

Answer: A

49) -4(x-6) - 66 = 2x - 6(x+3)

A) {-48}

C) Ø

B) {-84}

D) $\{x \mid x \text{ is a real number}\}$

Answer: C

50) 3(x + 4) + 5 = 3x + 2

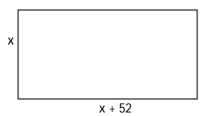
A) {x | x is a real number}

C) Ø

B) {11}

D) {15}

51)
$$5(x - 1) + x = 6(x + 1) - 11$$


B) {0}

D) {5}

Answer: C

Write the following as an algebraic expression. Then simplify.

52) The perimeter of the rectangle with width x and length x + 52.

B)
$$x^2 + 52x$$

C)
$$2x + 52$$

D)
$$4x + 104$$

Answer: D

53) The sum of three even consecutive integers if the first integer is y.

A)
$$3y + 6$$

C)
$$3y + 3$$

Answer: A

54) The perimeter of a triangle whose sides are of lengths 5x, 5x - 5, and x.

B)
$$25x^2 - 25x$$

Answer: C

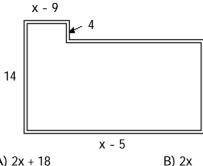
55) The sum of three consecutive integers if the last integer is z.

C)
$$3z + 3$$

D)
$$3z + 6$$

Answer: A

56) The perimeter of a square with sides of length x - 6.


D)
$$x^2 + -12x + 36$$

Answer: B

57) The total value of money (in cents) of (7x - 2) nickels, 6x dimes, and x quarters.

D)
$$(120x + 10)$$
 cents

58) The perimeter of the floor plan shown.

A) 2x + 18

C) 2x + 56

D) 56

Answer: A

Solve.

59) Four times the sum of some number plus 3 is equal to 8 times the number minus 12.

A) - 24

B) 24

D) 6

Answer: D

60) The difference of a number and 8 is the same as 46 less the number. Find the number.

A) 27

B) 19

C) -27

D) -19

Answer: A

61) Seven times some number added to 8 amounts to -10 added to the product of 4 and the number.

A) 18

B) -18

C) -6

D) 6

Answer: C

62) A region consists of 2565 thousand acres of farm land. If 30% of this land is privately owned, find how may acres are not privately owned.

A) 1795.5 thousand acres

B) 769.5 thousand acres

C) 1795.5 acres

D) 769.5 acres

Answer: A

63) A diamond ring sold for \$2570.40 including tax. If the tax rate where the diamond was purchased is 7.1%, find the price of the ring before the tax was added. (Round to the nearest cent, if necessary.)

A) \$182.50

B) \$2752.90

C) \$2400.00

D) \$2387.90

Answer: C

64) The three most prominent buildings in a city, Washington Center, Lincoln Galleria, and Jefferson Square Tower, have a total height of 1800 feet. Find the height of each building if Jefferson Square Tower is three times as tall as Lincoln Galleria and Washington Center is 350 feet taller than Lincoln Galleria.

A) Washington Center: 240 feet Lincoln Galleria: 80 feet

Jefferson Square Tower: 1480 feet

C) Washington Center: 640 feet

Lincoln Galleria: 290 feet

Jefferson Square Tower: 870 feet

Answer: C

B) Washington Center: 430 feet Lincoln Galleria: 80 feet

Jefferson Square Tower: 1290 feet

D) Washington Center: 630 feet Lincoln Galleria: 210 feet

Jefferson Square Tower: 960 feet

65) The sum of three consecutive even integers is 318. Find the integers.

A) 105, 106, 107

- B) 104, 106, 108
- C) 106, 108, 110
- D) 102, 104, 106

Answer: B

66) The population of a town increased by 80% in 5 years. If the population is currently40,000, find the population of this town 5 years ago. (Round to the nearest whole, if necessary.)

A) 8000

B) 50,000

C) 32,000

D) 22,222

Answer: D

67) Find the measures of the angles of a triangle if the measure of the first angle is four times the measure of the second angle and the third angle is 30° more than the second angle.

A) 100°, 25°, 55°

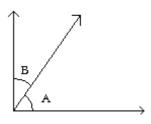
- B) 35°, 5°, 140°
- C) 68°, 17°, 95°
- D) 20°, 5°, 155°

Answer: A

68) A publisher printed 84 million pages in its production process last year. If this represents a 120% increase over the number of pages printed the previous year, how many pages were printed the previous year? (Round to the nearest hundredth million, if necessary.)

A) 14,400 million pages

B) 700 million pages


C) 70 million pages

D) 144 million pages

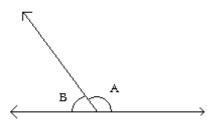
Answer: C

69) Angle A and angle B are complementary angles and angle A is 2° more than three times angle B. Find the measures of angle A and angle B.

Complementary Angles

A) $A = 48^{\circ}, B = 42^{\circ}$

B) $A = 68^{\circ}, B = 22^{\circ}$


C) $A = 42^{\circ}, B = 48^{\circ}$

D) $A = 22^{\circ}, B = 68^{\circ}$

Answer: B

70) Angle A and angle B are supplementary angles and angle A is 35° less than four times angle B. Find the measures of angle A and angle B.

Supplementary Angles

A) $A = 151^{\circ}, B = 29^{\circ}$

C) $A = 131.7^{\circ}, B = 48.3^{\circ}$

B) $A = 137^{\circ}, B = 43^{\circ}$

D) $A = 172^{\circ}, B = 8^{\circ}$

	•	number of tennis rackets is C = en by R = 23x. Find how many		
	A) 43 tennis rackets	B) 33 tennis rackets	C) 19 tennis rackets	D) 38 tennis rackets
	Answer: D			
	total of their salaries is \$2 A) president's salary = B) president's salary = C) president's salary = D) president's salary =	n university makes three times 250,000, find each worker's sala \$18,750; department head's sa \$187,500; department head's s \$125,000; department head's sa \$62,500; department head's sa	ry. lary = \$6250 alary = \$62,500 alary = \$62,500	department heads. If the
	Answer: B			
	Joe's phone bill was \$62 the nearest integer, if nec	<u> </u>	ow many minutes of phone ca	ills did he make? Round to
	A) 9 Answer: D	B) 1540	C) 2	D) 940
		rtised renting a luxury, full-siz nany whole miles can you driv		
	A) 50	B) 572	C) 276	D) 21
	Answer: C			
	piece is x feet long, find t A) shorter piece: 1 ft.; C) shorter piece: 4.5 ft;	.	et longer than 3 times the sho B) shorter piece: 22 ft; lo D) shorter piece: 15 ft; lo	onger piece: 27 ft.
	Answer: A			
	total number of medals v more than China who wo A) U.S.: 29 medals; Ch B) U.S.: 83 medals; Ch C) U.S.: 28 medals; Ch D) U.S.: 26 medals; Ch	Gymnastics competition, the U von by each team are three con on more than Romania, how m nina: 28 medals; Romania: 27 n nina: 82 medals; Romania: 81 n nina: 27 medals; Romania: 26 n nina: 25 medals; Romania: 24 n	secutive integers whose sum any medals did each team wi nedals nedals nedals	is 81 and the U.S. won
	Answer: C			
Solve	the equation for the specifie 77) d = rt for r	d variable.		
	A) $r = \frac{d}{t}$	B) $r = \frac{t}{d}$	C) r = dt	D) r = d - t
	Answer: A			
	78) I = Prt for P			
	A) $P = \frac{r-1}{lt}$	B) P = r - It	C) $P = \frac{r - l}{1 + t}$	D) $P = \frac{I}{rt}$
	Answer: D			

79)
$$V = Iwh$$
 for $w = \frac{VI}{h}$

B)
$$W = \frac{Vh}{I}$$

D)
$$W = \frac{V}{lh}$$

Answer: D

80) A =
$$\frac{1}{2}$$
bh for h

A)
$$h = \frac{b}{2A}$$

B)
$$h = \frac{Ab}{2}$$

C) h =
$$\frac{A}{2h}$$

D)
$$h = \frac{2A}{b}$$

Answer: D

81)
$$V = \frac{1}{3}Ah$$
 for h

A)
$$h = \frac{V}{3A}$$

B)
$$h = \frac{3A}{V}$$

C)
$$h = \frac{3V}{A}$$

D)
$$h = \frac{A}{3V}$$

Answer: C

82)
$$P = a + b + c$$
 for c
A) $c = P - a - b$

B)
$$c = P + a + b$$

C)
$$c = P + a - b$$

D)
$$c = a + b - P$$

Answer: A

83)
$$P = 2L + 2W$$
 for L
A) $L = \frac{P - W}{2}$

B) L =
$$\frac{P - 2W}{2}$$

Answer: B

84)
$$A = P(1 + rt)$$
 for r
A) $r = \frac{P - A}{Pt}$

B)
$$r = \frac{Pt}{A - P}$$

C)
$$r = \frac{A}{t}$$

D)
$$r = \frac{A - P}{Pt}$$

Answer: D

85) A =
$$\frac{1}{2}$$
h(B + b) for b

A) b =
$$\frac{2A - Bh}{h}$$

B) b =
$$\frac{A - Bh}{h}$$

C) b =
$$\frac{2A + Bh}{h}$$

D)
$$b = 2A - Bh$$

Answer: A

86)
$$I = \frac{nE}{nr + R}$$
 for n

A)
$$n = \frac{IR}{Ir + E}$$

B)
$$n = \frac{-IR}{Ir - F}$$

C)
$$n = IR(Ir - E)$$

D)
$$n = \frac{-R}{Ir - E}$$

87)
$$F = \frac{9}{5}C + 32$$
 for C

A)
$$C = \frac{F - 32}{9}$$

B) C =
$$\frac{5}{9}$$
 (F - 32)

B)
$$C = \frac{5}{9}(F - 32)$$
 C) $C = \frac{9}{5}(F - 32)$ D) $C = \frac{5}{F - 32}$

D) C =
$$\frac{5}{F - 32}$$

Answer: B

88)
$$S = 2\pi rh + 2\pi r^2$$
 for h

A)
$$h = 2\pi(S - r)$$

B)
$$h = S - r$$

C)
$$h = \frac{S}{2\pi r} - 1$$

D) h =
$$\frac{S - 2\pi r^2}{2\pi r}$$

Answer: D

89)
$$6x - 7y = 4$$
 for y
A) $y = \frac{6x + 4}{7}$

B)
$$y = \frac{4 - 6x}{7}$$

C)
$$y = 6x - 4$$

D)
$$y = \frac{6x - 4}{7}$$

Answer: D

90)
$$8x + 7y = 10$$
 for y

A)
$$y = \frac{8}{7}x - \frac{10}{7}$$
 B) $y = \frac{8x - 10}{7}$ C) $y = \frac{10 - 8x}{7}$

B)
$$y = \frac{8x - 10}{7}$$

C)
$$y = \frac{10 - 8x}{7}$$

D)
$$y = \frac{8x + 10}{7}$$

Answer: C

Use the formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$ to find the amount requested.

- 91) A principal of \$1,000 is invested in an account paying an annual interest rate of 11%. Find the amount in the account after 12 years if the account is compounded annually.
 - A) \$2498.45
- B) \$3883.28
- C) \$3151.76
- D) \$3498.45

Answer: D

- 92) A principal of \$1,000 is invested in an account paying an annual interest rate of 5%. Find the amount in the account after 9 years if the account is compounded semiannually.
 - A) \$1551.33
- B) \$559.66
- C) \$1559.66
- D) \$1521.62

Answer: C

- 93) A principal of \$14,000 is invested in an account paying an annual interest rate of 10%. Find the amount in the account after 15 years if the account is compounded semiannually.
 - A) \$46,507.19
- B) \$57,625.90
- C) \$58,481.47
- D) \$60,507.19

Answer: D

- 94) A principal of \$480 is invested in an account paying an annual interest rate of 8%. Find the amount in the account after 7 years if the account is compounded quarterly.
 - A) \$835.69
- B) \$355.69
- C) \$819.31
- D) \$822.64

Answer: A

- 95) A principal of \$12,000 is invested in an account paying an annual interest rate of 5%. Find the amount in the account after 4 years if the account is compounded quarterly.
 - A) \$14,638.67
- B) \$2638.67
- C) \$14,457.95
- D) \$14,586.08

Solve.

96) Use the formula $F = \frac{9}{5}C + 32$ to write -50°C as degrees Fahrenheit.

A) -45.8°F

B) -58°F

C) -10.2°F

D) -122°F

Answer: B

97) Use the formula $C = \frac{5}{9}(F - 32)$ to write 221°F as degrees Celsius.

A) 140.6°C

B) 429.8°C

C) 105°C

D) 90.8°C

Answer: C

98) It took Sara's mother 9 hours round trip to drive to the University and bring Sara back home for spring break. If the University is $247\frac{1}{2}$ miles from home, find her mother's average speed.

A) $27\frac{1}{2}$ mph

B) 56 mph

C) 55 mph

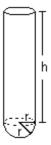
D) $55\frac{1}{2}$ mph

Answer: C

99) You are varnishing the background for a rectangular mural. The base of the mural is $7\frac{1}{2}$ meters and the height

of the mural is 3 meters. How many cans of varnish will you need if each can covers 10 square meters?

A) 23 cans of varnish


B) 5 cans of varnish

C) 3 cans of varnish

D) 9 cans of varnish

Answer: C

100) A manufacturing company was asked to make a special test tube with dimensions r = 1.2 cm and h = 8.3 cm as shown on the figure. If the body of the test tube is a cylinder and the bottom is a hemisphere, find the volume of the test tube. Round to two decimal places when necessary, using 3.14 for π .

A) 51.43 cu cm

B) 44.76 cu cm

C) 39.34 cu cm

D) 41.15 cu cm

Answer: D

101) A woman drives at a constant 65 miles per hour. Find the distance the woman will travel in 3 hours.

A) 68 mi

B) 9 mi

C) 195 mi

D) $\frac{65}{3}$ mi

Answer: C

102) An office building rents an office space for \$810. The space is a rectangle that measures 10 ft x 27 ft. Find what the tenant is paying in rent per square foot.

A) \$3 per sq ft

B) \$81 per sq ft

C) \$540 per sq ft

D) \$270 per sq ft

103) You have taken up garde			
masterpiece. The length on the width of the garden?	of the garden is 6 m and 58 m	of fencing is required to com	pletely enclose it. What is
A) 9.67 m	B) 348 m	C) 23 m	D) 46 m
Answer: C			
	circle with a 4 inch larger dia	ed, the cover will fit exactly warmeter than the table to allow ly need? (Use 3.14 for π . Rour C) 3419.46 sq in.	for hemming. If the table
Answer: B			
105) The width of a room is 9 to	feet, and the area of the room	is 135 square feet. Find the ro	oom's length.
A) 126 ft	B) 58 ¹ / ₂ ft	C) 15 ft	D) 1215 ft
Answer: C			
106) Michael is shipping his m long by 5 inches wide by A) 14 cu in.		n a rectangular box. If the gift's me of the smallest box that wi C) 100 cu in.	
Answer: C	2, 17 32 1111	o,	2, 200 00
107) You have a cylindrical co of soup will fit into the po A) 79 cans of soup		nches and whose height is 7 in bic inches of soup? (Use 3.14 C) 26 cans of soup	
Answer: A	, ,	, ,	, ,
Graph the solution set of the inequence 108) $\{x \mid x > -3\}$	ality and write it in interval	notation.	
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 1	,		
A) [-3, ∞)			
-7 -6 -5 -4 -3 -2 -1 0 1 2 3	4 5 6 7		
B) (-∞, -3)			
-7 -6 -5 -4 -3 -2 -1 0 1 2 3	4 5 6 7		
C) (-∞, -3]			
-7 -6 -5 -4 -3 -2 -1 0 1 2 3	4 5 6 7		
D) (-3, ∞)			
-7 -6 -5 -4 -3 -2 -1 0 1 2 3	4 5 6 7		

Answer: D

109) $\{x \mid x < 0\}$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

- A) [0, ∞)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- B) (-∞, 0]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- C) (0, ∞)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- D) (-∞, 0)
- -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Answer: D

- 110) $\{x \mid x \ge 0\}$
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
 - A) [0, ∞)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
 - B) (-∞, 0)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
 - C) (0, ∞)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
 - D) (-∞, 0]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

111) $\{x \mid x \le 1\}$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

A) (-∞, 1)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

B) (1, ∞)

-7 -6 -5 -4 -3 -2 -1 0 2 3 4 5 6 7

C) (-∞, 1]

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

D) [1, ∞)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Answer: C

112) $\{x \mid -6 < x\}$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

A) (-6, ∞)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

B) [-6, ∞)

-7 -6 -5 -4 -3 -2 -1 0 | 2 3 4 5 6 7

C) (-∞, -6)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

D) (-∞, -6]

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

113) $\{x \mid x > -0.3\}$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

- A) (-∞, -0.3)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- B) (-0.3, ∞)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- C) (-0.3, ∞)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- D) (-0.3, ∞)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Answer: D

- 114) $\{x \mid x \le 0.3\}$
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
 - A) (-∞, 0.3]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
 - B) [0.3, ∞)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
 - C) $(-\infty, 0.3]$
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
 - D) (-∞, 0.3)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

115) $\{x \mid 2 \le x \le 6\}$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

- A) (2, 6)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- B) [2, 6]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- C) (2, 6]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- D) [2, 6)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Answer: B

116) $\{x \mid -2 < x < 2\}$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

- A) [-2, 2]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- B) (-2, 2)
- -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- C) [-2, 2)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- D) (-2, 2]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

117) $\{x \mid -2 \le x < 2\}$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

- A) [-2, 2)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- B) (-2, 2]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- C) [-2, 2]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- D) (-2, 2)
- -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Answer: A

118) $\{x \mid 0 \ge x \ge -4\}$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

- A) [-4, 0]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- B) (-4,0)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- C) (-4, 0]
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- D) [-4, 0)
 - -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Solve the inequality. Write the solution set in interval notation and graph the solution set.

119) x + 3 < 1

- A) (-∞, -2)
- B) (- ∞, 4)
- C) (-∞, 4]
- D) (-2, ∞)

Answer: A

120) 7x > 6x - 10

- A) (-10, ∞)
- B) (- ∞, -10)
- C) (-∞, 10]
- D) [10, ∞)

 (10, ∞)

121) 4x + 1 > 3x + 8

- A) [7, ∞)
 - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
- B) (7, ∞)
 - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
- C) (-∞, 7]
 - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
- D) (9, ∞)
 - 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Answer: B

122) $3x - 7 \ge 2x - 8$

- A) (-∞, -1]
 - -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
- B) [-1, ∞)
 - -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
- C) (-15, ∞)
 - -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8
- D) (-1, ∞)
 - -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

123) x + 6 < 1

A) [-5, ∞)

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

B) (-∞, 7)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C) (-∞, -5]

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

D) (-∞, -5)

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Answer: D

124) x - 5 ≤ -10

 $\longleftrightarrow \cdots \longleftrightarrow$

A) (-∞, -15)

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8

B) [-5, ∞)

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

C) (-∞, -5)

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

D) (-∞, -5]

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Answer: D

125) $3x + 1 \ge 2x + 1$

 $\longleftrightarrow \cdots \longleftrightarrow$

A) (2, ∞)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

B) (-∞, 1]

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

C) [0, ∞)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

D) [- 2, ∞)

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Answer: C

126) 6x + 7 < 6(x + 10)

A) (-∞, 10)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B) (3, ∞)

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

C) (-∞, ∞)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

D) Ø

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

127) 4x + 9 > 4(x + 12)

A) (12, ∞)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

B) (3, ∞)

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

C) (-∞,∞)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

D) Ø

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

Answer: D

Graph the solution set of the inequality and write it in interval notation.

128) $\frac{2}{3}$ x \geq 9

A) $\left[\frac{27}{2}, \infty\right)$

7 8 9 10 11 12 13 14 15 16 17 18 19 20

B) (6, ∞)

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

C) $(-\infty, \frac{2}{27}]$


-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

D) $(-\infty, \frac{1}{6})$

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

129) 4x < -22.8

A) [-5.7, ∞)

B) (-5.7, ∞)

← 12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

C) $(-\infty, -5.7)$

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

D) (-∞, -5.7]

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Answer: C

130) 9x > -37.8

A) (-4.2, ∞)

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

B) (-∞, -4.2)

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

C) (-∞, -4.2]

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

D) [-4.2, ∞)

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

131) -6x ≥ 18

A) [3, ∞)

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

B) (∞, 3]

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

C) [-3, ∞)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

D) (∞, -3]

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Answer: D

132) 5x ≥ 15

A) (- 3, ∞)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

B) [3, ∞)

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

C) (-∞, 3]

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

D) (-∞, - 3)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

133)
$$-x < -6$$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B) (-6, ∞)

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

C) (6, ∞)

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Answer: C

Write the solution set using interval notation.

134)
$$20 - 5x \le -5$$

Answer: B

135)
$$11x + 27 \ge 2x - 27$$

Answer: B

136)
$$4(x + 4) \le 5(x - 6)$$

Answer: D

137)
$$\frac{2}{3} + \frac{6}{7} \le \frac{x}{21}$$

Answer: B

138)
$$8(y - 7) \le 8y + 100$$

Answer: C

139)
$$2(5x + 1) - 2 < 5(2x - 5) + 7$$

A)
$$(-\infty, -\frac{9}{5})$$

Answer: D

140) 12(10 -
$$x$$
) \geq 120

141)
$$5(15x + 1) > 5$$

C)
$$(\frac{1}{75}, \infty)$$

Answer: D

142)
$$\frac{4x-2}{2}$$
 < 19

Answer: B

$$143) \; \frac{-3x + 10}{2} < -1$$

Answer: A

$$144) \; \frac{5x - 65}{18} < 0$$

Answer: A

Answer: C

146)
$$4x - 3.2 < 6x + 5$$

C)
$$(-\infty, -4.1)$$

Answer: A

147)
$$5(4x - 1) > 20$$

A)
$$[\frac{21}{20}, \infty)$$

B)
$$(\frac{5}{4}, \infty)$$

C)
$$(\frac{3}{4}, \infty)$$

D)
$$[\frac{19}{20}, \infty)$$

Answer: B

Answer: D

148)
$$-7(y - 9) \le -9y + 63$$

D)
$$(-\infty, 0]$$

 $149) \ \frac{1}{4}(6x - 56) \ge x - 7$

Answer: D

150)
$$3(4x - 4) - 12 \le 5x - 3$$

151) $1.3x - 3 - 0.8x \ge 14$

Answer: B

152) $\frac{1}{7}(2x + 12) > \frac{3}{14}(x - 1)$

Answer: D

153) $\frac{5x+1}{15} - \frac{1+4x}{5} \le -\frac{1}{3}$

A)
$$[\frac{3}{7}, \infty)$$

B)
$$[-\frac{3}{7}, \infty)$$

C)
$$(\frac{3}{7}, \infty)$$

D)
$$(-\infty, \frac{3}{7}]$$

Answer: A

Solve.

154) A student scored 74, 89, and 95 on three algebra tests. What must he score on the fourth test in order to have an average grade of at least 85?

Answer: C

155) A certain vehicle has a weight limit for all passengers and cargo of 1040 pounds. The four passengers in the vehicle weigh an average of 150 pounds. Use an inequality to find the maximum weight of the cargo that the vehicle can handle.

B) at most
$$\frac{104}{15}$$
 pounds

Answer: C

156) A certain store has a fax machine available for use by its customers. The store charges \$1.90 to send the first page and \$0.40 for each subsequent page. Use an inequality to find the maximum number of pages that can be faxed for \$3.90

A) at most 5 pages

B) at most 43 pages

C) at most 10 pages

D) at most 2 pages

Answer: A

157) An archer has \$88 to spend on a new archery set. A certain set containing a bow and three arrows costs \$40. With the purchase of this set, he can purchase additional arrows for \$8 per arrow. Use an inequality to find the maximum number of arrows he could obtain, including those with the set, for his \$88.

A) at most 11 arrows

B) at most 9 arrows

C) at most $\frac{11}{5}$ arrows D) at most 6 arrows

Answer: B

158) When making a long distance call from a certain pay phone, the first three minutes of a call cost \$2.10. After that, each additional minute or portion of a minute of that call costs \$0.20. Use an inequality to find the maximum number of minutes one can call long distance for \$2.50.

A) at most 1 minutes

B) at most 5 minutes

C) at most 13 minutes

D) at most 2 minutes

159)) It takes 28 minutes to set up a candy making machine. Once the machine is set up, it produces 20 candies per minute. Use an inequality to find the number of candies that can be produced in 6 hours if the machine has no yet been set up.				
	A) at most 9520 candies		B) at most 3360 candies		
	C) at most 6640 candies		D) at most 120 candies		
	Answer: C				
160)	0) A standard train ticket in a certain city costs \$3.00 per ride. People who use the train also have the option of purchasing a frequent rider pass for \$18.00 each month. With the pass, a ticket costs only \$2.25 per ride. Use inequality to determine the number of train rides in a month for which purchasing the monthly pass is more economical than purchasing the standard train ticket.				
	A) 23 or more times	B) 25 or more times	C) 26 or more times	D) 24 or more times	
	Answer: B				
	ements of the set.				
161)	 If A = {x x is an even integer} a A) {x x is an even integer} B) Ø C) {x x is an even integer or D) {47, 49, 51, 53} 	nd B = {47, 49, 51, 53}, list the x = 47 or x = 49 or x = 51 or x			
	Answer: B				
162)	62) If A = $\{x \mid x \text{ is an odd integer}\}$ and B = $\{21, 23, 24, 26\}$, list the elements of A \cap B.				
	A) $\{x \mid x \text{ is an odd integer}\}$		B) ∅		
	C) {x x is an odd integer or x	x = 24 or x = 26	D) {21, 23}		
	Answer: D				
163)	If $A = \{7, 8, 9, 12\}$ and $B = \{5, 7, 9, 12\}$	8, 10}, list the elements of A \(\)	B.		
,	A) {5, 7, 8, 9, 10, 12}	B) {7, 8}	C) {5, 9, 10, 12}	D) Ø	
	Answer: B				
164)	<pre>If A = {x x is an even integer} a A) {x x is an integer} C) {x x is an even integer}</pre>	nd B = $\{x \mid x \text{ is an odd integer}\}$	r, list the elements of $A \cap B$. B) $\{x \mid x \text{ is an odd integer}\}$ D) \emptyset		
	Answer: D				
165)	If A = {-5, -3, -2, -1, 2} and B =	= {-5, -3, -2, -1}, list the eleme	ents of A ∩B.		

Answer: B

A) Ø

C) {2}

D) {-5, -3, -2, -1, 2}

B) {-5, -3, -2, -1}

Solve the compound inequality. Graph the solution set and give the solution in interval notation. 166) $x \le 4$ and $x \ge 2$

C)
$$(-\infty, 2] \cup [4, \infty)$$

Answer: B

A)
$$(-\infty, -2] \cup [3, \infty)$$

168) $x \le -2$ and $x \ge 5$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

A) [-2, 5]

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

B) (-2, 5)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 3 6 7

C) $(-\infty, \infty)$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

D) Ø

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Answer: D

Solve the compound inequality. Give the answer in interval notation.

169) 5x < 25 and x + 5 > 8

A) $(-\infty, 3) \cup (5, \infty)$

B) (3, 5)

C) [3, 5]

D) Ø

Answer: B

170) -8x > -24 and x + 8 > 7

A) (3, ∞)

B) $(-\infty, -1) \cup (3, \infty)$

C) (-1, 3)

D) Ø

Answer: C

171) x + 9 < 7 and -9x < -45

A) $(-\infty, -2) \cup (5, \infty)$

B) (-2,5)

C) (-∞, -2)

D) Ø

Answer: D

172) -8x < -40 and x + 8 > 6

A) $(-\infty, -2) \cup (5, \infty)$

B) (-2,5)

C) (5, ∞)

D) Ø

Answer: C

173) $15 < 5x \le 30$

A) [-6, -3)

B) [3, 6)

C) (-6, -3]

D) (3, 6]

Answer: D

174) $11 \le 3x + 5 \le 20$

A) [-5, -2]

B) (2, 5)

C) (-5, -2)

D) [2, 5]

Answer: D

175) $-10 \le -2x + 2 < -4$

A) [3, 6)

B) (3, 6]

C) (-6, -3]

D) [-6, -3)

176)
$$-21 \le -5x + 4 \le -6$$

A) (2,5)

B) [-5, -2]

C) (-5, -2)

D) [2, 5]

Answer: D

177)
$$-3 \le \frac{5}{3}x - 8 < 12$$

A) (3, 4]

B) [3, 12)

C) (3, 12]

D) [3, 4)

Answer: B

$$178) \ 0 \le \frac{2x+3}{4} < 3$$

A) $\left[-\frac{3}{2}, \frac{9}{2}\right)$

B) $\left[-\frac{3}{2}, \frac{9}{2}\right]$

C) $\left(-\frac{3}{2}, \frac{9}{2}\right]$

D) $\left(-\frac{3}{2}, \frac{9}{2}\right)$

Answer: A

$$179) - \frac{1}{3} \le \frac{3x - 1}{6} < \frac{1}{3}$$

A) $\left(-\frac{1}{3}, 1\right]$

B) $\left(-\frac{1}{3}, 1\right)$

C) $\left[-\frac{1}{3}, 1\right)$

D) $\left[-\frac{5}{9}, \frac{7}{9}\right)$

Answer: C

A) (-2.5, 1.5)

B) [6.5, 10.5]

C) (0, 10.5)

D) (6.5, 10.5)

Answer: D

181)
$$4x + 2 < 5x + 4 < 6x - 3$$

A) (7, ∞)

B) (-2, ∞)

C) (-2, 7)

D) (-∞, 7)

Answer: A

Solve.

182) The formula for converting Fahrenheit temperatures to Celsius temperatures is $C = \frac{5}{9}$ (F - 32). Use this formula

to solve the problem. In a certain city, the average temperature ranges from -25° to 38° Celsius. Use a compound inequality to convert these temperatures to Fahrenheit temperatures. If necessary, round to the nearest tenth of a degree.

A) $-77^{\circ} \le F \le 36.4^{\circ}$

B) $-45^{\circ} \le F \le 68.4^{\circ}$

C) $-13^{\circ} \le F \le 100.4^{\circ}$

D) $18.1^{\circ} \le F \le 53.1^{\circ}$

Answer: C

183) Cindy has scores of 74, 80, 84, and 89 on her biology tests. Use a compound inequality to find the range of scores she can make on her final exam to receive a C in the course. The final exam counts as two tests, and a C is received if the final course average is from 70 to 79.

A) $70 \le \text{final score} \le 79$

B) 93 ≤ final score ≤ 147

C) $11.5 \le \text{final score} \le 34$

D) $46.5 \le \text{final score} \le 73.5$

Answer: D

List the elements of the set.

- 184) If A = $\{x \mid x \text{ is an even integer}\}\$ and B = $\{-11, -9, -7, -5\}$, list the elements of A \cup B.
 - A) {x | x is an even integer}
 - B) Ø
 - C) $\{-11, -9, -7, -5\}$
 - D) $\{x \mid x \text{ is an even integer or } x = -11 \text{ or } x = -9 \text{ or } x = -7 \text{ or } x = -5\}$

Answer: D

- 185) If $A = \{x \mid x \text{ is an odd integer}\}\$ and $B = \{17, 19, 20, 22\}$, list the elements of $A \cup B$.
 - A) {x | x is an odd integer}

- B) {17, 19}
- C) $\{x \mid x \text{ is an odd integer or } x = 20 \text{ or } x = 22\}$
- D) Ø

Answer: C

- 186) If $A = \{47, 48, 49, 52\}$ and $B = \{45, 47, 48, 50\}$, list the elements of $A \cup B$.
 - A) Ø

B) {45, 49, 50, 52}

C) {47, 48}

D) {45, 47, 48, 49, 50, 52}

Answer: D

- 187) If $A = \{x \mid x \text{ is an even integer}\}\$ and $B = \{x \mid x \text{ is an odd integer}\}\$, list the elements of $A \cup B$.
 - A) $\{x \mid x \text{ is an integer}\}$

B) {x | x is an odd integer}

C) Ø

D) {x | x is an even integer}

Answer: A

- 188) If $A = \{21, 23, 24, 25, 28\}$ and $B = \{21, 23, 24, 25\}$, list the elements of $A \cup B$.
 - A) {28}

- B) {21, 23, 24, 25}
- C) Ø

D) {21, 23, 24, 25, 28}

Answer: D

Solve the compound inequality. Graph the solution set and give the solution in interval notation.

189) $x \le 4 \text{ or } x \ge 7$

- A) $(-\infty, 4] \cup [7, \infty)$
 - 4 6 8 10 12 14 16
- B) (-4, 7)
 - 4 -2 0 2 4 6 8
- C) (4,7)
 - 4 6 8 10 12 14 16
- D) [-7, -4]

190) x < 3 or x < 9

Answer: A

191)
$$x > 5$$
 or $x < 5$

A)
$$(-\infty, 5)$$

D)
$$(-\infty, 5) \cup (5, \infty)$$

Answer: D

192) $x \le 4$ or $x \ge -4$

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

A) [-4, 4]

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

B) (-∞, ∞)

C)

 $(-\infty, -4] \cup [4, \infty)$

- -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
- D) Ø

Answer: B

Solve the compound inequality. Give the answer in interval notation.

193) x + 6 < 4 or -6x < -6

A) (-∞, 1)

B) (-2, 1)

- C) (-∞, -2) ∪ (1, ∞)
- D) (-∞, ∞)

Answer: C

194) -9x > -27 or x + 9 > 11

A) (2, ∞)

- B) $(-\infty, 2) \cup (3, \infty)$
- C) (2, 3)

D) (-∞, ∞)

Answer: D

195) $9x - 6 < 3x \text{ or } -3x \le -9$

A) [1, 3]

- B) $(-\infty, 1) \cup [3, \infty)$
- C) (1, 3)

D) Ø

Answer: B

196) $-6x + 1 \ge 13$ or $4x + 3 \ge -13$

A) $(-\infty, -4) \cup (-2, \infty)$

B) [-2, ∞)

- C) $(-\infty, -4] \cup [-2, \infty)$
- D) (-∞, ∞)

Answer: D

197) 4x - 2 > 2 or $-x + 4 \ge -9$

A) $(-\infty, 1] \cup (13, \infty)$

B) (1, ∞)

- C) $(-\infty, 1) \cup [13, \infty)$
- D) (-∞, ∞)

Answer: D

198) $\frac{4}{5}x + 1 \le 0$ or -3x < -12

A) (- ∞, 4)

- B) $(-\infty, \frac{5}{4}] \cup (4, \infty)$ C) $(-\infty, \frac{4}{5}] \cup (-9, \infty)$ D) $[\frac{5}{4}, 4)$

Solve.

199) |x| = 6A) $\{-6\}$

B) {36}

C) $\{6, -6\}$

D) {6}

200) |x| = -8

Answer: C

A) $\{-8\}$

B) {8}

C) $\{8, -8\}$

D) Ø

Answer: D

201) |10x| = 39A) {3.9}

B) {0, 3.9, -3.9}

C) $\{-3.9\}$

D) {3.9, -3.9}

Answer: D

202) |x + 5| = 9A) {14, 4}

B) {-4}

C) {-14, 4}

D) Ø

Answer: C

203) |x| + 6 = 18A) {-12, 12}

B) {24}

C) $\{-12\}$

D) {12}

Answer: A

204) |4x + 6| = 5

B) $\left\{-\frac{1}{6}, -\frac{11}{6}\right\}$ C) $\left\{-\frac{1}{4}, -\frac{11}{4}\right\}$

D) Ø

Answer: C

205) $\left| \frac{3x + 12}{4} \right| = 3$ A) {-8,8}

B) $\{-8, 0\}$

C) $\{8, 0\}$

D) Ø

206) |7x| + 6 = 10A) $\left\{ \frac{4}{7}, -\frac{4}{7} \right\}$

Answer: B

B) $\{4, -4\}$

C) $\left\{ \frac{7}{4}, -\frac{7}{4} \right\}$

D) Ø

Answer: A

207) |6x| = 0

B) {6, -6}

C) {0}

D) {6}

Answer: C

208) |5x + 2| + 5 = 8

Answer: B

B) $\left\{ \frac{1}{5}, -1 \right\}$

C) $\left\{ \frac{1}{2}, -\frac{5}{2} \right\}$

D) Ø

209)
$$|5x + 9| + 8 = 3$$

A) $\left\{ \frac{4}{5}, \frac{14}{5} \right\}$

B)
$$\left\{-\frac{4}{5}, -\frac{14}{5}\right\}$$

C)
$$\left\{-\frac{4}{9}, -\frac{14}{9}\right\}$$

Answer: D

210)
$$|2x - 3| = 0$$

A) $\left\{\frac{3}{2}\right\}$

B)
$$\left\{-\frac{3}{2}\right\}$$

C)
$$\left\{ \frac{3}{2}, -\frac{3}{2} \right\}$$

Answer: A

211)
$$|4x + 8| = |x - 9|$$

A) $\left\{-\frac{17}{3}, \frac{1}{5}\right\}$

B)
$$\left\{ \frac{17}{3}, -\frac{1}{5} \right\}$$

C)
$$\left\{-\frac{17}{3}, 5\right\}$$

Answer: A

212)
$$|x - 6| = |2 - x|$$

A) $\{8\}$

B)
$$\left\{-\frac{1}{4}\right\}$$

Answer: C

213)
$$\left| -4x - 10 \right| = \left| -9 + 3x \right|$$

A) $\left\{ -\frac{1}{7} \right\}$

B)
$$\left\{-\frac{1}{7}, -19\right\}$$

C)
$$\left\{-\frac{1}{7}, 19\right\}$$

Answer: B

$$214) \left| \frac{4x - 5}{7} \right| = |-3|$$
A) $\langle 4 \rangle$

B)
$$\left\{ \frac{13}{2}, -4 \right\}$$

C)
$$\left\{-\frac{13}{2}\right\}$$

Answer: B

215)
$$\left| \frac{x+9}{5} \right| = \left| 6x + 8 \right|$$

A) $\left\{ -\frac{49}{31}, -\frac{31}{29} \right\}$

B)
$$\left\{1, \frac{49}{29}\right\}$$

C)
$$\left\{-\frac{17}{31}, \frac{1}{29}\right\}$$

Answer: A

216)
$$\left| \frac{1}{4} x + 1 \right| = \left| \frac{1}{2} x - 1 \right|$$

A) $\{0, \frac{8}{3}\}$

C)
$$\{0, \frac{1}{2}\}$$

Solve the inequality. Then graph the solution set and write it in interval notation.

217) $|x| \le 4$

A) (-∞,4]

B) [-4, 4]

C) $(-\infty, -4] \cup [4, \infty)$

D) (-4,4)

Answer: B

218) |x| < 2

A) [-2, 2]

B) (-∞, -2) ∪ (2, ∞)

C) (-2, 2)

D) (-∞, 2]

219) |x - 19| < 11

A) (-30, -8)

B) (8, 30)

C) (-∞, 30)

D) (-∞,8)

Answer: B

220) |2k - 3| ≤8

A) $\left[-\frac{5}{2}, \frac{11}{2}\right]$

B) $\left[-\frac{5}{2}, \frac{11}{2}\right]$

C) $\left[-\infty, \frac{11}{2}\right]$

D) $\left[-\infty, -\frac{5}{2}\right] \cup \left[\frac{11}{2}, \infty\right]$

221) $|x| - 2 \le 2$

A) $(-\infty, -4] \cup [4, \infty)$

-10 -5 0 5 10

B) (-∞, 4]

C) [-4, 4]

D) (-∞, 0]

Answer: C

222) |7k - 4| < -5

A) $\left[-\frac{1}{7}, \frac{9}{7}\right]$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B) $\left[-\infty, -\frac{1}{7}\right] \cup \left[\frac{9}{7}, \infty\right]$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C) $\left[-\frac{9}{7}, \frac{1}{7}\right]$

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

D) Ø

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Answer: D

223) $|x + 1| + 6 \le 10$

- A) [-5, 10]
 - -5 0 5 10 15 20
- B) [-5, 3]
- C) Ø
 - -10 -5 0 5 10
- D) (-5, 3)

Answer: B

224) |5k - 7| - 3 < 1

- A) $\left[-\infty, \frac{11}{5}\right]$
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14
- B) $\left(\frac{3}{5}, \frac{11}{5}\right)$
- C) $\left(-\infty, \frac{3}{5}\right) \cup \left(\frac{11}{5}, \infty\right)$
 - H 1 2 3 4 5 6 7 8 9 10 11 12 13 14
- D) $\left[-\infty, \frac{3}{5}\right]$
- + 1 2 3 4 5 6 7 8 9 10 11 12 13 14

225) |x| < -3

A) (-∞, -3]

B) (-∞, -3) ∪ (3, ∞)

C) (-3, 3)

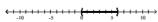
D) Ø

Answer: D

226) $|x - 2| \le 0$

A) -2

B) (-∞, 2)



C) 2

D) Ø

$$227) \left| \frac{11y + 33}{3} \right| < 11$$

B) (-6, 6)

C) $(-\infty, -6) \cup (0, \infty)$

D) (-6, 0)

Answer: D

Write the inequality.

228) Write an absolute value inequality representing all numbers x whose distance from 0 is less than 14 units.

A)
$$|x| \le 14$$

B)
$$|x| > 14$$

C)
$$|x| \le 13$$

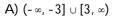
D)
$$|x| < 14$$

Answer: D

229) Write $-10 \le x \le 10$ as an inequality containing absolute value.

A)
$$|x| \le 10$$

B)
$$|x| \le 9$$


C)
$$|x| \ge 10$$

D)
$$|x| \ge 9$$

Answer: A

Solve the inequality. Then graph the solution set and write it in interval notation.

230)
$$|x| \ge 3$$

B) [-3, 3]

D)
$$(-\infty, -3) \cup (3, \infty)$$

Answer: A

231)
$$|x| > 3$$

B)
$$(-\infty, -3) \cup (3, \infty)$$

C) [-3, 3]

D) [3, ∞)

232) |x + 10| > 17

<-----

A) $(-\infty, -27) \cup (7, \infty)$

-25 -20 -15 -10 -5 0 5 10 15

B) (-7, 27)

C) (7, ∞)

D) (-27, 7)

Answer: A

233) |5k - 2| ≥5

A) $\left[\frac{7}{5}, \infty\right]$

0 1 2 3 4 5 6 7 8 9 10 11 12 13

B) $\left[-\frac{3}{5}, \frac{7}{5}\right]$

0 1 2 3 4 5 6 7 8 9 10 11 12 13

C) $\left[-\infty, -\frac{3}{5}\right] \cup \left[\frac{7}{5}, \infty\right]$

 $D)\left[-\frac{3}{5},\frac{7}{5}\right]$

0 1 2 3 4 5 6 7 8 9 10 11 12 13

234) $|x| - 4 \ge 7$

A) [3, ∞)

(1) -5 0 5 10 15

B) [11, ∞)

C) [-11, 11]

D) $(-\infty, -11] \cup [11, \infty)$

Answer: D

235) |5k - 9| > -8

A) $\left[-\infty, \frac{1}{5}\right] \cup \left[\frac{17}{5}, \infty\right]$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B) $\left(\frac{1}{5}, \frac{17}{5}\right)$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C) (-∞, ∞)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D) $\left[\frac{17}{5}, \infty\right]$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

236) $|x + 5| + 3 \ge 5$

- A) [-7, -3]
- B) (-7, -3)
- C) (-∞, -7] ∪ [-3, ∞)

Answer: C

237) |5k + 8| - 3 > 2

$$A) \left(-\frac{3}{5}, \infty \right)$$

$$\leftarrow \underbrace{}_{2} \underbrace{}_{0} \underbrace{}_{0} \underbrace{}_{1} \underbrace{}_{3} \underbrace{}_{4} \underbrace{}_{5} \underbrace{}_{6} \underbrace{}_{7} \underbrace{}_{8} \underbrace{}_{9} \underbrace{}_{10} \underbrace{}_{10} \underbrace{}_{11} \underbrace{}_{10} \underbrace{}_{10} \underbrace{}_{11} \underbrace{}_{10} \underbrace{$$

B)
$$\left[-\frac{13}{5}, -\frac{3}{5}\right]$$

C)
$$\left[-\infty, -\frac{13}{5}\right] \cup \left[-\frac{3}{5}, \infty\right]$$

D)
$$\left(-\infty, -\frac{13}{5}\right) \cup \left(-\frac{3}{5}, \infty\right)$$

Answer: D

238) |x| > -4

A) (-∞, ∞)

B) (-4, 4)

C) $(-\infty, -4) \cup (4, \infty)$

D) [-4, ∞)

Answer: A

239) $|x - 1| \ge 0$

A) (-∞, -1) ∪ (-1, ∞)

B) (-∞, ∞)

C) 1

D) $(-\infty, 1) \cup (1, \infty)$

$$240) \left| \frac{8y + 24}{3} \right| > 8$$

Answer: C

241)
$$|2x - 9| > 0$$

A)
$$\left(\frac{9}{2}, \infty\right)$$

B)
$$\left(-\infty, -\frac{9}{2}\right) \cup \left(\frac{9}{2}, \infty\right)$$

C)
$$\left(-\frac{9}{2}, \frac{9}{2}\right)$$

D)
$$\left(-\infty, \frac{9}{2}\right) \cup \left(\frac{9}{2}, \infty\right)$$

Answer: D

	inequality						
242)	242) Write an absolute value inequality representing all		ting all number				
	A) x >		B) $ x \ge 8$		C) $ x < 8$	D) $ x \ge 9$	
	Answer: A	4					
243)	Write x > 1	11 or x < -11 as an	inequality conta	aining absolute	value.		
,	A) x <		B) x > 12		C) x > 11	D) $ x \ge 12$	
	Answer: C						
Fill in the	e blank witl	h one of the word	s or phrases list	ed below.			
	ati a la	limaan inaan salib	, im ama vamialal.				
contradiction absolute value		linear inequality in one variable compound in consecutive integers identity			equantysolution union		
formula		linear equation in one variable i		-	dilloll		
244)	The statem	nent "x < 5 or x > 7	" is called a(n)	·			
	A) linear equation in one variable				B) linear inequality in one variable		
	C) compound inequality				D) formula		
	Answer: C						
245)	An equation	on in one variable	that has no solu	tion is called a(n) .		
ŕ	A) ident			·	B) formula		
		r inequality in one	e variable		D) contradiction		
	Answer: D)					
246)	The	of two sets	is the set of all e	elements comm	on to both sets.		
	A) solut	ion	B) absolute	value	C) union	D) intersection	
	Answer: D)					
0.47\		.61	to the contract of		la carla alle a collega	1.	
247)	The				elong to either of the s		
	•	lute value	B) intersection	OH	C) solution	D) union	
	Answer: [)					
248)	An equation a(n)	on in one variable	that has every n	umber (for whi	ch the equation is de	fined) as a solution is called	
	A) solut	ion			B) contradiction		
	C) ident				D) compound inequ	uality	
	Answer: C						
249)	The equati	ion d = rt is also ca	alled a(n)				
A) formula				B) identity			
C) linear inequality in one variable				D) linear equation in one variable			
	Answer: A	4					
250)	A number	's distance from 0	is called its				
,	A) unio		B) absolute	value	C) intersection	D) solution	
	Answer: E					•	

	A) solution	B) contradiction	C) union	D) identity	
	Answer: A				
252)	The integers 17, 18, 19 are exam	nples of .			
	A) identity		B) consecutive inte	egers	
	C) absolute value		D) contradiction		
	Answer: B				
253)	The statement 5x - 0.2 < 7 is an	example of a(n)			
	A) formula		B) linear inequality in one variable		
	C) linear equation in one val	riable	D) compound inequality		
	Answer: B				
254)	The statement $5x - 0.2 = 7$ is an	example of a(n)			
	A) formula		B) linear inequality in one variable		
	C) linear equation in one variable		D) compound inequality		
	Answer: C				
olve the	equation.				
255)	14x + 18 = 5x - 18				
	A) {4}	B) {2}	C) {-2}	D) {-4}	
	Answer: D				
256)	11(x + 3) = 6[10 - 2(3 - x) + 10]				
	A) {3}	B) {-51}	C) {-6}	D) {51}	
	Answer: B				
257)	3(y + 6) + y = 2(2 + 2y)				
	A) Ø		B) $\left\{-\frac{7}{4}\right\}$		
	C) {y y is a real number}		D) $\left\{\frac{7}{4}\right\}$		
	Answer: A		()		
258)	3n + 2 + n = 2(2n + 1)				
	A) Ø		B) $\left\{\frac{1}{2}\right\}$		
	₀ , [1]		()	una h a wì	
	C) $\left\{-\frac{1}{2}\right\}$		D) {n n is a real nu	ımper}	
	Answer: D				

 $259) \; \frac{9w}{4} + 1 = \frac{7w}{10} + 3$

A) (40)

B) $\left\{\frac{40}{31}\right\}$

C) $\left\{\frac{1}{13}\right\}$

D) $\left\{-\frac{40}{31}\right\}$

$$260) \; \frac{z+8}{9} + 1 = \frac{2z+1}{6}$$

A)
$$\left\{ \frac{31}{3} \right\}$$

B)
$$\left\{ \frac{31}{4} \right\}$$

C)
$$\left\{ \frac{37}{4} \right\}$$

D)
$$\left\{\frac{7}{2}\right\}$$

Answer: B

261)
$$|4x + 3| + 2 = 8$$

B)
$$\left\{-\frac{3}{4}, \frac{9}{4}\right\}$$

D)
$$\left\{ \frac{3}{4}, -\frac{9}{4} \right\}$$

Answer: D

262)
$$|6t + 9| = -3$$

D)
$$\left\{ -\frac{2}{3}, -\frac{4}{3} \right\}$$

Answer: B

263)
$$|-5x-9| = |1+6x|$$

A)
$$\left\{-\frac{10}{11}, -8\right\}$$

B)
$$\left\{-\frac{10}{11}, 8\right\}$$

D)
$$\left\{ -\frac{10}{11} \right\}$$

Answer: B

264)
$$|x + 6| = |9 - x|$$

A)
$$\left\{\frac{3}{2}\right\}$$

C)
$$\left\{-\frac{2}{3}\right\}$$

Answer: A

Solve the equation for the specified variable.

265)
$$5x - 4y = 7$$
 for y

A)
$$y = \frac{7 - 5x}{4}$$

B)
$$y = \frac{5x + 7}{4}$$

C)
$$y = \frac{5x - 7}{4}$$

D)
$$y = 5x - 7$$

Answer: C

266)
$$F = pq^2 + prq for p$$

A)
$$p = F - p - rq$$

B)
$$p = \frac{F}{q^2 + rq}$$

C)
$$p = \frac{F}{q^3 r}$$

D)
$$p = \frac{q^2 + rq}{F}$$

Answer: B

267) C =
$$\frac{5}{9}$$
 (F - 32) for F

A)
$$F = \frac{9}{5}C + 32$$

B)
$$F = \frac{9}{5}F - 32$$

C)
$$F = \frac{5}{9}C + 32$$

D)
$$F = \frac{5}{9}F - 32$$

Answer: A

Solve the inequality. Write the answer in interval notation.

268)
$$3(2x - 9) - 4x > -(x + 6)$$

$$269) \ \frac{5x-3}{3} - \frac{7x+1}{4} \ge 0$$

Answer: A

270)
$$-7 < 2(x - 1) \le 5$$

A) $\left[-\frac{5}{2}, \frac{7}{2} \right]$

$$C)\left[-\infty,-\frac{5}{2}\right]\cup\left[\frac{3}{2},\infty\right]$$

$$D)\left[-\frac{9}{2},\frac{3}{2}\right]$$

Answer: A

271)
$$|7x + 6| \ge 7$$

A) $\left[-\frac{13}{7}, \frac{1}{7} \right]$

B)
$$\left[\frac{1}{7}, \infty\right]$$

C)
$$\left[-\frac{13}{7}, \frac{1}{7}\right]$$

D)
$$\left[-\infty, -\frac{13}{7}\right] \cup \left[\frac{1}{7}, \infty\right]$$

Answer: D

Answer: B

273)
$$x \ge 5$$
 and $x \ge 3$

Answer: D

274)
$$x \ge 5$$
 or $x \ge -1$

C)
$$(-\infty, -1] \cup [5, \infty)$$

Answer: D

$$275) -5 \le \frac{2x - 1}{3} < 2$$

B)
$$\left[-\frac{13}{2}, 4\right]$$

C)
$$\left[-7, \frac{7}{2}\right]$$

D)
$$\left[-8, \frac{5}{2}\right]$$

Answer: C

276)
$$8x + 4 > 7x + 7$$
 or $1 - x > -5$

Answer: A

C)
$$(-\infty,3) \cup (6,\infty)$$

Solve.

277) Find 13% of 60.

Answer: A

- 278) A computer company sold 7,120,000 computers this year. This represents a 9.55% decrease over the number of new computers sold 3 years ago. Use this information to find the number of new computers sold 3 years ago. Round to the nearest thousand.
 - A) 7,872,000 computers
 - C) 67,996,000 computers

- B) 8,850,000 computers
- D) 74,555,000 computers

Answer: A

279) A circular pen has circun safely kept in the pen if e	nference of 78.1 feet. Approach sheep needs at least 55	3	te how many sheep could be				
A) 17 sheep	B) 11 sheep	C) 8 sheep	D) 35 sheep				
Answer: C							
280) In 2006, the price of a lake front lot was \$101,000. This represents 119% increase over the price in 1994. Find the price of the lot in 1994.							
A) \$89,100	B) \$124,691	C) \$84,874	D) \$46,119				
Answer: D							
281) Find the amount of money in an account after 12 years if a principal of \$2800 is invested at 3.8% interest compounded quarterly.							
A) \$4380.53	B) \$7796.11	C) \$4408.20	D) \$4414.52				
Answer: C							

282) \$33 billion a year is spent on tourism in Florida, Louisiana, and Mississippi. Tourists spend \$2 billion more in Louisiana than they do in Mississippi. In Florida they spend \$1 billion less than twice the amount spent in Mississippi. Find the amount spent in each state.

A) Mississippi: \$7 billion; Louisiana: \$9 billion; Florida: \$13 billion
B) Mississippi: \$10 billion; Louisiana: \$12 billion; Florida: \$11 billion
C) Mississippi: \$8 billion; Louisiana: \$10 billion; Florida: \$15 billion
D) Mississippi: \$9 billion; Louisiana: \$11 billion; Florida: \$17 billion