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Introduction to Econometrics, 3e (Stock)
Chapter 2 Review of Probability

2.1 Multiple Choice

1) The probability of an outcome

A) is the number of times that the outcome occurs in the long run.

B) equals M X N, where M is the number of occurrences and N is the population size.
C) is the proportion of times that the outcome occurs in the long run.

D) equals the sample mean divided by the sample standard deviation.

Answer: C

2) The probability of an event A or B (Pr(A or B)) to occur equals
A) Pr(A) X Pr(B).
B) Pr(A) + Pr(B) if A and B are mutually exclusive.
Pr(A4)
) Pr(B)"

D) Pr(A) + Pr(B) even if A and B are not mutually exclusive.
Answer: B

3) The cumulative probability distribution shows the probability

A) that a random variable is less than or equal to a particular value.

B) of two or more events occurring at once.

C) of all possible events occurring.

D) that a random variable takes on a particular value given that another event has happened.
Answer: A

4) The expected value of a discrete random variable

A) is the outcome that is most likely to occur.

B) can be found by determining the 50% value in the c.d.f.

C) equals the population median.

D) is computed as a weighted average of the possible outcome of that random variable, where the
weights are the probabilities of that outcome.

Answer: D

5) Let Y be a random variable. Then var(Y) equals
A) JE[Y =) ].

B) E[|(Y - )].

O E[(r-m)].

D) E[(Y-s)].

Answer: C
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6) The skewness of the distribution of a random variable Y is defined as follows:

= (r ;2‘ )]

B) E[(Y_MfJ
)

3
Oy

E|:(Y_luy)3:|

D)
Answer: D

7) The skewness is most likely positive for one of the following distributions:
A) The grade distribution at your college or university.

B) The U.S. income distribution.

C) SAT scores in English.

D) The height of 18 year old females in the U.S.

Answer: B

8) The kurtosis of a distribution is defined as follows:

E|:(Y_luy)4:|

o £l )]

2
Oy

A)

skewness
var(Y)

D) E[(Y - )4

Answer: A

9) For a normal distribution, the skewness and kurtosis measures are as follows:
A)1.96 and 4

B)0and 0

C)0and 3

D)1and?2

Answer: C
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10) The conditional distribution of Y given X = x, Pr(Y = y|X=x), is
Pr(Y = y)

A) pr(x=x)

!
B) 2. Pr(X=x.Y=y)
i=1

Pr(X:x,Y:y)
Pr(Y =y)
Pr(X=xY=y)
Pr(X:x)

Answer: D

O

D)

11) The conditional expectation of Y given X, E(Y|X =), is calculated as follows:
k

A) LY Pr(X =x [V =)
i=1

B) E[E(Y]X)1]

k
C) 2y Pr(Y =y |X=x)
i1

D) iE(Y|X =x,)Pr(X =x,)

Answer: C

12) Two random variables X and Y are independently distributed if all of the following conditions hold,
with the exception of

A) Pr(Y = y|X = x) = Pr(Y = y).

B) knowing the value of one of the variables provides no information about the other.

C) if the conditional distribution of Y given X equals the marginal distribution of Y.

D) E(Y) = E[E(Y|X)].

Answer: D

13) The correlation between X and Y
A) cannot be negative since variances are always positive.
B) is the covariance squared.
C) can be calculated by dividing the covariance between X and Y by the product of the two standard
deviations.
o cov(X,Y)
D) is given by corr(X, Y) = W .

Answer: C
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14) Two variables are uncorrelated in all of the cases below, with the exception of
A) being independent.

B) having a zero covariance.

C) "’XY‘ <\oio0

D) E(Y|X)=0.

Answer: C

15) var(aX + bY) =
A) azagihbzai.

2 2
B) "12‘73'(+ 2abg gy + g Y-
C) JX-Y + IHXIH':tz.

2 2
D) ag 3 +bha Y-

Answer: B

16) To standardize a variable you

A) subtract its mean and divide by its standard deviation.

B) integrate the area below two points under the normal distribution.
C) add and subtract 1.96 times the standard deviation to the variable.
D) divide it by its standard deviation, as long as its mean is 1.
Answer: A

17) Assume that Y is normally distributed N(u, a2). Moving from the mean (u) 1.96 standard deviations to
the left and 1.96 standard deviations to the right, then the area under the normal p.d.f. is

A)0.67

B) 0.05

C) 0.95

D) 0.33

Answer: C

18) Assume that Y is normally distributed N(u, 02). To find Pr(c; = Y<¢p), where ¢y <c¢p and d; = S8 ,
o

you need to calculate Pr(dy < Z <d,) =
A) O(d,) - D(dq)

B) O(1.96) - ©(1.96)
C) O(d,) - (1 - D(dq))

D) 1-(@(dy) - ©(dy))

Answer: A
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19) If variables with a multivariate normal distribution have covariances that equal zero, then
A) the correlation will most often be zero, but does not have to be.
B) the variables are independent.

C) you should use the x?2 distribution to calculate probabilities.
D) the marginal distribution of each of the variables is no longer normal.
Answer: B

20) The Student ¢ distribution is

A) the distribution of the sum of m squared independent standard normal random variables.

B) the distribution of a random variable with a chi-squared distribution with m degrees of freedom,
divided by m.

C) always well approximated by the standard normal distribution.

D) the distribution of the ratio of a standard normal random variable, divided by the square root of an
independently distributed chi-squared random variable with m degrees of freedom divided by m.
Answer: D

21) When there are © degrees of freedom, the ¢, distribution

A) can no longer be calculated.

B) equals the standard normal distribution.

C) has a bell shape similar to that of the normal distribution, but with "fatter" tails.
D) equals the X, 2 distribution.

Answer: B

22) The sample average is a random variable and

A) is a single number and as a result cannot have a distribution.

B) has a probability distribution called its sampling distribution.

C) has a probability distribution called the standard normal distribution.

D) has a probability distribution that is the same as for the Yl""' Yn i.i.d. variables.

Answer: B

23) To infer the political tendencies of the students at your college/university, you sample 150 of them.
Only one of the following is a simple random sample: You

A) make sure that the proportion of minorities are the same in your sample as in the

entire student body.

B) call every fiftieth person in the student directory at 9 a.m. If the person does not answer the phone,
you pick the next name listed, and so on.

C) go to the main dining hall on campus and interview students randomly there.

D) have your statistical package generate 150 random numbers in the range from 1 to the total number of
students in your academic institution, and then choose the corresponding names in the student telephone
directory.

Answer: D
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= 2
24) The variance of Y, o7 is given by the following formula:

oy
D) -

Answer: C

25) The mean of the sample average v, £ (?) ,is
1
A) — .
n
B) 4, .
Hy
I
GY
D) — forn > 30.
Hy

Answer: B

O

26) In econometrics, we typically do not rely on exact or finite sample distributions because

A) we have approximately an infinite number of observations (think of re-sampling).

B) variables typically are normally distributed.

C) the covariances of Y;, Y; are typically not zero.

D) asymptotic distributions can be counted on to provide good approximations to the exact sampling
distribution (given the number of observations available in most cases).

Answer: D

27) Consistency for the sample average ¥ can be defined as follows, with the exception of

A) Y converges in probability to 4y .

B) Y has the smallest variance of all estimators.

C) Y —L>u,.

D) the probability of y being in the range #, * ¢ becomes arbitrarily close to one as n increases for any
constant ¢ > 0.

Answer: B
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28) The central limit theorem states that

A) the sampling distribution of Y _$ ~ is approximately normal.

B) Y —>u, .
C) the probability that y is in the range £, =+ c becomes arbitrarily close to one as 1 increases for any
constant ¢ > 0.

D) the ¢ distribution converges to the F distribution for approximately n > 30.
Answer: A

29) The central limit theorem

A) states conditions under which a variable involving the sum of Y7,..., Y}, i.i.d. variables becomes the
standard normal distribution.

B) postulates that the sample mean Y is a consistent estimator of the population mean 4 .

C) only holds in the presence of the law of large numbers.

D) states conditions under which a variable involving the sum of Y7,..., Y}, i.i.d. variables becomes the

Student ¢ distribution.
Answer: A

30) The covariance inequality states that

A)Ddaz =1
SREE 0. e

B) » 5 55252.
XY XY
Q) . 2 2 :_2
U.X_lz u'X _u.-tt/-
i
D) 2 X
o S
Xk 2
\.-'_lz
Answer: B

n
31) E (ax; + by + )=
i=1

A)unExi +b %Fi +Hz L
i=1 i=1
B)a%xi +b %yi +C
i=1

i=1

C) ax + 5?'; + M=o
n n
D) a 2 X +& E ¥
i=1 i=1
Answer: A
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32) i(ax" +b)

Aynxax +nxb
B) n(a +b)

C) x+nxb

D) nxaxx
Answer: A

33) Assume that you assign the following subjective probabilities for your final grade in your
econometrics course (the standard GPA scale of 4 = A to 0 = F applies):

Grade Probability
A 0.20
B 0.50
C 0.20
D 0.08
F 0.02

The expected value is:
A)3.0

B)3.5

C)2.78

D) 3.25

Answer: C

34) The mean and variance of a Bernoille random variable are given as
A) cannot be calculated
B) np and np(1-p)

C)pand p(1-p)
D) p and (1- p)
Answer: D

x—
35) Consider the following linear transformation of a random variable y = G_ﬂx where (1 is the mean of

X

x and oy is the standard deviation. Then the expected value and the standard deviation of Y are given as
A)Oand 1

B)land1

C) Cannot be computed because Y is not a linear function of X

D) O_i and oy

x

Answer: A
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2.2 Essays and Longer Questions

1) Think of the situation of rolling two dice and let M denote the sum of the number of dots on the two
dice. (So M is a number between 1 and 12.)

(a) In a table, list all of the possible outcomes for the random variable M together with its probability
distribution and cumulative probability distribution. Sketch both distributions.

(b) Calculate the expected value and the standard deviation for M.

(c) Looking at the sketch of the probability distribution, you notice that it resembles a normal distribution.
Should you be able to use the standard normal distribution to calculate probabilities of events? Why or
why not?

Answer:

a

(Ol)ltcome 2 3 4 5 6 7 8 9 10 11 12
(sum ofdots)

Probability ~ 0.028 0.056 0.083 0.111 0.139 0.167 0.139 0.111 0.083 0.056 0.028
distribution

Cumulative  0.028 0.083 0.167 0.278 0.417 0.583 0.722 0.833 0.912 0.972 1.000
probability

distribution

Probability and Cumulative Probability
Distribution of Number of Dots

0.16 ] - 0.9
0.14 A L 08
2 012 | - 0.7
£ [t | - 0.6
2 04 A1 ] 0.5
S 008 il iy . K
E ;
£ 006 - [ 03
0.04 — :r L 0.2
0.02 -’j}' — —| |»_ 0.1
0 T T T T T T T T T T 0

2 3 4 5 6 7 8 9 10 11 12
Number of Dots

‘I:I Probability —s— Cumulative Probability \

(b) 7.0;2.42.
(c¢) You cannot use the normal distribution (without continuity correction) to calculate probabilities of
events, since the probability of any event equals zero.
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2) What is the probability of the following outcomes?

(a) Pr(M = 7)

(b) Pr(M = 2 or M = 10)

(c)Pr(M =4orM #4)

(d) Pr(M =6and M = 9)

(e) Pr(M < 8)

(f) Pr(M = 6 or M > 10)

Answer:
6 _ 1
(a) 0.167 or %66
4 1
(b) 0.111 or 0 -9
L
(d) 0;
(e) 0.583;

f) 0.222 y_2
(f) 0. or36—9.
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3) Probabilities and relative frequencies are related in that the probability of an outcome is the proportion
of the time that the outcome occurs in the long run. Hence concepts of joint, marginal, and conditional
probability distributions stem from related concepts of frequency distributions.

You are interested in investigating the relationship between the age of heads of households and weekly
earnings of households. The accompanying data gives the number of occurrences grouped by age and
income. You collect data from 1,744 individuals and think of these individuals as a population that you
want to describe, rather than a sample from which you want to infer behavior of a larger population.
After sorting the data, you generate the accompanying table:

Joint Absolute Frequencies of Age and Income, 1,744 Households

Age of head of household
X1 X2 X3 X4 X5

Household Income 16-under 20 20-under 25 25-under 45 45-under 65 65 and >
Yy $0-under $200 80 76 130 86 24

Y2 $200-under $ 400 13 90 346 140 8

Y3 $400-under $600 0 19 251 101 6

Y4 $600-under $800 1 11 110 55 1

Y5 $800 and> 1 1 108 84 2

The median of the income group of $800 and above is $1,050.

(a) Calculate the joint relative frequencies and the marginal relative frequencies. Interpret one of each of
these. Sketch the cumulative income distribution.

(b) Calculate the conditional relative income frequencies for the two age categories 16-under 20, and 45-
under 65. Calculate the mean household income for both age categories.

(c) If household income and age of head of household were independently distributed, what would you
expect these two conditional relative income distributions to look like? Are they similar here?

(d) Your textbook has given you a primary definition of independence that does not involve conditional
relative frequency distributions. What is that definition? Do you think that age and income are
independent here, using this definition?

11
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Answer:

(a) The joint relative frequencies and marginal relative frequencies are given in the accompanying table.
5.2 percent of the individuals are between the age of 20 and 24, and make between $200 and under $400.
21.6 percent of the individuals earn between $400 and under $600.

Joint Relative and Marginal Frequencies of Age and Income, 1,744 Households

Age of head of household
X1 X2 X3 Xy X5
Household Income 16-under 20  20-under 25  25-under45 45-under 65 65 and > Total
Y1 $0-under $200 0.046 0.044 0.075 0.049 0.014 0.227
Y $200-under $400 0.007 0.052 0.198 0.080 0.005 0.342
Y3 $400-under $600 0.000 0.011 0.144 0.058 0.003 0.216
Y4 $600-under $800 0.001 0.006 0.063 0.032 0.001 0.102
Y5 $800 and > 0.001 0.001 0.062 0.048 0.001 0.112

Cumulative Income Distribution

Percent

$0-<$200 $200-<%$400 $400-<$600 $600-<800 $800 and >

Income Class

O Cumulative Income Distribution
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(b) The mean household income for the 16-under 20 age category is roughly $144. It is approximately
$489 for the 45-under 65 age category.

Conditional Relative Frequencies of Income and Age 16-under 20, and 45-under 65, 1,744 Households

Age of head of household
X1 X4
Household Income 16-under 20 45-under 65
Y1 $0-under $200  0.842 0.185
Yo $200-under $400 0.137 0.300
Y3 $400-under $600 0.000 0.217
Y4 $600-under $800 0.001 0.118
Y5 $800 and > 0.001 0.180

(c) They would have to be identical, which they clearly are not.

(d) Pr(Y =y, X = x) = Pr(Y = y) Pr(X = x). We can check this by multiplying two marginal probabilities
to see if this results in the joint probability. For example, Pr(Y = Y3) = 0.216 and Pr(X = X3) = 0.542,
resulting in a product of 0.117, which does not equal the joint probability of 0.144. Given that we are
looking at the data as a population, not a sample, we do not have to test how "close" 0.117 is to 0.144.

4) Math and verbal SAT scores are each distributed normally with N (500,10000).

(a) What fraction of students scores above 750? Above 600? Between 420 and 530? Below 480? Above 530?
(b) If the math and verbal scores were independently distributed, which is not the case, then what would
be the distribution of the overall SAT score? Find its mean and variance.

(c) Next, assume that the correlation coefficient between the math and verbal scores is 0.75. Find the mean
and variance of the resulting distribution.

(d) Finally, assume that you had chosen 25 students at random who had taken the SAT exam. Derive the
distribution for their average math SAT score. What is the probability that this average is above 530? Why
is this so much smaller than your answer in (a)?

Answer:

(a) Pr(Y>750) = 0.0062; Pr(Y>600) = 0.1587; Pr(420<Y<530) = 0.4061; Pr(Y<480) = 0.4270; Pr(Y>530) =
0.3821.

(b) The distribution would be N(1000, 2000), using equations (2.29) and (2.31) in the textbook. Note that
the standard deviation is now roughly 141 rather than 200.

(c) Given the correlation coefficient, the distribution is now N(1000, 35000) , which has a standard
deviation of approximately 187.

(d) The distribution for the average math SAT score is N(500, 400). Pr(y > 530) = 0.0668. This probability
is smaller because the sample mean has a smaller standard deviation (20 rather than 100).
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5) The following problem is frequently encountered in the case of a rare disease, say AIDS, when
determining the probability of actually having the disease after testing positively for HIV. (This is often
known as the accuracy of the test given that you have the disease.) Let us set up the problem as follows: Y
= 0 if you tested negative using the ELISA test for HIV, Y = 1 if you tested positive; X = 1 if you have
HIV, X = 0 if you do not have HIV. Assume that 0.1 percent of the population has HIV and that the
accuracy of the test is 0.95 in both cases of (i) testing positive when you have HIV, and (ii) testing
negative when you do not have HIV. (The actual ELISA test is actually 99.7 percent accurate when you
have HIV, and 98.5 percent accurate when you do not have HIV.)

(a) Assuming arbitrarily a population of 10,000,000 people, use the accompanying table to first enter the
column totals.

Test Positive (Y=1) |Test Negative (Y=0) Total
HIV (X=1)
No HIV (X=0)
Total 10,000,000

(b) Use the conditional probabilities to fill in the joint absolute frequencies.

(c) Fill in the marginal absolute frequencies for testing positive and negative. Determine the conditional
probability of having HIV when you have tested positive. Explain this surprising result.

(d) The previous problem is an application of Bayes' theorem, which converts Pr(Y = y|X = x) into Pr(X =
Y = y). Can you think of other examples where Pr(Y = y|X = x) # Pr(X = x|Y = y)?

Answer:
(a)
Test Positive (Y=1) | Test Negative (Y=0) Total
HIV (X=1) 10,000
No HIV (X=0) 9,990,000
Total 10,000,000
(b)
Test Positive (Y=1) |Test Negative (Y=0) Total
HIV (X=1) 9,500 500 10,000
No HIV (X=0) 499,500 9,490,500 9,990,000
Total 10,000,000
(©)
Test Positive (Y=1) |Test Negative (Y=0) Total
HIV (X=1) 9,500 500 10,000
No HIV (X=0) 499,500 9,490,500 9,990000
Total 509,000 9,491,000 | 10,000,000

Pr(X=1|Y=1) = 0.0187. Although the test is quite accurate, there are very few people who have HIV
(10,000), and many who do not have HIV (9,999,000). A small percentage of that large number
(499,500/9,990,000) is large when compared to the higher percentage of the smaller number (9,500/10,000).
d. Answers will vary by student. Perhaps a nice illustration is the probability to be a male given that you
play on the college/university men's varsity team, versus the probability to play on the college/university
men's varsity team given that you are a male student.
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6) You have read about the so-called catch-up theory by economic historians, whereby nations that are
further behind in per capita income grow faster subsequently. If this is true systematically, then
eventually laggards will reach the leader. To put the theory to the test, you collect data on relative (to the
United States) per capita income for two years, 1960 and 1990, for 24 OECD countries. You think of these
countries as a population you want to describe, rather than a sample from which you want to infer
behavior of a larger population. The relevant data for this question is as follows:

Y Xp X7 x X1 Y2 X% X%
0.023 0770 1.030 0.018  0.00053 0593 1.0609
0.014 1.000 1.000 0.014 00020 1.000 1.0000

0.041 0.200 0450 0.008 0.00168 0.040 0.2025
0.033 0.130  0.230 .004 0.00109 0.017 0.0529
0.625 13.220 17.800 0.294 0.01877 8.529 139164

where X; and X, are per capita income relative to the United States in 1960 and 1990 respectively, and Y

is the average annual growth rate in X over the 1960-1990 period. Numbers in the last row represent
sums of the columns above.
(a) Calculate the variance and standard deviation of X; and X,. For a catch-up effect to be present, what

relationship must the two standard deviations show? Is this the case here?

(b) Calculate the correlation between Y and . What sign must the correlation coefficient have for there to
be evidence of a catch-up effect? Explain.

Answer:

(a) The variances of X and X, are 0.0520 and 0.0298 respectively, with standard deviations of 0.2279 and

0.1726. For the catch-up effect to be present, the standard deviation would have to shrink over time. This
is the case here.

(b) The correlation coefficient is —0.88. It has to be negative for there to be evidence of a catch-up effect. If
countries that were relatively ahead in the initial period and in terms of per capita income grow by
relatively less over time, then eventually the laggards will catch-up.
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7) Following Alfred Nobel's will, there are five Nobel Prizes awarded each year. These are for
outstanding achievements in Chemistry, Physics, Physiology or Medicine, Literature, and Peace. In 1968,
the Bank of Sweden added a prize in Economic Sciences in memory of Alfred Nobel. You think of the
data as describing a population, rather than a sample from which you want to infer behavior of a larger
population. The accompanying table lists the joint probability distribution between recipients in
economics and the other five prizes, and the citizenship of the recipients, based on the 1969-2001 period.

Joint Distribution of Nobel Prize Winners in Economics and Non-Economics
Disciplines, and Citizenship, 1969-2001

U.S. Citizen Non= U.S. Citizen Total
(Y=0) Y=1)
Economics Nobel 0.118 0.049 0.167
Prize (X = 0)
Physics, Chemistry, 0.345 0.488 0.833
Medicine, Literature,
and Peace Nobel
Prize (X = 1)
Total 0.463 0.537 1.00

(a) Compute E(Y) and interpret the resulting number.

(b) Calculate and interpret E(Y|X=1) and E(Y|X=0).

(c) A randomly selected Nobel Prize winner reports that he is a non-U.S. citizen. What is the probability
that this genius has won the Economics Nobel Prize? A Nobel Prize in the other five disciplines?

(d) Show what the joint distribution would look like if the two categories were independent.

Answer:
(a) E(Y) = 0.53.7 . 53.7 percent of Nobel Prize winners were non-U.S. citizens.
(b) E(Y|X=1) = (0.586 . 58.6 percent of Nobel Prize winners in non-economics disciplines were non-U.S.
citizens. E(Y|X=O) = 0.293 . 29.3 percent of the Economics Nobel Prize winners were non-U.S. citizens.
(c) There is a 9.1 percent chance that he has won the Economics Nobel Prize, and a 90.9 percent chance
that he has won a Nobel Prize in one of the other five disciplines.
(d)
Joint Distribution of Nobel Prize Winners in Economics and Non-Economics Disciplines,

and Citizenship, 1969-2001, under assumption of independence

U.S. Citizen Non= U.S. Total
(Y=0) Citizen
(Y=1)
Economics Nobel 0.077 0.090 0.167
Prize (X = 0)
Physics, Chemistry, 0.386 0.447 0.833
Medicine, Literature,
and Peace Nobel
Prize (X =1)
Total 0.463 0.537 1.00
16
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8) A few years ago the news magazine The Economist listed some of the stranger explanations used in the
past to predict presidential election outcomes. These included whether or not the hemlines of women's
skirts went up or down, stock market performances, baseball World Series wins by an American League
team, etc. Thinking about this problem more seriously, you decide to analyze whether or not the
presidential candidate for a certain party did better if his party controlled the house. Accordingly you
collect data for the last 34 presidential elections. You think of this data as comprising a population which
you want to describe, rather than a sample from which you want to infer behavior of a larger population.
You generate the accompanying table:

Joint Distribution of Presidential Party Affiliation and Party Control
of House of Representatives, 1860-1996

Democratic Control | Republican Control Total
of House (Y = 0) of House (Y = 1)
Democratic 0.412 0.030 0.441
President (X = 0)
Republican 0.176 0.382 0.559
President (X = 1)
Total 0.588 0.412 1.00

(a) Interpret one of the joint probabilities and one of the marginal probabilities.

(b) Compute E(X). How does this differ from EX]Y = 0)? Explain.

(c) If you picked one of the Republican presidents at random, what is the probability that during his term
the Democrats had control of the House?

(d) What would the joint distribution look like under independence? Check your results by calculating
the two conditional distributions and compare these to the marginal distribution.

18
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Answer:
(a) 38.2 percent of the presidents were Republicans and were in the White House while Republicans
controlled the House of Representatives. 44.1 percent of all presidents were Democrats.
(b) E(X) = 0.559. E(X|Y = 0) = 0.701. E(X) gives you the unconditional expected value, while EX]Y =0)
is the conditional expected value.
(c) E(X) = 0.559 . 55.9 percent of the presidents were Republicans. E(X|Y =0) = 0.299 . 29.9 percent of
those presidents who were in office while Democrats had control of the House of Representatives were
Republicans. The second conditions on those periods during which Democrats had control of the House
of Representatives, and ignores the other periods.
(d)
Joint Distribution of Presidential Party Affiliation and Party Control of House of

Representatives, 1860-1996, under the Assumption of Independence

Democratic Control | Republican Control Total
of House (Y = 0) of House (Y = 1)
Democratic 0.259 0.182 0.441
President (X = 0)
Republican 0.329 0.230 0.559
President (X = 1)
Total 0.588 0.412 1.00
0.259 ) )
Pr(X = oy = 0) = 0.588 0.440 (there is a small rounding error).
0.230 i i
Pr(Y=1X=1)= 0559 = 0.411 (there is a small rounding error).
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9) The expectations augmented Phillips curve postulates
Ap = n—f(u—;),

where Ap is the actual inflation rate, 7t is the expected inflation rate, and u is the unemployment rate,
with "-" indicating equilibrium (the NAIRU — Non-Accelerating Inflation Rate of Unemployment). Under
the assumption of static expectations (7 = Ap_1), i.e., that you expect this period's inflation rate to hold

for the next period ("the sun shines today, it will shine tomorrow"), then the prediction is that inflation
will accelerate if the unemployment rate is below its equilibrium level. The accompanying table below
displays information on accelerating annual inflation and unemployment rate differences from the
equilibrium rate (cyclical unemployment), where the latter is approximated by a five-year moving
average. You think of this data as a population which you want to describe, rather than a sample from
which you want to infer behavior of a larger population. The data is collected from United States
quarterly data for the period 1964:1 to 1995:4.

Joint Distribution of Accelerating Inflation and Cyclical Unemployment,

1964:1-1995:4
(u—u)>0 (u-u)=0 Total
(Y =0) (Y=1)

Ap— Ap_1 >0 0.156 0.383 0.539
(X=0)

Ap-Ap_1 <0 0.297 0.164 0.461
X=1

Total 0.453 0.547 1.00

(a) Compute E(Y) and E(X), and interpret both numbers.
(b) Calculate E(Y|X= 1) and E(Y|X= 0). If there was independence between cyclical unemployment and
acceleration in the inflation rate, what would you expect the relationship between the two expected
values to be? Given that the two means are different, is this sufficient to assume that the two variables are
independent?
(c) What is the probability of inflation to increase if there is positive cyclical unemployment? Negative
cyclical unemployment?
(d) You randomly select one of the 59 quarters when there was positive cyclical unemployment ((u — )
> (). What is the probability there was decelerating inflation during that quarter?
Answer:
(a) E(Y) = 0.547 . 54.7 percent of the quarters saw cyclical unemployment.

E(Y) = 0.461 . 46.1 percent of the quarters saw decreasing inflation rates.
(b) E(Y|X =1) = 0.356; E(Y|X = 0) = 0.711. You would expect the two conditional expectations to be the
same. In general, independence in means does not imply statistical independence, although the reverse is
true.
(c) There is a 34.4 percent probability of inflation to increase if there is positive cyclical unemployment.
There is a 70 percent probability of inflation to increase if there is negative cyclical unemployment.
(d) There is a 65.6 percent probability of inflation to decelerate when there is positive cyclical
unemployment.
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10) The accompanying table shows the joint distribution between the change of the unemployment rate in
an election year and the share of the candidate of the incumbent party since 1928. You think of this data
as a population which you want to describe, rather than a sample from which you want to infer behavior
of a larger population.

Joint Distribution of Unemployment Rate Change and Incumbent Party's Vote
Share in Total Vote Cast for the Two Major-Party Candidates,

1928-2000
(Incumbent- 50%) > 0| (Incumbent- 50%) < 0 Total
(Y=0) (Y=1)
Au>0(X=0) 0.053 0.211 0.264
Au=s0(X=1) 0.579 0.157 0.736
Total 0.632 0.368 1.00

(a) Compute and interpret E(Y) and E(X).
(b) Calculate E(Y|X = 1) and E(Y|X = 0). Did you expect these to be very different?
(c) What is the probability that the unemployment rate decreases in an election year?
(d) Conditional on the unemployment rate decreasing, what is the probability that an incumbent will lose
the election?
(e) What would the joint distribution look like under independence?
Answer:
(a) E(Y) = 0.368; E(X) = 0.736. The probability of an incumbent to have less than 50% of the share of votes
cast for the two major-party candidates is 0.368. The probability of observing falling unemployment rates
during the election year is 73.6 percent.
(b) E(Y]X = 1) = 0.213; E(Y|X = 0) = 0.799. A student who believes that incumbents will attempt to
manipulate the economy to win elections will answer affirmatively here.
(c) Pr(X =1) = 0.736.
(d) Pr(Y = 1|X = 1) = 0.213.
()
Joint Distribution of Unemployment Rate Change and Incumbent Party's Vote

Share in Total Vote Cast for the Two Major-Party Candidates,

1928-2000 under Assumption of Statistical Independence

(Incumbent- 50%) > 0 | (Incumbent- 50%) > 0 Total

(Y=0) Y=1)
Au>0(X =0) 0.167 0.097 0.264
Au=s0X=1) 0.465 0.271 0.736
Total 0.632 0.368 1.00
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11) The table accompanying lists the joint distribution of unemployment in the United States in 2001 by
demographic characteristics (race and gender).

Joint Distribution of Unemployment by Demographic Characteristics,
United States, 2001

White Black and Other Total
(Y=0) (Y=1)
Age 16-19 0.13 0.05 0.18
(X=0)
Age 20 and above 0.60 0.22 0.82
X=1)
Total 0.73 0.27 1.00

(a) What is the percentage of unemployed white teenagers?
(b) Calculate the conditional distribution for the categories "white" and "black and other."
(c) Given your answer in the previous question, how do you reconcile this fact with the probability to be
60% of finding an unemployed adult white person, and only 22% for the category "black and other."
Answer:
(@) Pr(Y=0, X=0)=0.13.
(b)
Conditional Distribution of Unemployment by Demographic
Characteristics, United States, 2001

White Black and Other
(Y=0) (Y=1)
Age 16-19 0.18 0.19
(X=0)
Age 20 and above 0.82 0.81
X=1)
Total 1.00 1.00

(c) The original table showed the joint probability distribution, while the table in (b) presented the
conditional probability distribution.
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12) From the Stock and Watson (http://www.pearsonhighered.com/stock_watson) website the chapter 8
CPS data set (ch8_cps.xls) into a spreadsheet program such as Excel. For the exercise, use the first 500
observations only. Using data for average hourly earnings only (ahe), describe the earnings distribution.

Use summary statistics, such as the mean, median, variance, and skewness. Produce a frequency

distribution ("histogram") using reasonable earnings class sizes.

Answer:

ahe

Mean 19.79
Standard Error (0.51
Median 16.83
Mode 19.23
Standard

Deviation 11.49
Sample

Variance 131.98
[Kurtosis 0.23
Skewness 0.96
Range 58.44
Minimum 2.14
Maximum 60.58
Sum 9897.45
Count 500.0

The mean is $19.79. The median ($16.83) is lower than the average, suggesting that the mean is being
pulled up by individuals with fairly high average hourly earnings. This is confirmed by the skewness
measure, which is positive, and therefore suggests a distribution with a long tail to the right. The variance
is $2131.96, while the standard deviation is $11.49.

To generate the frequency distribution in Excel, you first have to settle on the number of class intervals.
Once you have decided on these, then the minimum and maximum in the data suggests the class width.
In Excel, you then define "bins" (the upper limits of the class intervals). Sturges's formula can be used to
suggest the number of class intervals (1+3.31log(n) ), which would suggest about 9 intervals here. Instead
I settled for 8 intervals with a class width of $8 — minimum wages in California are currently $8 and

approximately the same in other U.S. states.

23
Copyright © 2011 Pearson Education, Inc.



The table produces the absolute frequencies, and relative frequencies can be calculated in a

straightforward way.

bins Frequency rel. freq.
8 50 0.1

16 187 0.374

24 115 0.23

32 68 0.136

40 38 0.076

48 33 0.066

56 8 0.016

66 1 0.002
More 0

Substitution of the relative frequencies into the histogram table then produces the following graph (after

eliminating the gaps between the bars).
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2.3 Mathematical and Graphical Problems

1) Think of an example involving five possible quantitative outcomes of a discrete random variable and
attach a probability to each one of these outcomes. Display the outcomes, probability distribution, and
cumulative probability distribution in a table. Sketch both the probability distribution and the cumulative
probability distribution.

Answer: Answers will vary by student. The generated table should be similar to Table 2.1 in the text, and
figures should resemble Figures 2.1 and 2.2 in the text.

2) The height of male students at your college/university is normally distributed with a mean of 70 inches
and a standard deviation of 3.5 inches. If you had a list of telephone numbers for male students for the
purpose of conducting a survey, what would be the probability of randomly calling one of these students
whose height is

(a) taller than 6'0"?

(b) between 5'3" and 6'5"?

(c) shorter than 57", the mean height of female students?

(d) shorter than 5'0"?

(e) taller than Shaquille O'Neal, the center of the Boston Celtics, who is 7'1" tall?

Compare this to the probability of a woman being pregnant for 10 months (300 days), where days of
pregnancy is normally distributed with a mean of 266 days and a standard deviation of 16 days.

Answer:

(a) Pr(Z > 0.5714) = 0.2839;

(b) Pr(-2 < Z < 2) = 0.9545 or approximately 0.95;

(c) Pr(Z < -0.8571) = 0.1957;

(d) Pr(Z < -2.8571) = 0.0021;

(e) Pr(Z > 4.2857) = 0.000009 (the text does not show values above 2.99 standard deviations, Pr(Z>2.99 =
0.0014) and Pr(Z > 2.1250) = 0.0168.
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3) Calculate the following probabilities using the standard normal distribution. Sketch the probability
distribution in each case, shading in the area of the calculated probability.

(a) Pr(Z < 0.0)

(b) Pr(Z = 1.0)

(c) Pr(Z > 1.96)

(d) Pr(Z < -2.0)

(e) Pr(Z > 1.645)

(f) Pr(Z > -1.645)

(g) Pr(-1.96 < Z < 1.96)
(h.) Pr(Z < 2.576 or Z > 2.576)
(i.) Pr(Z > z) = 0.10; find z.
() Pr(Z < —zor Z > z) = 0.05; find z.
Answer:

(a) 0.5000;

(b) 0.8413;

(c) 0.0250;

(d) 0.0228;

(e) 0.0500;

(f) 0.9500;

(g) 0.0500;

(h) 0.0100;

(i) 1.2816;

(j) 1.96.
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4) Using the fact that the standardized variable Z is a linear transformation of the normally distributed
random variable Y, derive the expected value and variance of Z.

Y—pty gy 1 . Hy 1 . .
Answer: Z = =—+—Y=a+bY, witha=-"—"and b= —. Given (2.29) and (2.30) in the
Oy Oy Oy Oy Oy
Hy 1 b,
text, E(Z)=- — + —H#, =0,and 0, =—0, =1,
oy o, o

A

5) Show in a scatterplot what the relationship between two variables X and Y would look like if there was
(a) a strong negative correlation.

(b) a strong positive correlation.

(c) no correlation.

Answer:
(a)
Y
70
60F o ° e,
e .,
50 - et .
. o g0 ®
LI - ‘.; o
@i el .
W, g ol
. *e o, ® o°
30_ o *e .o'. [ .
20 . ..
10+
0 | 1 ! 1 ! J

70 80 9 100 110 120 130
x
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(b)

Y
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6) What would the correlation coefficient be if all observations for the two variables were on a curve

described by Y = X2?
Answer: The correlation coefficient would be zero in this case, since the relationship is non-linear.
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7) Find the following probabilities:
(a) Y is distributed X ;. Find Pr(Y > 9.49).
(b) Y is distributed t_,. Find Pr(Y > -0.5).

() Yis distributed Fy, ... Find Pr(Y < 3.32).

(d) Yis distributed N(500, 10000). Find Pr(Y > 696 or Y < 304).
Answer:

(a) 0.05.

(b) 0.6915.

(c) 0.99.

(d) 0.05.

8) In considering the purchase of a certain stock, you attach the following probabilities to possible
changes in the stock price over the next year.

Stock Price Change During [Probability
Next Twelve Months (%)

+15 0.2

+5 0.3

0 0.4

-5 0.05

-15 0.05

What is the expected value, the variance, and the standard deviation? Which is the most likely outcome?
Sketch the cumulative distribution function.

Answer: E(Y) = 3.5; o, =849; 0, =291; most likely: 0.

Possible Stock Frice Change
Frobability

1
09
038
07

-15 -£ 0 +5 +15
Percentage Change
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9) You consider visiting Montreal during the break between terms in January. You go to the relevant Web
site of the official tourist office to figure out the type of clothes you should take on the trip. The site lists
that the average high during January is —7° C, with a standard deviation of 4° C. Unfortunately you are
more familiar with Fahrenheit than with Celsius, but find that the two are related by the following linear

5
function: C= 5 (F -32).

Find the mean and standard deviation for the January temperature in Montreal in Fahrenheit.
Answer: Using equations (2.29) and (2.30) from the textbook, the result is 19.4 and 7.2.

10) Two random variables are independently distributed if their joint distribution is the product of their
marginal distributions. It is intuitively easier to understand that two random variables are independently
distributed if all conditional distributions of Y given X are equal. Derive one of the two conditions from
the other.

Answer: If all conditional distributions of Y given X are equal, then

Pr(Y=y|X =1)=Pr(Y =y|X =2)=... = Pr(Y = y|X =1)

But if all conditional distributions are equal, then they must also equal the marginal distribution, i.e.,

Pr(Y = y|X =x)=Pr(Y - y)

Given the definition of the conditional distribution of Y given X = x, you then get

Pr(Y =y,X=x)

Pr(Y =ylX=x) = =y =Y =y)

which gives you the condition
Pr(Y =y, X = x) = Pr(Y = y) Pr(X = x).

11) There are frequently situations where you have information on the conditional distribution of Y given
X, but are interested in the conditional distribution of X given Y. Recalling Pr(Y = y|X =x)=

Pr(X =x,Y =y)
————————, derive a relationship between Pr(X = 1|Y = y) and Pr(Y = y|X = x). This is called Bayes'

Pr(X =x)
theorem.
Answer:
Pr(X =x|Y =
Given Pr(Y = y|X =x) = (Pr(X—|—x)y)'
Pr(Y = y|X =x) X Pr(X = x) = Pr(X = x, Y = y);
Pr(X = x|Y =y)

similarly Pr(X = +|Y =y) = —5 ~— == and

Pr(X = 2|Y = y) X Pr(Y = y) = Pr(X = x, Y = y). Equating the two and solving for Pr(X = x|Y = y) then
results in
Pr(Y = y|X = x)xPr(X = x)

Pr(Y = y)

Pr(X =Y =y) =
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12) You are at a college of roughly 1,000 students and obtain data from the entire freshman class (250
students) on height and weight during orientation. You consider this to be a population that you want to
describe, rather than a sample from which you want to infer general relationships in a larger population.
Weight (Y) is measured in pounds and height (X) is measured in inches. You calculate the following
sums:

D vi =942288, X ¥ =12489, D iVi =7,6259
i=1 i=1 i=1

(small letters refer to deviations from means as in Zi = Zi — Z).

(a) Given your general knowledge about human height and weight of a given age, what can you say
about the shape of the two distributions?

(b) What is the correlation coefficient between height and weight here?

Answer:

(a) Both distributions are bound to be normal.

(b) 0.703.

13) Use the definition for the conditional distribution of Y given X = x and the marginal distribution of X
to derive the formula for Pr(X = x, Y = y). This is called the multiplication rule. Use it to derive the
probability for drawing two aces randomly from a deck of cards (no joker), where you do not replace the
card after the first draw. Next, generalizing the multiplication rule and assuming independence, find the
probability of having four girls in a family with four children.

4 3 1y (1
Answer: — X — =0.0045;0.06250r | — | =| —|.
52 51 2 16

14) The systolic blood pressure of females in their 20s is normally distributed with a mean of 120 with a
standard deviation of 9. What is the probability of finding a female with a blood pressure of less than
100? More than 135? Between 105 and 123? You visit the women's soccer team on campus, and find that
the average blood pressure of the 25 members is 114. Is it likely that this group of women came from the
same population?

Answer: Pr(Y<100) = 0.0131; Pr(Y>135) = 0.0478; Pr(105<Y<123) = 0.6784; Pr(Y< 114) = Pr(Z < -3.33)
= 0.0004. (The smallest z-value listed in the table in the textbook is —2.99, which generates a probability
value of 0.0014.) This unlikely that this group of women came from the same population.

15) Show that the correlation coefficient between Y and X is unaffected if you use a linear transformation

in both variables. That is, show that corr(X,Y) = corr(X*, Y*), where X' =a+bXand Y =c + dY, and
where g, b, ¢, and d are arbitrary non-zero constants.
cov(X,Y) bd cov(X,Y)

Answer: corr(X,Y') = \/var(X*)m h \/bz var(X)m corr(X, Y).
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16) The textbook formula for the variance of the discrete random variable Y is given as

T =

2 i
¥ 1¥i - F-f]zpf.

L

1

Another commonly used formulation is
k
oy =D VP k.
i=1
Prove that the two formulas are the same.
Answer:

-LTY'=
I

I~
LR

k k
. s 2 . 2
¥ - py ) pi= E ¥; + iy - 2043 p;= E (¥; Pi+ B yP;— 2y3P;)
i

=1 1
Moving the summation sign through results in

k k k k k
oy = Zy,z Py ity ZP, —2u, Zyip, . But ZP, =1 and 4 ZJ’, P; , giving you the second expression after
i=1

i=1 i=1 i=1 i=1

simplification.

17) The Economic Report of the President gives the following age distribution of the United States
population for the year 2000:

United States Population By Age Group, 2000

Outcome (age [Under 5 5-15 16-19 P0-24 [P5-44 U¥5-64 |65 and
category over
Percentage 0.06 0.16 0.06 0.07 0.30 0.22 0.13

Imagine that every person was assigned a unique number between 1 and 275,372,000 (the total
population in 2000). If you generated a random number, what would be the probability that you had
drawn someone older than 65 or under 16? Treating the percentages as probabilities, write down the
cumulative probability distribution. What is the probability of drawing someone who is 24 years or
younger?

Answer: Pr(Y <16 or Y > 65) = 0.35;

Outcome (age |Under 5 5-15 16-19 P0-24 P5-44 45-64 65 and
category over
Cumulative  0.06 0.22 0.28 0.35 0.65 0.87 1.00
probability

distribution

Pr(Y < 24) = 0.35.
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18) The accompanying table gives the outcomes and probability distribution of the number of times a
student checks her e-mail daily:

Probability of Checking E-Mail

Outcome 0 1 2 3 4 5 6
(number of e-
mail checks)

Probability 0.05 0.15 0.30 0.25 0.15 0.08 0.02
distribution

Sketch the probability distribution. Next, calculate the c.d.f. for the above table. What is the probability of
her checking her e-mail between 1 and 3 times a day? Of checking it more than 3 times a day?

Answer:

Outcome 0 1 2 3 4 5 6
(number of e-
mail checks)
Cumulative 0.05 0.20 0.50 0.75 0.90 0.98 1.00
probability
distribution

Pr(1 <Y =3)0.70 ; Pr(Y > 0.25).

Cumulative Distribution Function

1
0.8 —
z —
= 0.6 —
g —
nE. 0.4 —
0.2 —
0 '_I T T T T T
0 1 2 3 4 5 6

Number of E-mail Checks

O Cumulative Distribution Function
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19) The accompanying table lists the outcomes and the cumulative probability distribution for a student
renting videos during the week while on campus.

Video Rentals per Week during Semester

Outcome (number of weekly|0 1 2 ¢] 4 5 6
video rentals)

Probability distribution 0.05 0.55 0.25 0.05 0.07  0.02 0.01

Sketch the probability distribution. Next, calculate the cumulative probability distribution for the above
table. What is the probability of the student renting between 2 and 4 a week? Of less than 3 a week?

Answer: The cumulative probability distribution is given below. The probability of renting between two
and four videos a week is 0.37. The probability of renting less than three a week is 0.85.

Outcome (number of 0 1 2 3 4 5 6
weekly video rentals)

Cumulative probability [0.05 0.60 0.85 0.90 0.97 0.99 1.00
distribution

Number of Weekly Video Rentals

Probability
© O 0o o o o
= N W kR 01D

- e I I
1 2 3 4 5 6 7
Number of Rentals

o

@ Number of Weekly Video Rentals

20) The textbook mentioned that the mean of Y, E(Y) is called the first moment of Y, and that the expected

value of the square of Y, E (Y2) is called the second moment of Y, and so on. These are also referred to as
moments about the origin. A related concept is moments about the mean, which are defined as E[(Y -

uy)']. What do you call the second moment about the mean? What do you think the third moment,
referred to as "skewness," measures? Do you believe that it would be positive or negative for an earnings
distribution? What measure of the third moment around the mean do you get for a normal distribution?
Answer: The second moment about the mean is the variance. Skewness measures the departure from

symmetry. For the typical earnings distribution, it will be positive. For the normal distribution, it will be
zero.
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21) Explain why the two probabilities are identical for the standard normal distribution:
Pr(-1.96 = X = 1.96) and Pr(-1.96 < X < 1.96).
Answer: For a continuous distribution, the probability of a point is zero.

22) SAT scores in Mathematics are normally distributed with a mean of 500 and a standard deviation of
1 Y-py
y 2

1 2 ey
> . Use the scatter plot option
27y Y

100. The formula for the normal distribution is JT¥) =

in a standard spreadsheet program, such as Excel, to plot the Mathematics SAT distribution using this
formula. Start by entering 300 as the first SAT score in the first column (the lowest score you can get in
the mathematics section as long as you fill in your name correctly), and then increment the scores by 10
until you reach 800. In the second column, use the formula for the normal distribution and calculate fY).
Then use the scatter plot option, where you eventually remove markers and substitute these with the
solid line option.

Answer:

Math SAT Scores

0.Jome
0.6 f\
0.Jm4

0.J012

II \\
b y—Y
/ \

Frequency

0.J006

J.Juug

0.1002 , \

0 : N,

1] a0a “0co
SAT points

23) Use a standard spreadsheet program, such as Excel, to find the following probabilities from various
distributions analyzed in the current chapter:

a. If Y is distributed N (1,4), find Pr(Y < 3)

b. If Y is distributed N (3,9), find Pr(Y > 0)

c. If Yis distributed N (50,25), find Pr(40 < Y < 52)

d. If Y is distributed N (5,2), find Pr(6 < Y < 8)

Answer:

The answers here are given together with the relevant Excel commands.

a. =NORMDIST(3,1,2,TRUE) = 0.8413

b. =1-NORMDIST(0,3,3, TRUE) = 0.8413

c. =NORMDIST(52,50,5, TRUE)-NORMDIST(40,50,5,TRUE) = 0.6326

d. =NORMDIST(8,5,SQRT(2), TRUE)-NORMDIST(6,5,SQRT(2), TRUE) = 0.2229
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24) Looking at a large CPS data set with over 60,000 observations for the United States and the year 2004,
you find that the average number of years of education is approximately 13.6. However, a surprising
large number of individuals (approximately 800) have quite a low value for this variable, namely 6 years
or less. You decide to drop these observations, since none of your relatives or friends have that few years
of education. In addition, you are concerned that if these individuals cannot report the years of education
correctly, then the observations on other variables, such as average hourly earnings, can also not be
trusted. As a matter of fact you have found several of these to be below minimum wages in your state.
Discuss if dropping the observations is reasonable.

Answer:

While it is always a good idea to check the data carefully before conducting a quantitative analysis, you
should never drop data before carefully thinking about the problem at hand. While it is not plausible to
find many individuals in the U.S. who were raised here with that few years of education, there will be
immigrants in the survey. Average years of education can be quite low in other countries. For example,
Brazil's average years of schooling is less than 6 years. The point of the exercise is to think hard whether
or not observations are outliers generated by faulty data entry or if there is a reason for observing values
which may appear strange at first.

25) Use a standard spreadsheet program, such as Excel, to find the following probabilities from various
distributions analyzed in the current chapter:

a. If Yisdistributed X7, find Pr(Y <7.78)

b. If Yis distributed X}, find Pr(Y > 18.31)

c. If Yis distributed F10,<>°’ find Pr(Y > 1.83)

d. If Yis distributed t75, find Pr(Y > 1.75)

e. If Yisdistributed fgg, find Pr(-1.99 =Y <1.99)

f. If Yis distributed N(0,1), find Pr(-1.99 <Y < 1.99)
g. If Yis distributed FlO, 4 find Pr(Y > 4.12)

h. If Yis distributed F7,120, find Pr(Y > 2.79)
Answer:

The answers here are given together with the relevant Excel commands.
=1-CHIDIST(7.78,4) = 0.90

=CHIDIST(18.31,10) = 0.05

=FDIST(1.83,10,1000000) = 0.05

=TDIST(1.75,15,1) = 0.05

=1-TDIST(1.99,90,2) = 0.95
=NORMDIST(1.99,0,1,1)-NORMDIST(-1.99,0,1,1) = 0.953
=FDIST(4.12,7,4) = 0.10

=FDIST(2.79,7,120) = 0.01

5Q 0 an oo
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