
Introduction to Econometrics, 3e (Stock)
Chapter 2   Review of Probability

2.1   Multiple Choice

1) The probability of an outcome
A) is the number of times that the outcome occurs in the long run.
B) equals M × N, where M is the number of occurrences and N is the population size.
C) is the proportion of times that the outcome occurs in the long run.
D) equals the sample mean divided by the sample standard deviation.
Answer:  C

2) The probability of an event A or B (Pr(A or B)) to occur equals
A) Pr(A) × Pr(B).
B) Pr(A) + Pr(B) if A and B are mutually exclusive.

C) .

D) Pr(A) + Pr(B) even if A and B are not mutually exclusive.
Answer:  B

3) The cumulative probability distribution shows the probability
A) that a random variable is less than or equal to a particular value.
B) of two or more events occurring at once.
C) of all possible events occurring.
D) that a random variable takes on a particular value given that another event has happened.
Answer:  A

4) The expected value of a discrete random variable 
A) is the outcome that is most likely to occur.
B) can be found by determining the 50% value in the c.d.f.
C) equals the population median.
D) is computed as a weighted average of the possible outcome of that random variable, where the 
weights are the probabilities of that outcome.
Answer:  D

5) Let Y be a random variable. Then var(Y) equals

A) .

B) .

C) .

D) .
Answer:  C
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6) The skewness of the distribution of a random variable Y is defined as follows:

A) 

B) 

C) 

D) 

Answer:  D

7) The skewness is most likely positive for one of the following distributions:
A) The grade distribution at your college or university.
B) The U.S. income distribution.
C) SAT scores in English.
D) The height of 18 year old females in the U.S.
Answer:  B

8) The kurtosis of a distribution is defined as follows:

A) 

B) 

C) 

D) E[(Y - )4)
Answer:  A

9) For a normal distribution, the skewness and kurtosis measures are as follows:
A) 1.96 and 4
B) 0 and 0
C) 0 and 3
D) 1 and 2
Answer:  C
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10) The conditional distribution of Y given X = x, Pr(Y = y =x), is

A) .

B) 

C) 

D) .

Answer:  D

11) The conditional expectation of Y given X, E(Y , is calculated as follows:

A) 

B) E

C) 

D) 

Answer:  C

12) Two random variables X and Y are independently distributed if all of the following conditions hold, 
with the exception of
A) Pr(Y = y  = x) = Pr(Y = y).
B) knowing the value of one of the variables provides no information about the other.
C) if the conditional distribution of Y given X equals the marginal distribution of Y.
D) E(Y) = E[E(Y )].
Answer:  D

13) The correlation between X and Y 
A) cannot be negative since variances are always positive.
B) is the covariance squared.
C) can be calculated by dividing the covariance between X and Y by the product of the two standard 
deviations.

D) is given by corr(X, Y) = .

Answer:  C
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14) Two variables are uncorrelated in all of the cases below, with the exception of
A) being independent.
B) having a zero covariance.

C) 

D) E(Y ) = 0.
Answer:  C

15) var(aX + bY) =

A) 

B) 

C) 

D) 

Answer:  B

16) To standardize a variable you
A) subtract its mean and divide by its standard deviation.
B) integrate the area below two points under the normal distribution.
C) add and subtract 1.96 times the standard deviation to the variable.
D) divide it by its standard deviation, as long as its mean is 1.
Answer:  A

17) Assume that Y is normally distributed N(μ, σ2). Moving from the mean (μ) 1.96 standard deviations to 
the left and 1.96 standard deviations to the right, then the area under the normal p.d.f. is
A) 0.67
B) 0.05
C) 0.95
D) 0.33
Answer:  C

18) Assume that Y is normally distributed N(μ, σ2). To find Pr(c1 ≤ Y ≤ c2), where c1 < c2 and di = , 

you need to calculate Pr(d1 ≤ Z ≤ d2) =

A) Φ(d2) - Φ(d1)

B) Φ(1.96) - Φ(1.96)
C) Φ(d2) - (1 - Φ(d1))

D) 1 - (Φ(d2) - Φ(d1))

Answer:  A
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19) If variables with a multivariate normal distribution have covariances that equal zero, then
A) the correlation will most often be zero, but does not have to be.
B) the variables are independent.
C) you should use the χ2 distribution to calculate probabilities.
D) the marginal distribution of each of the variables is no longer normal.
Answer:  B

20) The Student t distribution is
A) the distribution of the sum of m squared independent standard normal random variables.
B) the distribution of a random variable with a chi-squared distribution with m degrees of freedom, 
divided by m.
C) always well approximated by the standard normal distribution.
D) the distribution of the ratio of a standard normal random variable, divided by the square root of an 
independently distributed chi-squared random variable with m degrees of freedom divided by m.
Answer:  D

21) When there are ∞ degrees of freedom, the t∞ distribution
A) can no longer be calculated.
B) equals the standard normal distribution.
C) has a bell shape similar to that of the normal distribution, but with "fatter" tails.
D) equals the distribution.
Answer:  B

22) The sample average is a random variable and
A) is a single number and as a result cannot have a distribution.
B) has a probability distribution called its sampling distribution.
C) has a probability distribution called the standard normal distribution.
D) has a probability distribution that is the same as for the Y1,..., Yn i.i.d. variables.

Answer:  B

23) To infer the political tendencies of the students at your college/university, you sample 150 of them. 
Only one of the following is a simple random sample: You
A) make sure that the proportion of minorities are the same in your sample as in the 
entire student body.
B) call every fiftieth person in the student directory at 9 a.m.  If the person does not answer the phone, 
you pick the next name listed, and so on.
C) go to the main dining hall on campus and interview students randomly there.
D) have your statistical package generate 150 random numbers in the range from 1 to the total number of 
students in your academic institution, and then choose the corresponding names in the student telephone 
directory.
Answer:  D
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24) The variance of , is given by the following formula:

A) .

B) .

C) .

D) .

Answer:  C

25) The mean of the sample average , , is

A) .

B) .

C) .

D)  for n > 30.

Answer:  B

26) In econometrics, we typically do not rely on exact or finite sample distributions because
A) we have approximately an infinite number of observations (think of re-sampling).
B) variables typically are normally distributed.
C) the covariances of Yi, Yj are typically not zero.
D) asymptotic distributions can be counted on to provide good approximations to the exact sampling 
distribution (given the number of observations available in most cases).
Answer:  D

27) Consistency for the sample average  can be defined as follows, with the exception of
A)  converges in probability to .
B)  has the smallest variance of all estimators.
C) . 
D) the probability of  being in the range  ± c becomes arbitrarily close to one as n increases for any 
constant c > 0.
Answer:  B
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28) The central limit theorem states that 

A) the sampling distribution of  is approximately normal.

B) .
C) the probability that  is in the range  ± c becomes arbitrarily close to one as n increases for any 
constant c > 0.
D) the t distribution converges to the F distribution for approximately n > 30.
Answer:  A

29) The central limit theorem
A) states conditions under which a variable involving the sum of Y1,..., Yn i.i.d. variables becomes the 
standard normal distribution.
B) postulates that the sample mean  is a consistent estimator of the population mean .
C) only holds in the presence of the law of large numbers.
D) states conditions under which a variable involving the sum of Y1,..., Yn i.i.d. variables becomes the 
Student t distribution.
Answer:  A

30) The covariance inequality states that
A)

 
B)

 
C)

 

D)

 
Answer:  B

31)

A)

 
B) 

C) 

D)

 
Answer:  A
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32) 

A) n × a ×  + n × b
B) n(a + b)
C) 
D) 
Answer:  A

33) Assume that you assign the following subjective probabilities for your final grade in your 
econometrics course (the standard GPA scale of 4 = A to 0 = F applies):

Grade Probability
A 0.20
B 0.50
C 0.20
D 0.08
F 0.02

The expected value is:
A) 3.0
B) 3.5
C) 2.78
D) 3.25
Answer:  C

34) The mean and variance of a Bernoille random variable are given as 
A) cannot be calculated
B) np and np(1-p)
C) p and 
D) p and (1- p)
Answer:  D

35) Consider the following linear transformation of a random variable y =  where μx is the mean of 

x and σx is the standard deviation. Then the expected value and the standard deviation of Y are given as
A) 0 and 1
B) 1 and 1
C) Cannot be computed because Y is not a linear function of X

D)  and σx

Answer:  A
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2.2   Essays and Longer Questions

1) Think of the situation of rolling two dice and let M denote the sum of the number of dots on the two 
dice. (So M is a number between 1 and 12.) 
(a) In a table, list all of the possible outcomes for the random variable M together with its probability 
distribution and cumulative probability distribution. Sketch both distributions.
(b) Calculate the expected value and the standard deviation for M.
(c) Looking at the sketch of the probability distribution, you notice that it resembles a normal distribution. 
Should you be able to use the standard normal distribution to calculate probabilities of events? Why or 
why not?
Answer: 
(a)

(b)  7.0; 2.42.
(c)  You cannot use the normal distribution (without continuity correction) to calculate probabilities of 
events, since the probability of any event equals zero.
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2) What is the probability of the following outcomes? 
(a) Pr(M = 7)
(b) Pr(M = 2 or M = 10)
(c) Pr(M = 4 or M ≠ 4)
(d) Pr(M = 6 and M = 9)
(e) Pr(M < 8)
(f) Pr(M = 6 or M > 10)
Answer: 

(a) 0.167 or  = ;

(b) 0.111 or  = ;

(c) 1;
(d) 0;
(e) 0.583; 

(f) 0.222 or  = .
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3) Probabilities and relative frequencies are related in that the probability of an outcome is the proportion 
of the time that the outcome occurs in the long run. Hence concepts of joint, marginal, and conditional 
probability distributions stem from related concepts of frequency distributions. 

You are interested in investigating the relationship between the age of heads of households and weekly 
earnings of households. The accompanying data gives the number of occurrences grouped by age and 
income. You collect data from 1,744 individuals and think of these individuals as a population that you 
want to describe, rather than a sample from which you want to infer behavior of a larger population. 
After sorting the data, you generate the accompanying table:

Joint Absolute Frequencies of Age and Income, 1,744 Households

Age of head of household 
 X1 X2   X3     X4        X5

The median of the income group of $800 and above is $1,050.

(a) Calculate the joint relative frequencies and the marginal relative frequencies. Interpret one of each of 
these. Sketch the cumulative income distribution.
(b) Calculate the conditional relative income frequencies for the two age categories 16-under 20, and 45-
under 65. Calculate the mean household income for both age categories. 
(c) If household income and age of head of household were independently distributed, what would you 
expect these two conditional relative income distributions to look like? Are they similar here?
(d) Your textbook has given you a primary definition of independence that does not involve conditional 
relative frequency distributions. What is that definition? Do you think that age and income are 
independent here, using this definition?
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Answer: 
(a) The joint relative frequencies and marginal relative frequencies are given in the accompanying table.  
5.2 percent of the individuals are between the age of 20 and 24, and make between $200 and under $400. 
21.6 percent of the individuals earn between $400 and under $600.

Joint Relative and Marginal Frequencies of Age and Income, 1,744 Households

Age of head of household
X1 X2 X3 X4 X5

Household Income 16-under 20 20-under 25 25-under 45 45-under 65 65 and > Total
Y1  $0-under $200 0.046 0.044 0.075 0.049 0.014 0.227

Y2  $200-under $400 0.007 0.052 0.198 0.080 0.005 0.342

Y3  $400-under $600 0.000 0.011 0.144 0.058 0.003 0.216

Y4  $600-under $800 0.001 0.006 0.063 0.032 0.001 0.102

Y5  $800 and > 0.001 0.001 0.062 0.048 0.001 0.112
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(b) The mean household income for the 16-under 20 age category is roughly $144. It is approximately 
$489 for the 45-under 65 age category.

Conditional Relative Frequencies of Income and Age 16-under 20, and 45-under 65, 1,744 Households

Age of head of household

X1 X4
Household Income 16-under 20 45-under 65
Y1  $0-under $200 0.842 0.185
Y2  $200-under $400 0.137 0.300
Y3  $400-under $600 0.000 0.217
Y4  $600-under $800 0.001 0.118
Y5  $800 and > 0.001 0.180

(c) They would have to be identical, which they clearly are not.
(d) Pr(Y = y, X = x) = Pr(Y = y) Pr(X = x). We can check this by multiplying two marginal probabilities 
to see if this results in the joint probability. For example, Pr(Y = Y3) = 0.216 and Pr(X = X3) = 0.542, 
resulting in a product of 0.117, which does not equal the joint probability of 0.144. Given that we are 
looking at the data as a population, not a sample, we do not have to test how "close" 0.117 is to 0.144.

4) Math and verbal SAT scores are each distributed normally with N (500,10000).
(a) What fraction of students scores above 750? Above 600? Between 420 and 530? Below 480? Above 530?
(b) If the math and verbal scores were independently distributed, which is not the case, then what would 
be the distribution of the overall SAT score? Find its mean and variance.
(c) Next, assume that the correlation coefficient between the math and verbal scores is 0.75. Find the mean 
and variance of the resulting distribution.
(d) Finally, assume that you had chosen 25 students at random who had taken the SAT exam. Derive the 
distribution for their average math SAT score. What is the probability that this average is above 530? Why 
is this so much smaller than your answer in (a)?
Answer: 
(a) Pr(Y>750) = 0.0062; Pr(Y>600) = 0.1587; Pr(420<Y<530) = 0.4061; Pr(Y<480) = 0.4270; Pr(Y>530) = 
0.3821.
(b) The distribution would be N(1000, 2000), using equations (2.29) and (2.31) in the textbook. Note that 
the standard deviation is now roughly 141 rather than 200.
(c) Given the correlation coefficient, the distribution is now N(1000, 35000) , which has a standard 
deviation of approximately 187.
(d) The distribution for the average math SAT score is N(500, 400). Pr( > 530) = 0.0668. This probability 
is smaller because the sample mean has a smaller standard deviation (20 rather than 100).
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5) The following problem is frequently encountered in the case of a rare disease, say AIDS, when 
determining the probability of actually having the disease after testing positively for HIV. (This is often 
known as the accuracy of the test given that you have the disease.) Let us set up the problem as follows: Y 
= 0 if you tested negative using the ELISA test for HIV, Y = 1 if you tested positive; X = 1 if you have 
HIV, X = 0 if you do not have HIV. Assume that 0.1 percent of the population has HIV and that the 
accuracy of the test is 0.95 in both cases of (i) testing positive when you have HIV, and (ii) testing 
negative when you do not have HIV. (The actual ELISA test is actually 99.7 percent accurate when you 
have HIV, and 98.5 percent accurate when you do not have HIV.)

(a) Assuming arbitrarily a population of 10,000,000 people, use the accompanying table to first enter the 
column totals.

 Test Positive (Y=1)  Test Negative (Y=0)  Total
          HIV (X=1)
   No HIV (X=0)
                  Total     10,000,000

(b) Use the conditional probabilities to fill in the joint absolute frequencies.
(c) Fill in the marginal absolute frequencies for testing positive and negative. Determine the conditional 
probability of having HIV when you have tested positive. Explain this surprising result.
(d) The previous problem is an application of Bayes' theorem, which converts Pr(Y = y  = x) into Pr(X = 
x  = y). Can you think of other examples where Pr(Y = y  = x) ≠ Pr(X = x  = y)?

Answer: 
(a)

  Test Positive (Y=1)  Test Negative (Y=0)    Total
          HIV (X=1)              10,000
   No HIV (X=0)         9,990,000
                  Total       10,000,000
(b)

 Test Positive (Y=1)  Test Negative (Y=0)  Total
         HIV (X=1)                          9,500                            500            10,000
   No HIV (X=0)                      499,500                  9,490,500       9,990,000
                   Total     10,000,000
(c)

 Test Positive (Y=1)  Test Negative (Y=0)  Total
         HIV (X=1)                         9,500                             500           10,000
   No HIV (X=0)                     499,500                   9,490,500       9,990000
                  Total                     509,000                   9,491,000    10,000,000

Pr(X=1 =1) = 0.0187. Although the test is quite accurate, there are very few people who have HIV 
(10,000), and many who do not have HIV (9,999,000). A small percentage of that large number 
(499,500/9,990,000) is large when compared to the higher percentage of the smaller number (9,500/10,000).
d. Answers will vary by student. Perhaps a nice illustration is the probability to be a male given that you 
play on the college/university men's varsity team, versus the probability to play on the college/university 
men's varsity team given that you are a male student.
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6) You have read about the so-called catch-up theory by economic historians, whereby nations that are 
further behind in per capita income grow faster subsequently. If this is true systematically, then 
eventually laggards will reach the leader. To put the theory to the test, you collect data on relative (to the 
United States) per capita income for two years, 1960 and 1990, for 24 OECD countries. You think of these 
countries as a population you want to describe, rather than a sample from which you want to infer 
behavior of a larger population. The relevant data for this question is as follows:
  

where X1 and X2 are per capita income relative to the United States in 1960 and 1990 respectively, and Y 

is the average annual growth rate in X over the 1960-1990 period. Numbers in the last row represent 
sums of the columns above.
(a) Calculate the variance and standard deviation of X1 and X2. For a catch-up effect to be present, what 

relationship must the two standard deviations show? Is this the case here?
(b) Calculate the correlation between Y and . What sign must the correlation coefficient have for there to 
be evidence of a catch-up effect? Explain.
Answer: 
(a) The variances of X1 and X2 are 0.0520 and 0.0298 respectively, with standard deviations of 0.2279 and 

0.1726. For the catch-up effect to be present, the standard deviation would have to shrink over time. This 
is the case here.
(b) The correlation coefficient is –0.88. It has to be negative for there to be evidence of a catch-up effect. If 
countries that were relatively ahead in the initial period and in terms of per capita income grow by 
relatively less over time, then eventually the laggards will catch-up.
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7) Following Alfred Nobel's will, there are five Nobel Prizes awarded each year. These are for 
outstanding achievements in Chemistry, Physics, Physiology or Medicine, Literature, and Peace. In 1968, 
the Bank of Sweden added a prize in Economic Sciences in memory of Alfred Nobel. You think of the 
data as describing a population, rather than a sample from which you want to infer behavior of a larger 
population. The accompanying table lists the joint probability distribution between recipients in 
economics and the other five prizes, and the citizenship of the recipients, based on the 1969-2001 period.

Joint Distribution of Nobel Prize Winners in Economics and Non-Economics 
Disciplines, and Citizenship, 1969-2001

U.S. Citizen
(Y = 0)

Non= U.S. Citizen
(Y = 1)

Total

Economics Nobel 
Prize (X = 0)

0.118 0.049 0.167

Physics, Chemistry, 
Medicine, Literature, 

and Peace Nobel 
Prize (X = 1)

0.345 0.488 0.833

Total 0.463 0.537 1.00

(a) Compute E(Y) and interpret the resulting number.
(b) Calculate and interpret E(Y =1) and  E(Y =0).
(c) A randomly selected Nobel Prize winner reports that he is a non-U.S. citizen. What is the probability 
that this genius has won the Economics Nobel Prize? A Nobel Prize in the other five disciplines?
(d) Show what the joint distribution would look like if the two categories were independent.

Answer: 
(a) E(Y) = 0.53.7 . 53.7 percent of Nobel Prize winners were non-U.S. citizens.
(b) E(Y =1) = 0.586 . 58.6 percent of Nobel Prize winners in non-economics disciplines were non-U.S. 
citizens.  E(Y =0) = 0.293 . 29.3 percent of the Economics Nobel Prize winners were non-U.S. citizens.
(c) There is a 9.1 percent chance that he has won the Economics Nobel Prize, and a 90.9 percent chance 
that he has won a Nobel Prize in one of the other five disciplines.
(d) 
Joint Distribution of Nobel Prize Winners in Economics and Non-Economics Disciplines, 

and Citizenship, 1969-2001, under assumption of independence

U.S. Citizen
(Y = 0)

Non= U.S. 
Citizen
(Y = 1)

Total

Economics Nobel 
Prize (X = 0)

0.077 0.090 0.167

Physics, Chemistry, 
Medicine, Literature, 

and Peace Nobel 
Prize (X = 1)

0.386 0.447 0.833

Total 0.463 0.537 1.00
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8) A few years ago the news magazine The Economist listed some of the stranger explanations used in the 
past to predict presidential election outcomes. These included whether or not the hemlines of women's 
skirts went up or down, stock market performances, baseball World Series wins by an American League 
team, etc. Thinking about this problem more seriously, you decide to analyze whether or not the 
presidential candidate for a certain party did better if his party controlled the house. Accordingly you 
collect data for the last 34 presidential elections. You think of this data as comprising a population which 
you want to describe, rather than a sample from which you want to infer behavior of a larger population. 
You generate the accompanying table:

Joint Distribution of Presidential Party Affiliation and Party Control
of House of Representatives, 1860-1996

Democratic Control 
of House (Y = 0)

Republican Control 
of House (Y = 1)

Total

Democratic 
President (X = 0)

0.412 0.030 0.441

Republican 
President (X = 1)

0.176 0.382 0.559

Total 0.588 0.412 1.00

(a) Interpret one of the joint probabilities and one of the marginal probabilities.
(b) Compute E(X). How does this differ from E(X  = 0)? Explain.
(c) If you picked one of the Republican presidents at random, what is the probability that during his term 
the Democrats had control of the House?
(d) What would the joint distribution look like under independence? Check your results by calculating 
the two conditional distributions and compare these to the marginal distribution.
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Answer: 
(a) 38.2 percent of the presidents were Republicans and were in the White House while Republicans 
controlled the House of Representatives. 44.1 percent of all presidents were Democrats.
(b) E(X) = 0.559.  E(X  = 0) = 0.701. E(X) gives you the unconditional expected value, while E(X  = 0) 
is the conditional expected value.
(c) E(X) = 0.559 . 55.9 percent of the presidents were Republicans. E(X  = 0) = 0.299 . 29.9 percent of 
those presidents who were in office while Democrats had control of the House of Representatives were 
Republicans. The second conditions on those periods during which Democrats had control of the House 
of Representatives, and ignores the other periods.
(d)
Joint Distribution of Presidential Party Affiliation and Party Control of House of 

Representatives, 1860-1996, under the Assumption of Independence

Democratic Control 
of House (Y = 0)

Republican Control 
of House (Y = 1)

Total

Democratic 
President (X = 0)

0.259 0.182 0.441

Republican 
President (X = 1)

0.329 0.230 0.559

Total 0.588 0.412 1.00

Pr(X = 0  = 0) = = 0.440 (there is a small rounding error).

Pr(Y = 1  = 1) = = 0.411 (there is a small rounding error).
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9) The expectations augmented Phillips curve postulates 

△p = π – f (u – ),

where △p is the actual inflation rate, π is the expected inflation rate, and u is the unemployment rate, 
with "–" indicating equilibrium (the NAIRU – Non-Accelerating Inflation Rate of Unemployment). Under 
the assumption of static expectations (π = △p–1), i.e., that you expect this period's inflation rate to hold 
for the next period ("the sun shines today, it will shine tomorrow"), then the prediction is that inflation 
will accelerate if the unemployment rate is below its equilibrium level. The accompanying table below 
displays information on accelerating annual inflation and unemployment rate differences from the 
equilibrium rate (cyclical unemployment), where the latter is approximated by a five-year moving 
average. You think of this data as a population which you want to describe, rather than a sample from 
which you want to infer behavior of a larger population. The data is collected from United States 
quarterly data for the period 1964:1 to 1995:4. 

Joint Distribution of Accelerating Inflation and Cyclical Unemployment, 
1964:1-1995:4

(u – ) > 0
 (Y = 0)

(u – ) ≥ 0 
(Y = 1)

Total

△p– △p–1 > 0 
(X = 0)

0.156 0.383 0.539

△p– △p–1 ≤ 0 
(X = 1)

0.297 0.164 0.461

Total 0.453 0.547 1.00

(a) Compute E(Y) and E(X), and interpret both numbers.
(b) Calculate E(Y = 1) and E(Y = 0). If there was independence between cyclical unemployment and 
acceleration in the inflation rate, what would you expect the relationship between the two expected 
values to be? Given that the two means are different, is this sufficient to assume that the two variables are 
independent?
(c) What is the probability of inflation to increase if there is positive cyclical unemployment? Negative 
cyclical unemployment?
(d) You randomly select one of the 59 quarters when there was positive cyclical unemployment ((u – ) 
> 0). What is the probability there was decelerating inflation during that quarter?
Answer: 
(a) E(Y) = 0.547 . 54.7 percent of the quarters saw cyclical unemployment.
    E(Y) = 0.461 . 46.1 percent of the quarters saw decreasing inflation rates.
(b) E(Y  = 1) = 0.356; E(Y  = 0) = 0.711. You would expect the two conditional expectations to be the 
same. In general, independence in means does not imply statistical independence, although the reverse is 
true.
(c) There is a 34.4 percent probability of inflation to increase if there is positive cyclical unemployment. 
There is a 70 percent probability of inflation to increase if there is negative cyclical unemployment.
(d) There is a 65.6 percent probability of inflation to decelerate when there is positive cyclical 
unemployment.
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10) The accompanying table shows the joint distribution between the change of the unemployment rate in 
an election year and the share of the candidate of the incumbent party since 1928. You think of this data 
as a population which you want to describe, rather than a sample from which you want to infer behavior 
of a larger population. 

Joint Distribution of Unemployment Rate Change and Incumbent Party's Vote
Share in Total Vote Cast for the Two Major-Party Candidates,

1928-2000
(Incumbent- 50%) > 0 

(Y = 0)
(Incumbent- 50%) ≤ 0 

(Y = 1)
Total

△u > 0 (X = 0) 0.053 0.211 0.264
△u ≤ 0 (X = 1) 0.579 0.157 0.736

Total 0.632 0.368 1.00

(a) Compute and interpret E(Y) and E(X).
(b) Calculate E(Y  = 1) and E(Y  = 0). Did you expect these to be very different?
(c) What is the probability that the unemployment rate decreases in an election year?
(d) Conditional on the unemployment rate decreasing, what is the probability that an incumbent will lose 
the election?
(e) What would the joint distribution look like under independence?
Answer: 
(a) E(Y) = 0.368; E(X) = 0.736. The probability of an incumbent to have less than 50% of the share of votes 
cast for the two major-party candidates is 0.368. The probability of observing falling unemployment rates 
during the election year is 73.6 percent.
(b) E(Y  = 1) = 0.213; E(Y  = 0) = 0.799. A student who believes that incumbents will attempt to 
manipulate the economy to win elections will answer affirmatively here.
(c) Pr(X = 1) = 0.736.
(d) Pr(Y = 1  = 1) = 0.213.
(e) 
Joint Distribution of Unemployment Rate Change and Incumbent Party's Vote 

Share in Total Vote Cast for the Two Major-Party Candidates,
1928-2000 under Assumption of Statistical Independence

(Incumbent- 50%) > 0 
(Y = 0)

(Incumbent- 50%) > 0 
(Y = 1)

Total

△u > 0 (X = 0) 0.167 0.097 0.264
△u ≤ 0 (X = 1) 0.465 0.271 0.736

Total 0.632 0.368 1.00
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11) The table accompanying lists the joint distribution of unemployment in the United States in 2001 by 
demographic characteristics (race and gender).

Joint Distribution of Unemployment by Demographic Characteristics, 
United States, 2001

White
(Y = 0)

Black and Other
(Y = 1)

Total

Age 16-19
(X = 0)

0.13 0.05 0.18

Age 20 and above 
(X = 1)

0.60 0.22 0.82

Total 0.73 0.27 1.00

(a) What is the percentage of unemployed white teenagers?
(b) Calculate the conditional distribution for the categories "white" and "black and other."
(c) Given your answer in the previous question, how do you reconcile this fact with the probability to be 
60% of finding an unemployed adult white person, and only 22% for the category "black and other."
Answer: 
(a) Pr(Y = 0, X = 0) = 0.13.
(b) 
Conditional Distribution of Unemployment by Demographic 

Characteristics, United States, 2001

White
(Y = 0)

Black and Other
(Y = 1)

Age 16-19
(X = 0)

0.18 0.19

Age 20 and above 
(X = 1)

0.82 0.81

Total 1.00 1.00

(c) The original table showed the joint probability distribution, while the table in (b) presented the 
conditional probability distribution.
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12) From the Stock and Watson (http://www.pearsonhighered.com/stock_watson) website the chapter 8 
CPS data set (ch8_cps.xls) into a spreadsheet program such as Excel. For the exercise, use the first 500 
observations only. Using data for average hourly earnings only (ahe), describe the earnings distribution. 
Use summary statistics, such as the mean, median, variance, and skewness. Produce a frequency 
distribution ("histogram") using reasonable earnings class sizes.
Answer:
ahe

Mean 19.79
Standard Error 0.51
Median 16.83
Mode 19.23
Standard 
Deviation 11.49
Sample 
Variance 131.98
Kurtosis 0.23
Skewness 0.96
Range 58.44
Minimum 2.14
Maximum 60.58
Sum 9897.45
Count 500.0

The mean is $19.79. The median ($16.83) is lower than the average, suggesting that the mean is being 
pulled up by individuals with fairly high average hourly earnings. This is confirmed by the skewness 
measure, which is positive, and therefore suggests a distribution with a long tail to the right. The variance 
is $2131.96, while the standard deviation is $11.49.

To generate the frequency distribution in Excel, you first have to settle on the number of class intervals. 
Once you have decided on these, then the minimum and maximum in the data suggests the class width. 
In Excel, you then define "bins" (the upper limits of the class intervals). Sturges's formula can be used to 
suggest the number of class intervals (1+3.31log(n) ), which would suggest about 9 intervals here. Instead 
I settled for 8 intervals with a class width of $8 — minimum wages in California are currently $8 and 
approximately the same in other U.S. states.
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The table produces the absolute frequencies, and relative frequencies can be calculated in a 
straightforward way.

bins Frequency rel. freq.
8 50 0.1
16 187 0.374
24 115 0.23
32 68 0.136
40 38 0.076
48 33 0.066
56 8 0.016
66 1 0.002
More 0

Substitution of the relative frequencies into the histogram table then produces the following graph (after 
eliminating the gaps between the bars).

24
Copyright © 2011 Pearson Education, Inc.



2.3   Mathematical and Graphical Problems

1) Think of an example involving five possible quantitative outcomes of a discrete random variable and 
attach a probability to each one of these outcomes. Display the outcomes, probability distribution, and 
cumulative probability distribution in a table. Sketch both the probability distribution and the cumulative 
probability distribution.
Answer:  Answers will vary by student. The generated table should be similar to Table 2.1 in the text, and 
figures should resemble Figures 2.1 and 2.2 in the text.

2) The height of male students at your college/university is normally distributed with a mean of 70 inches 
and a standard deviation of 3.5 inches. If you had a list of telephone numbers for male students for the 
purpose of conducting a survey, what would be the probability of randomly calling one of these students 
whose height is
(a) taller than 6'0"?
(b) between 5'3" and 6'5"?
(c) shorter than 5'7", the mean height of female students?
(d) shorter than 5'0"?
(e) taller than Shaquille O'Neal, the center of the Boston Celtics, who is 7'1" tall? 
Compare this to the probability of a woman being pregnant for 10 months (300 days), where days of 
pregnancy is normally distributed with a mean of 266 days and a standard deviation of 16 days. 
Answer: 
(a) Pr(Z > 0.5714) = 0.2839;
(b) Pr( –2 < Z < 2) = 0.9545 or approximately 0.95; 
(c) Pr(Z < -0.8571) = 0.1957; 
(d) Pr(Z < -2.8571) = 0.0021; 
(e) Pr(Z > 4.2857) = 0.000009 (the text does not show values above 2.99 standard deviations, Pr(Z>2.99 = 
0.0014) and Pr(Z > 2.1250) = 0.0168.
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3) Calculate the following probabilities using the standard normal distribution. Sketch the probability 
distribution in each case, shading in the area of the calculated probability. 

(a) Pr(Z < 0.0)
(b) Pr(Z ≤ 1.0)
(c) Pr(Z > 1.96)
(d) Pr(Z < –2.0)
(e) Pr(Z > 1.645)
(f) Pr(Z > –1.645)
(g) Pr(–1.96 < Z < 1.96)
(h.) Pr(Z < 2.576 or Z > 2.576)
(i.) Pr(Z > z) = 0.10; find z.
(j.) Pr(Z < –z or Z > z) = 0.05; find z.
Answer: 
(a) 0.5000; 
(b) 0.8413; 
(c) 0.0250; 
(d) 0.0228; 
(e) 0.0500; 
(f) 0.9500; 
(g) 0.0500; 
(h) 0.0100; 
(i) 1.2816; 
(j) 1.96.
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4) Using the fact that the standardized variable Z is a linear transformation of the normally distributed 
random variable Y, derive the expected value and variance of Z.

Answer:  Z = Y = a + bY, with a = -  and b = .  Given (2.29) and (2.30) in the 

text, E(Z) = -  +  = 0, and .

5) Show in a scatterplot what the relationship between two variables X and Y would look like if there was
(a) a strong negative correlation.
(b) a strong positive correlation.
(c) no correlation.
Answer: 
(a)
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(b)

(c)

6) What would the correlation coefficient be if all observations for the two variables were on a curve 
described by Y = X2?
Answer:  The correlation coefficient would be zero in this case, since the relationship is non-linear.
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7) Find the following probabilities:
(a) Y is distributed . Find Pr(Y > 9.49).
(b) Y is distributed t∞. Find Pr(Y > –0.5).

(c) Y is distributed F4, ∞. Find Pr(Y < 3.32).

(d) Y is distributed N(500, 10000). Find Pr(Y > 696 or Y < 304).
Answer: 
(a) 0.05.
(b) 0.6915.
(c) 0.99.
(d) 0.05.

8) In considering the purchase of a certain stock, you attach the following probabilities to possible 
changes in the stock price over the next year.

Stock Price Change During 
Next Twelve Months (%)

Probability

+15 0.2
+5 0.3
0 0.4
–5 0.05
–15 0.05

What is the expected value, the variance, and the standard deviation? Which is the most likely outcome? 
Sketch the cumulative distribution function.
Answer:  E(Y) = 3.5;  = 8.49;  = 2.91; most likely: 0.
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9) You consider visiting Montreal during the break between terms in January. You go to the relevant Web 
site of the official tourist office to figure out the type of clothes you should take on the trip. The site lists 
that the average high during January is –7° C, with a standard deviation of 4° C. Unfortunately you are 
more familiar with Fahrenheit than with Celsius, but find that the two are related by the following linear 

function: C= (F – 32).

Find the mean and standard deviation for the January temperature in Montreal in Fahrenheit.
Answer:  Using equations (2.29) and (2.30) from the textbook, the result is 19.4 and 7.2.

10) Two random variables are independently distributed if their joint distribution is the product of their 
marginal distributions. It is intuitively easier to understand that two random variables are independently 
distributed if all conditional distributions of Y given X are equal. Derive one of the two conditions from 
the other.
Answer:  If all conditional distributions of Y given X are equal, then

But if all conditional distributions are equal, then they must also equal the marginal distribution, i.e.,

Given the definition of the conditional distribution of Y given X = x, you then get

Pr(Y = y  = x) =  = Pr(Y = y),

which gives you the condition 

Pr(Y = y, X = x) = Pr(Y = y) Pr(X = x).

11) There are frequently situations where you have information on the conditional distribution of Y given 
X, but are interested in the conditional distribution of X given Y. Recalling Pr(Y = y  = x) = 

, derive a relationship between Pr(X = x  = y) and Pr(Y = y  = x). This is called Bayes' 

theorem.
Answer: 

Given Pr(Y = y  = x) = ,

Pr(Y = y  = x) × Pr(X = x) = Pr(X = x, Y = y);

similarly Pr(X = x  = y) =  and

Pr(X = x  = y) × Pr(Y = y) = Pr(X = x, Y = y). Equating the two and solving for Pr(X = x  = y) then 
results in

Pr(X = x  = y) = .
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12) You are at a college of roughly 1,000 students and obtain data from the entire freshman class (250 
students) on height and weight during orientation. You consider this to be a population that you want to 
describe, rather than a sample from which you want to infer general relationships in a larger population. 
Weight (Y) is measured in pounds and height (X) is measured in inches. You calculate the following 
sums:

= 94,228.8, = 1,248.9, = 7,625.9

(small letters refer to deviations from means as in  =  – ). 

(a) Given your general knowledge about human height and weight of a given age, what can you say 
about the shape of the two distributions? 
(b) What is the correlation coefficient between height and weight here?
Answer: 
(a) Both distributions are bound to be normal.
(b) 0.703.

13) Use the definition for the conditional distribution of Y given X = x and the marginal distribution of X 
to derive the formula for Pr(X = x, Y = y). This is called the multiplication rule. Use it to derive the 
probability for drawing two aces randomly from a deck of cards (no joker), where you do not replace the 
card after the first draw. Next, generalizing the multiplication rule and assuming independence, find the 
probability of having four girls in a family with four children.

Answer:   ×  = 0.0045; 0.0625 or .

14) The systolic blood pressure of females in their 20s is normally distributed with a mean of 120 with a 
standard deviation of 9. What is the probability of finding a female with a blood pressure of less than 
100? More than 135? Between 105 and 123? You visit the women's soccer team on campus, and find that 
the average blood pressure of the 25 members is 114. Is it likely that this group of women came from the 
same population?
Answer:  Pr(Y<100) = 0.0131; Pr(Y>135) = 0.0478; Pr(105<Y<123) = 0.6784; Pr( < 114) = Pr(Z < -3.33) 
= 0.0004. (The smallest z-value listed in the table in the textbook is –2.99, which generates a probability 
value of 0.0014.) This unlikely that this group of women came from the same population.

15) Show that the correlation coefficient between Y and X is unaffected if you use a linear transformation 
in both variables. That is, show that corr(X,Y) = corr(X*, Y*), where X* = a + bX and Y* = c + dY, and 
where a, b, c, and d are arbitrary non–zero constants.

Answer:  corr(X*, Y*) =  corr(X, Y).
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16) The textbook formula for the variance of the discrete random variable Y is given as 

Another commonly used formulation is

.

Prove that the two formulas are the same.
Answer: 

Moving the summation sign through results in

.  But  and , giving you the second expression after 

simplification.

17) The Economic Report of the President gives the following age distribution of the United States 
population for the year 2000:

United States Population By Age Group, 2000

Outcome (age 
category

Under 5 5-15 16-19 20-24 25-44 45-64 65 and 
over

Percentage 0.06 0.16 0.06 0.07 0.30 0.22 0.13

Imagine that every person was assigned a unique number between 1 and 275,372,000 (the total 
population in 2000). If you generated a random number, what would be the probability that you had 
drawn someone older than 65 or under 16? Treating the percentages as probabilities, write down the 
cumulative probability distribution. What is the probability of drawing someone who is 24 years or 
younger?
Answer:  Pr(Y < 16 or Y > 65) = 0.35;

Outcome (age 
category

Under 5 5-15 16-19 20-24 25-44 45-64 65 and 
over

Cumulative 
probability 
distribution

0.06 0.22 0.28 0.35 0.65 0.87 1.00

Pr(Y ≤ 24) = 0.35.
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18) The accompanying table gives the outcomes and probability distribution of the number of times a 
student checks her e-mail daily:

Probability of Checking E-Mail

Outcome 
(number of e-
mail checks)

0 1 2 3 4 5 6

Probability 
distribution

0.05 0.15 0.30 0.25 0.15 0.08 0.02

Sketch the probability distribution. Next, calculate the c.d.f. for the above table. What is the probability of 
her checking her e-mail between 1 and 3 times a day? Of checking it more than 3 times a day?

Answer: 

Outcome 
(number of e-
mail checks)

0 1 2 3 4 5 6

Cumulative 
probability 
distribution

0.05 0.20 0.50 0.75 0.90 0.98 1.00

Pr(1 ≤ Y ≤ 3) 0.70 ; Pr(Y > 0.25).
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19) The accompanying table lists the outcomes and the cumulative probability distribution for a student 
renting videos during the week while on campus.

Video Rentals per Week during Semester

Outcome (number of weekly 
video rentals)

0 1 2 3 4 5 6

Probability distribution 0.05 0.55 0.25 0.05 0.07 0.02 0.01

Sketch the probability distribution. Next, calculate the cumulative probability distribution for the above 
table. What is the probability of the student renting between 2 and 4 a week? Of less than 3 a week?

Answer:  The cumulative probability distribution is given below. The probability of renting between two 
and four videos a week is 0.37. The probability of renting less than three a week is 0.85.

Outcome (number of 
weekly video rentals)

0 1 2 3 4 5 6

Cumulative probability 
distribution

0.05 0.60 0.85 0.90 0.97 0.99 1.00

20) The textbook mentioned that the mean of Y, E(Y) is called the first moment of Y, and that the expected 

value of the square of Y, E(Y2) is called the second moment of Y, and so on. These are also referred to as 
moments about the origin. A related concept is moments about the mean, which are defined as E[(Y –
µY)r]. What do you call the second moment about the mean? What do you think the third moment, 
referred to as "skewness," measures? Do you believe that it would be positive or negative for an earnings 
distribution? What measure of the third moment around the mean do you get for a normal distribution? 
Answer:  The second moment about the mean is the variance. Skewness measures the departure from 
symmetry. For the typical earnings distribution, it will be positive. For the normal distribution, it will be 
zero.
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21) Explain why the two probabilities are identical for the standard normal distribution: 
Pr(–1.96 ≤ X ≤ 1.96) and Pr(–1.96 < X < 1.96).
Answer:  For a continuous distribution, the probability of a point is zero.

22) SAT scores in Mathematics are normally distributed with a mean of 500 and a standard deviation of 

100. The formula for the normal distribution is .  Use the scatter plot option 

in a standard spreadsheet program, such as Excel, to plot the Mathematics SAT distribution using this 
formula. Start by entering 300 as the first SAT score in the first column (the lowest score you can get in 
the mathematics section as long as you fill in your name correctly), and then increment the scores by 10 
until you reach 800. In the second column, use the formula for the normal distribution and calculate f(Y). 
Then use the scatter plot option, where you eventually remove markers and substitute these with the 
solid line option.
Answer: 

23) Use a standard spreadsheet program, such as Excel, to find the following probabilities from various 
distributions analyzed in the current chapter:
a. If Y is distributed N (1,4), find Pr(Y ≤ 3)
b. If Y is distributed N (3,9), find Pr(Y > 0)
c. If Y is distributed N (50,25), find Pr(40 ≤ Y ≤ 52)
d. If Y is distributed N (5,2), find Pr(6 ≤ Y ≤ 8)
Answer: 
The answers here are given together with the relevant Excel commands.
a. =NORMDIST(3,1,2,TRUE) = 0.8413
b. =1-NORMDIST(0,3,3,TRUE) = 0.8413
c. =NORMDIST(52,50,5,TRUE)-NORMDIST(40,50,5,TRUE) = 0.6326
d. =NORMDIST(8,5,SQRT(2),TRUE)-NORMDIST(6,5,SQRT(2),TRUE) = 0.2229
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24) Looking at a large CPS data set with over 60,000 observations for the United States and the year 2004, 
you find that the average number of years of education is approximately 13.6. However, a surprising 
large number of individuals (approximately 800) have quite a low value for this variable, namely 6 years 
or less. You decide to drop these observations, since none of your relatives or friends have that few years 
of education. In addition, you are concerned that if these individuals cannot report the years of education 
correctly, then the observations on other variables, such as average hourly earnings, can also not be 
trusted. As a matter of fact you have found several of these to be below minimum wages in your state. 
Discuss if dropping the observations is reasonable.
Answer: 
While it is always a good idea to check the data carefully before conducting a quantitative analysis, you 
should never drop data before carefully thinking about the problem at hand. While it is not plausible to 
find many individuals in the U.S. who were raised here with that few years of education, there will be 
immigrants in the survey. Average years of education can be quite low in other countries. For example, 
Brazil's average years of schooling is less than 6 years. The point of the exercise is to think hard whether 
or not observations are outliers generated by faulty data entry or if there is a reason for observing values 
which may appear strange at first.

25) Use a standard spreadsheet program, such as Excel, to find the following probabilities from various 
distributions analyzed in the current chapter:
a. If Y is distributed , find Pr(Y ≤ 7.78)
b. If Y is distributed , find Pr(Y > 18.31)
c. If Y is distributed F10,∞, find Pr(Y > 1.83)

d. If Y is distributed t15, find Pr(Y > 1.75)
e. If Y is distributed t90, find Pr(-1.99 ≤Y ≤ 1.99)
f. If Y is distributed N(0,1), find Pr(-1.99 ≤Y ≤ 1.99)
g. If Y is distributed F10,4, find Pr(Y > 4.12)

h. If Y is distributed F7,120, find Pr(Y > 2.79)

Answer: 
The answers here are given together with the relevant Excel commands.
a. =1-CHIDIST(7.78,4) = 0.90
b. =CHIDIST(18.31,10) = 0.05
c. =FDIST(1.83,10,1000000) = 0.05
d. =TDIST(1.75,15,1) = 0.05
e. =1-TDIST(1.99,90,2) = 0.95
f. =NORMDIST(1.99,0,1,1)-NORMDIST(-1.99,0,1,1) = 0.953
g. =FDIST(4.12,7,4) = 0.10
h. =FDIST(2.79,7,120) = 0.01
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