MU

ILT	IPLE CHOICE
1.	Which of the following is a meaningful measure of centre when the data are qualitative? a. the mean b. the median c. the mode d. the quartile
	ANS: C PTS: 1 REF: 56 59 TOP: 1–3 BLM: Remember
2.	Which of the following is a property of a symmetric distribution?a. The mean is greater than the median.b. The mean and median are equal.c. The mean is less than the median.d. The mean is less than the mode.
	ANS: B PTS: 1 REF: 59 TOP: 1–3 BLM: Remember
3.	In a histogram, what may be said of the proportion of the total area that must be to the right of the mean? a. It is less than 0.50 if the distribution is skewed to the left. b. It is always exactly 0.50. c. It is more than 0.50 if the distribution is skewed to the right. d. It is exactly 0.50 only if the distribution is symmetric.
	ANS: D PTS: 1 REF: 57-59 TOP: 1–3 BLM: Higher Order - Understand
4.	Which of the following statements applies to this set of data values: 17, 15, 16, 14, 17, 18, and 22? a. The mean, median, and mode are all equal. b. Only the mean and median are equal. c. Only the mean and mode are equal. d. Only the median and mode are equal.
	ANS: A PTS: 1 REF: 57-59 TOP: 1–3 BLM: Higher Order - Apply
_	W71:1 C4 C11 : 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .

5. Which of the following *best* describes the relationship between the population mean and the sample mean?

- a. The population mean is always larger than the sample mean.
- b. The population mean is always smaller than the sample mean.
- The population mean is always larger than or equal to the sample mean.
- d. The population mean can be smaller than, larger than, or equal to the sample mean.

ANS: D REF: 57-58 TOP: 1–3 PTS: 1

BLM: Higher Order - Understand

6.	_	or a class of 35 student was the average score				
	ANS: B BLM: Higher Order	PTS: 1 r - Apply	REF:	57-58	TOP:	1–3
7.	the left of the median a. It is exactly 0.50 b. It is less than 0.5 c. It is more than 0.		skewed is skewe	to the left.	e total a	area that must be to
	ANS: A BLM: Higher Order	PTS: 1 r - Understand	REF:	58-59	TOP:	1–3
8.	a. The sum of the db. Half the observationc. The mean is a mean	ing statements about the viations from the metions are on either side easure of the middle of mean times the number	ean is 0. e of the r of a distri	nean. bution.		
	ANS: B BLM: Higher Order	PTS: 1 r - Understand	REF:	57-59	TOP:	1–3
9.	Which of the follows a. measures of cent b. measures of varia c. proportions d. measures of related	ability	nmarize	data about qua	litative	variables?
	ANS: C BLM: Remember	PTS: 1	REF:	14	TOP:	1–3
10.	Consider this data set a. 7.0 b. 7.1 c. 8.1 d. 8.8	et: 5, 6, 7, 11, and 15.	Which o	f the following	values	equals its mean?
	ANS: D BLM: Higher Order	PTS: 1 r - Apply	REF:	57-58	TOP:	1–3

- 11. A random sample from an unknown population had a sample standard deviation of zero. From this piece of information, which one of the following is a reasonable conclusion? a. The sample range must be zero. b. An error was made in computing the sample standard deviation. It must always be greater than zero. c. The population standard deviation must be zero. d. The population standard deviation must be less than zero PTS: 1 REF: 67 TOP: 1-3 ANS: A BLM: Higher Order - Understand 12. The following data represent a sample of 10 scores on a 20-point statistics quiz: 16, 16, 16, 16, 16, 18, 18, 20, 20, and 20. After the mean, median, range, and variance were calculated for the scores, it was discovered that one of the scores of 20 should have been an 18. Which of the following pairs of measures will change when the calculations are redone using the correct scores? a. mean and range b. median and range c. mean and variance d. median and variance ANS: C PTS: 1 REF: 57-58 | 63-64 TOP: 1–3 BLM: Higher Order - Apply 13. Which of the following represents a disadvantage of using the sample range to measure dispersion? a. It produces spreads that are not meaningful for data analysis. b. The largest or smallest observation (or both) may be an outlier. c. The sample range is not measured in the same units as the data. d. The sample range is measured in the same units as the data. ANS: B PTS: 1 REF: 63 TOP: 1–3 BLM: Higher Order - Understand 14. The following 10 scores were obtained on a 20-point quiz: 4, 5, 8, 9, 11, 13, 15, 18, 18, and 20. The teacher computed the usual descriptive measures of centre and variability for these data, and then discovered an error was made. One of the 18s should have been a 16. Which pair of the following measures, calculated on the corrected data, would change from the original computation? a. mean and standard deviation b. mean and median c. range and median d. mean and range ANS: A PTS: 1 REF: 57-58 | 63-65 TOP: 1–3 BLM: Higher Order - Apply 15. Which of the following is NOT a measure of variability?
 - a. the variance
 - b. the standard deviation
 - c. the mean

	d. the range	
	ANS: C PTS: 1 REF: 57 62-63 TOP: 1-3 BLM: Remember	
10	 6. If two data sets have the same range, which of the following characteristics do these data sets also share? a. The distances from the smallest to the largest observations in both sets will be the same. b. The smallest and largest observations will be the same in both sets. c. They will have the same variance. d. They will have the same interquartile range. 	
	ANS: A PTS: 1 REF: 63 TOP: 1–3 BLM: Higher Order - Understand	
1′	 7. A sample of 26 observations has a standard deviation of 4. What is the sum of the squared deviations from the sample mean? a. 21 b. 25 c. 100 d. 400 	1
	ANS: D PTS: 1 REF: 65 TOP: 1–3 BLM: Higher Order - Apply	
18	 8. Which of the following refers to numbers that indicate the spread or scatter of observation in a data set? a. measures of centre b. measures of location c. measures of variability d. measures of shape 	ns
	ANS: C PTS: 1 REF: 62-63 TOP: 1–3 BLM: Remember	
19	 9. Which of the following statements describes the variance of a data set? a. The variance is a mean of absolute deviations. b. The variance is a mean of positive and negative deviations. c. The variance is a mean of squared deviations. d. The variance is a mean of only the positive deviations. 	
	ANS: C PTS: 1 REF: 64 TOP: 1–3 BLM: Higher Order - Understand	
20	 0. If a store manager selected a sample of customers and computed the mean income for thi sample, what has he computed? a. a parameter b. a statistic c. a qualitative value d. a categorical value 	S

		B Higher Order	PTS: - Under		REF:	56	TOP:	1–3
21.	a. It w b. It w c. It w pop	vill always be l vill always be l vill usually diff oulation.	larger th larger th fer in va	nan the populat	f a samption medianean of	ole selected from lian. a sample select		_
	ANS: BLM:	C Higher Order	PTS: - Under		REF:	57-58	TOP:	1–3
22.	and a n distribution a. It is b. It is c. It is		f 67. Ba t scores	sed on this inf		t has a mean son, what may on		78.2, a mode of 67, see about the
	ANS: BLM:	B Higher Order	PTS: - Under		REF:	57-60	TOP:	1–3
23.	a. theb. thec. the	mean		e most frequen	tly used	measure of var	riation?	
	ANS: BLM:	D Remember	PTS:	1	REF:	65	TOP:	1–3
24.	a. theb. the	mean median variance	ng meas	sures is NOT a	ffected b	oy extreme valu	ies in th	e data?
	ANS: BLM:	B Higher Order		1 rstand	REF:	58	TOP:	1–3
25.	a local standar these et a. app b. at loc. at r	university. For d deviation of	these 6 \$8,000 earn eith 3% 8 of the 8 of the	engineers, the red. Which of the ner more than Standard engineers)	nean sal followii	lary was compu	ited to be erizes th	ad graduated from be \$72,000 with a ne percentage of

	ANS: BLM:	D Higher Order	PTS: ·- Analy		REF:	68-69 71	TOP:	4–5
26.	that wi a. 169 b. at 1 c. 759	ll fall within the seast 68%		Theorem, what ndard deviation	-	_	easurer	ments in a data set
	ANS: BLM:	D Higher Order	PTS: - Apply		REF:	68-69	TOP:	4–5
27.	Accord	ding to the Emrements in a day % % % %	pirical F	of measuremen Rule, what wou nat will fall wit	ld be th	e approximate	percent	age of
	ANS: BLM:	B Remember	PTS:	1	REF:	69-70	TOP:	4–5
28.	the following the b. the c. the	lowing measure population mean population mean population mean	res? ean, con , compu ean, con	where $n = \sum_{i=1}^{n} n_i$ inputed from ungrouputed from grated from group	grouped uped da	d data ita	he form	nula for which of
	ANS: BLM:	D Remember	PTS:	1	REF:	76	TOP:	4–5
29.	for who a. the b. the c. the	ich of the follo sample variar population va sample variar	owing made, comprisince, comprise, c	$-\left(\sum x_i f_i\right)^2 / n$ easures? Example from unsupposed from groupouted from groupouted from groupouted from	grouped ungrou	l data iped data ata	ecogniz	able as the formula
	ANS: BLM:	C Remember	PTS:	1	REF:	76	TOP:	4–5
30.	normal	curve. Which	of the f	istical populati following can which is the specified in	ve use to	o estimate the p	ercenta	

a. Tchebysheff's Theoremb. the Empirical Rule

- c. the interquartile range
- d. a box plot

ANS: B PTS: 1 REF: 69-70 TOP: 4-5

BLM: Remember

- 31. The lengths of screws produced by a machine are normally distributed, with a mean of 3 cm and a standard deviation of 0.2 cm. What can we conclude from this?
 - a. Approximately 68% of all screws have lengths between 2.8 and 3.2 cm.
 - b. Approximately 95% of all screws have lengths between 2.8 and 3.2 cm.
 - c. Just about all screws have lengths between 2.8 and 3.2 cm.
 - d. Just about all screws have lengths between 2.9 and 3.1 cm.

ANS: A PTS: 1 REF: 69-71 TOP: 4-5

BLM: Higher Order - Analyze

- 32. According to Tchebysheff's Theorem, which of the following bounds will delimit the fraction of observations falling within k (where $k \ge 1$) standard deviations of the mean?
 - a. at most, $1 (1/k)^2$
 - b. at least $(1 1/k)^2$
 - c. at most, $1 (1/k^2)$
 - d. at least $1 (1/k^2)$

ANS: D PTS: 1 REF: 68-69 TOP: 4-5

BLM: Remember

- 33. The distribution of actual volumes of tomato soup in 450 mL cans is thought to be bell-shaped, with a mean of 450 mL and a standard deviation equal to 8 mL. Based on this information, between what two values could we expect 95% of all cans to contain?
 - a. 430 and 470 mL
 - b. 432 and 468 mL
 - c. 434 and 466 mL
 - d. 440 and 460 mL

ANS: C PTS: 1 REF: 69-71 TOP: 4-5

BLM: Higher Order - Analyze

- 34. Incomes of workers in an automobile company in Ontario are known to be right-skewed, with a mean equal to \$36,200. Applying Tchebysheff's Theorem, at least 8/9 of all incomes are in the range of \$29,600 to \$42,800. What is the standard deviation of those incomes from that mean?
 - a. \$2,200
 - b. \$4,755
 - c. \$6,500
 - d. \$6,700

ANS: A PTS: 1 REF: 68-69 TOP: 4-5

BLM: Higher Order - Apply

35.	Which of the following randomly selected measurements, x , might be considered a potential outlier if it were to be selected from the given population? a. $x = 0$ from a population with $\mu = 0$ and $\mu = 0$ and $\mu = 0$ b. $\mu = -5$ from a population with $\mu = 0$ and $\mu = 0$ c. $\mu = 0$ from a population with $\mu = 0$ and $\mu = 0$ d. $\mu = 0$ from a population with $\mu = 0$ and $\mu = 0$								
	ANS: D PTS: 1 REF: 59 77-78 TOP: 6–7 BLM: Higher Order - Apply								
36.	Which of these values represents a lower quartile for the data set 23, 24, 21, and 20? a. 20.25 b. 22.0 c. 22.5 d. 23.5								
	ANS: A PTS: 1 REF: 79-81 TOP: 6–7 BLM: Higher Order - Apply								
37.	Which one of these values represents the upper quartile of the data set 10, 12, 16, 7, 9, 7, and 14? a. 7 b. 8 c. 15.5 d. 24	, 41,							
	ANS: C PTS: 1 REF: 79-81 TOP: 6–7 BLM: Higher Order - Apply								
38.	Expressed in percentiles, how is the interquartile range defined? a. It is the difference between the 20% and 70% values. b. It is the difference between the 20% and 80% values. c. It is the difference between the 25% and 75% values. d. It is the difference between the 45% and 95% values.								
	ANS: C PTS: 1 REF: 80 TOP: 6–7 BLM: Remember								
39.	Scores on a chemistry exam were mound-shaped with a mean score of 90 and a standard deviation of 64. Scores on a statistics exam were also mound-shaped, with a mean score 70 and a standard deviation of 16. A student who took both exams achieved a grade of 16 on the chemistry exam and a grade of 77 on the statistics exam. Which of these may be	of							

inferred from the information given?

- a. The student did relatively better on the chemistry exam than on the statistics exam, compared to the other students in each class.
- b. The student did relatively better on the statistics exam than on the chemistry exam, compared to the other students in the two classes.
- c. The student's scores on both exams are similar when accounting for the scores of the other students in the two classes.

				n it is impossib r performance.		y which of the	student	's exam
	ANS: BLM:	B Higher Order	PTS: - Analy		REF:	77-78	TOP:	6–7
40.	a. theb. thec. the	of the following first quartile second quartile third quartile variance		mary measures	is most	affected by ou	itliers?	
	ANS: TOP:		PTS: BLM:	1 Remember	REF:	64-65 79-80		
41.	-	uartile? % % %	ll obser	vations in a da	ta set lie	e between the	80th per	centile and the
	ANS: BLM:	B Higher Order	PTS: - Apply		REF:	78-81	TOP:	6–7
42.	values a. a b b. a fi c. a d	in a data set, a ox plot ive-number sur	s well a				_	hest and lowest te lower quartile?
	ANS: BLM:	A Remember	PTS:	1	REF:	81-84	TOP:	6–7
43.	a. Lilb. Lilc. Lil	y's score has a y was in the bo	z-score ottom 3° gh as or	of 0.97. % of the studer higher than 97	nts who	took the test.		hat does this mean? e test.
	ANS: BLM:	C Higher Order	PTS: - Under		REF:	78	TOP:	6–7
44.	$Q_3 = 16$ respect a. 5.3 b. 10	i.7, and $\bar{x} = 15$.	3. Base	ced the following on this inforrusing whiskers	nation,	mary statistics what are the le	. Q = 10	$Q_2 = 14.6,$ ght ends,

	ANS: C PTS BLM: Higher Order - Ap	s: 1 ply	REF:	81-84	TOP:	6–7
45.	A sample of 600 values pr $Q_3 = 62.4$, and $\bar{x} = 56.8$. G the lower fence on a box p a. -4.60 b. 26.80 c. 75.80 d. 102.60	iven this informat	ving sur	mmary statistic	$Q_1 = 3$ wing va	35.6, $Q_2 = 54.2$, alues constitutes
	ANS: A PTS BLM: Higher Order - Ap	5: 1 ply	REF:	81-84	TOP:	6–7
46.	A sample of 600 values pr $Q_3 = 62.4$, and $\bar{x} = 56.8$. G fence on a box plot of this a4.60 b. 26.80 c. 75.80 d. 102.60	iven this informat	ving sur tion, wh	mmary statistic	s: Q = 3	35.6, $Q_2 = 54.2$, alues is the upper
	ANS: D PTS BLM: Higher Order - Ap	s: 1 ply	REF:	81-84	TOP:	6–7
47.	If a data set has 15 values set will be at the 25th perca. the fourth value b. the third value c. the second value d. the first value		orted in	ascending orde	r, which	value in the data
	ANS: A PTS BLM: Higher Order - Un	: 1 derstand	REF:	78	TOP:	6–7
48.	If the distribution of sales may one conclude about the a. The whiskers on a box b. The width of the box was c. The left and right edge quartile. d. The width of the box was a sale of the conclude about the arrival and the conclude about th	ne box plot that re plot the box show will be very wide as will be approxi	epresent uld be a but the mately	s the data set? bout half as lor whiskers will b at equal distand	ng as the be very see from	e box is wide. short. the second
	ANS: C PTS BLM: Higher Order - Un		REF:	81-84	TOP:	6–7

d. 14.6 and 16.7

49.	The following summary statistics were computed from a sample of size 250: $Q_1 = 9$, $Q_2 = 13$, $Q_3 = 15$, and $\overline{x} = 10$. Given this information, which of the following statements is correct? a. The distribution of the data is slightly right-skewed. b. The distribution of the data is symmetric. c. A data value of 1 is an outlier. d. A data value of 25 is an outlier.										
	ANS: D PTS: 1 BLM: Higher Order - Analyze	REF:	82	TOP:	6–7						
TRUE/FALSE											
1.	Numerical descriptive measures c parameters.	computed from po	pulation measu	rements	s are called						
	ANS: T PTS: 1 BLM: Remember	REF:	56	TOP:	1–3						
2.	Numerical descriptive measures c	computed from sar	nple measurem	ents are	e called statistics.						
	ANS: T PTS: 1 BLM: Remember	REF:	56	TOP:	1–3						
3.	Two classes, one with 15 students and the other with 25 students, took the same test and averaged 85 points and 75 points, respectively. If the two classes were combined, the overall average score of the 40 students would be 80 points.										
	ANS: F PTS: 1 BLM: Higher Order - Apply	REF:	57	TOP:	1–3						
4.	If, from a set of data, the sample ronly 9, then the data set would be			ne samp	ole median was						
	ANS: T PTS: 1 BLM: Higher Order - Understand	REF:	59	TOP:	1–3						
5.	When data have been grouped (as the class with the highest frequencis taken to be the mode.		•		• • /-						
	ANS: T PTS: 1 BLM: Remember	REF:	59-60	TOP:	1–3						
6.	The mode is generally used to des	scribe large data s	ets.								
	ANS: T PTS: 1 BLM: Remember	REF:	59-60	TOP:	1–3						

7.	The mode of a data set or a distribution of measurements, if it exists, is unique.
	ANS: F PTS: 1 REF: 59-60 TOP: 1–3 BLM: Remember
8.	Jessica has been keeping track of what she spends to eat out. Last week's expenditures for meals eaten out were \$15.69, \$15.95, \$16.19, \$20.91, \$17.49, \$24.53, and \$17.66. The mean amount Jessica spends on meals is \$18.35.
	ANS: T PTS: 1 REF: 57 TOP: 1–3 BLM: Higher Order - Apply
9	A data sample has a mean of 87 and a median of 117. The distribution of the data is positively skewed.
	ANS: F PTS: 1 REF: 59 TOP: 1–3 BLM: Higher Order - Understand
10	A student scores 89, 75, 94, and 88 on four exams during the semester and 97 on the final exam. If the final is weighted double and the four others weighted equally, the student's final average would be 90.
	ANS: T PTS: 1 REF: 57 TOP: 1–3 BLM: Higher Order - Apply
11.	In a mound-shaped distribution, there is no difference in the values of the mean and the median.
	ANS: T PTS: 1 REF: 59 TOP: 1–3 BLM: Remember
12.	Measures of centre are values around which observations tend to cluster and which describe the location of what, in some sense, might be called the "centre" of a data set.
	ANS: T PTS: 1 REF: 56 TOP: 1–3 BLM: Remember
13.	The median is a measure of centre that divides an ordered array of data into two halves. If the data are arranged in ascending order from smallest to largest, all the observations below the median are smaller than or equal to it, while all the observations above the median are larger than or equal to it.
	ANS: T PTS: 1 REF: 58 TOP: 1–3 BLM: Higher Order - Understand
14	The mode is the sum of a data set's minimum and maximum values, divided by 2.
	ANS: F PTS: 1 REF: 59 TOP: 1–3 BLM: Remember

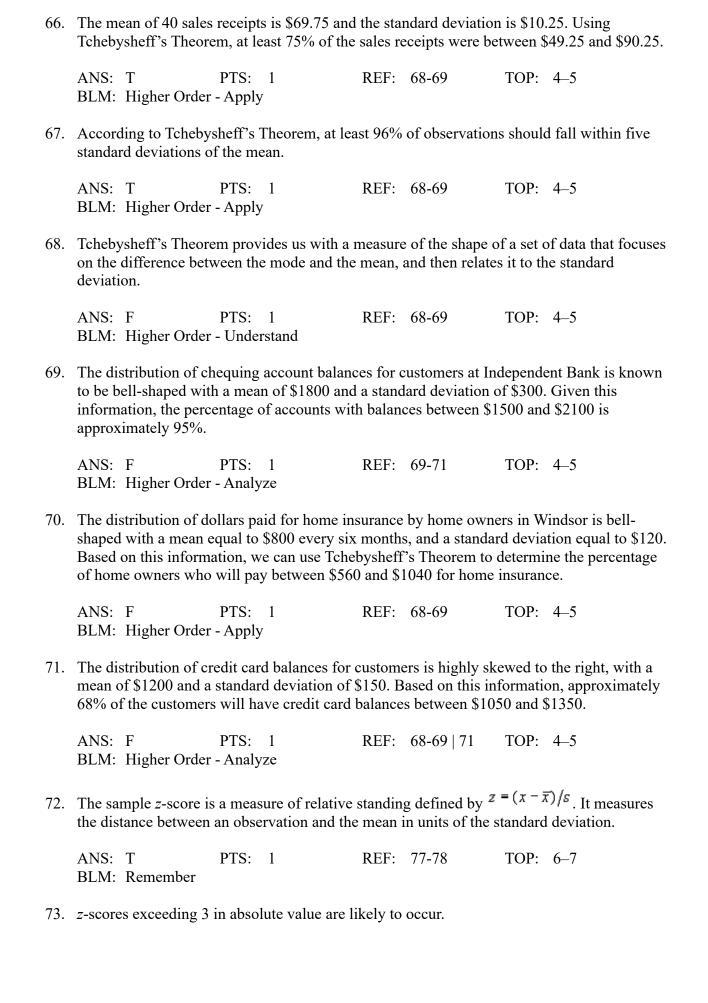
15.	If the v	ariability of a	set of da	ata is very sma	ll, then	the sample var	iance m	ay be negative.
	ANS: BLM:	F Higher Order	PTS: - Under		REF:	64-65	TOP:	1–3
16.	When a	all the numbers	s in the	data set are the	same,	the standard de	viation,	s, must be zero.
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	67	TOP:	1–3
17.	In all ca	ases, the sum	of the de	eviations of the	measu	rements from the	heir mea	nn is 0.
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	64	TOP:	1–3
18.		mple variance ements from the		•	verage (of the squared of	deviatio	ns of the
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	65	TOP:	1–3
19.						gives a better en a divisor of <i>n</i>		of the population
	ANS: BLM:	F Remember	PTS:	1	REF:	66	TOP:	1–3
20.		ger the values the variability			e, s², ar	nd the sample s	tandard	deviation, s , the
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	67	TOP:	1–3
21.		r to measure the the sample v		•	ne units	s as the original	l observ	ations, we
	ANS: BLM:	F Higher Order	PTS: - Under		REF:	67	TOP:	1–3
22.	Measur	es of variabili	ty descr	ribe typical valu	ues in tl	ne data.		
	ANS: BLM:	F Remember	PTS:	1	REF:	62-63	TOP:	1–3
23.	The me	ean is one of th	ne most	frequently used	d measu	res of variabili	ty.	
	ANS: BLM:	F Remember	PTS:	1	REF:	57 62-63	TOP:	1–3

24.	The ra	nge is consider	ed the v	weakest measu	re of va	riability.		
	ANS: BLM:	T Remember	PTS:	1	REF:	63	TOP:	1–3
25.	The va	alue of the stand	dard de	viation will alw	ays exc	eed that of the	varianc	ee.
	ANS: BLM:	F Higher Order	PTS: - Under		REF:	65	TOP:	1–3
26.		andard deviation ce is not.	on is exp	pressed in term	s of the	original units	of meas	urement, but the
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	67	TOP:	1–3
27.		alue of the standriance will alwa		•	-	oositive or nega	itive, wł	nile the value of
	ANS: BLM:	F Higher Order	PTS: - Under		REF:	67	TOP:	1–3
28.	The sta	andard deviation	n is the	positive squar	e root o	f the variance.		
	ANS: BLM:	T Remember	PTS:	1	REF:	65	TOP:	1–3
29.		ple of 20 obser			deviation	on of 4. The su	m of the	e squared
	ANS: BLM:	F Higher Order	PTS: - Apply		REF:	65	TOP:	1–3
30.		alue of the mea rations.	n times	the number of	observa	tions equals th	e sum o	of all of the
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	57	TOP:	1–3
31.		stogram, the process of the distribution of th				must be to the	left of t	he median is less
	ANS: BLM:	F Higher Order	PTS: - Under		REF:	59	TOP:	1–3
32.		stogram, if the				ight, the propo	rtion of	the total area that

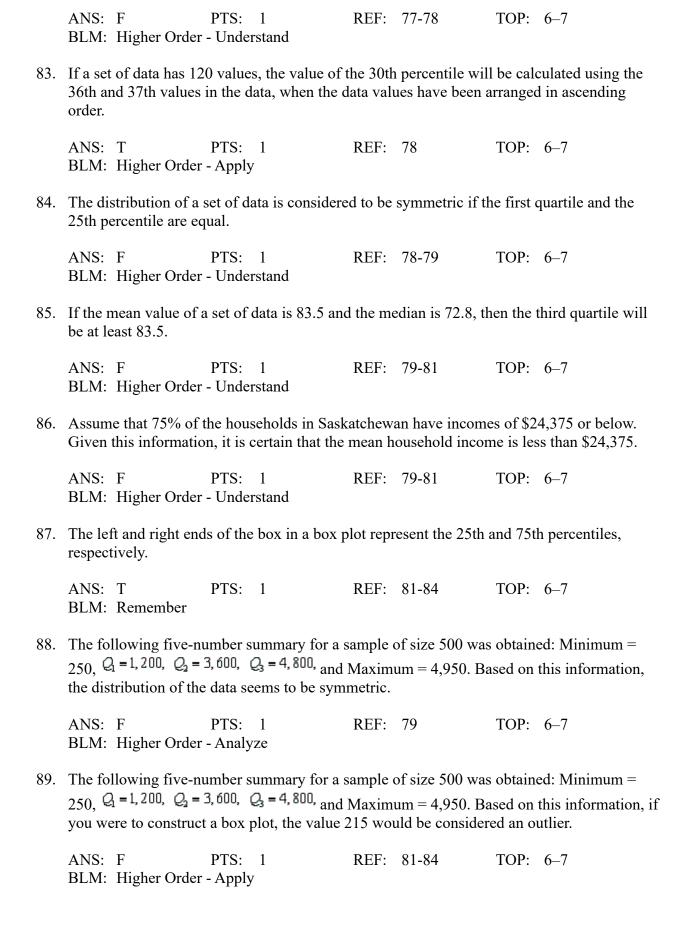
		ANS: BLM:	F Higher Order	110.		REF:	59	TOP:	1–3
	33.	If two	data sets have	the sam	e range, the va	riances	in both sets wi	ll be the	same.
		ANS: BLM:	F Higher Order	PTS: - Under		REF:	63-65	TOP:	1–3
	34.	The su	m of the devia	tions sq	uared from the	mean i	s always zero.		
		ANS: BLM:	F Higher Order	PTS: - Under		REF:	64	TOP:	1–3
•	35.	show t		hich ind	ividual values				observations; they nother and, hence,
		ANS: BLM:	T Remember	PTS:	1	REF:	62-63	TOP:	1–3
	36.	A para	meter and a sta	atistic ca	an be used inte	rchange	ably.		
		ANS: BLM:	F Remember	PTS:	1	REF:	56	TOP:	1–3
	37.	The m	edian is one of	the mo	st commonly u	sed mea	asures of variab	oility.	
		ANS: BLM:	F Remember	PTS:	1	REF:	58 62-63	TOP:	1–3
	38.		stributions of d easure of centr		are skewed to	the left	or right, the mo	edian wo	ould likely be the
		ANS: BLM:	T Higher Order	PTS:		REF:	59	TOP:	1–3
	39.	popula	ation, and you	calculate		u would	_		sidered to be a if these data were
		ANS: BLM:	T Higher Order	PTS: - Under		REF:	56-57	TOP:	1–3
4	40.		the $(n+1)/2$ in of data value		the value of th	ie media	an in an ordered	d data se	et, where n is the
		ANS: BLM:	F Remember	PTS:	1	REF:	58	TOP:	1–3

41.	For any distribution is s		nean is equal to	the star	ndard deviation	ı, you ca	an conclude that the
	ANS: F BLM: Higher	PTS: Order - Unde		REF:	59	TOP:	1–3
42.	A distribution i sample mean.	s said to be sl	kewed to the ri	ght if th	e population m	ean is la	arger than the
	ANS: F BLM: Higher	PTS: Order - Unde		REF:	59	TOP:	1–3
43.	One advantage by extreme val		median as a me	easure o	f centre is that	its value	e is NOT affected
	ANS: T BLM: Higher	PTS: Order - Unde		REF:	59	TOP:	1–3
44.	A data set in w	hich the mear	and median a	re equal	is said to be b	imodal o	data.
	ANS: F BLM: Remem	PTS:	1	REF:	59-60	TOP:	1–3
45.	If the mean value skewed to the r		oution is 85 and	d the me	edian is 67, the	distribu	tion must be
	ANS: T BLM: Higher	PTS: Order - Unde		REF:	59	TOP:	1–3
46.	One of the adva					as a me	easure of variability
	ANS: T BLM: Remem		1	REF:	67	TOP:	1–3
47.	For any distributhe median.	ution, the star	ndard deviation	is a me	easure of the va	riability	of the data around
	ANS: F BLM: Remem	PTS:	1	REF:	65	TOP:	1–3
48.	Suppose the state the sample is m		_	-		12. If e	each data value in
	ANS: T BLM: Higher	PTS: Order - Apply		REF:	65	TOP:	1–3
49.	When the distri	ibution is ske	wed to the left,	then the	e mean > the m	nedian.	

	BLM: Higher Order -	Understand				
50.	When the distribution	is skewed to the	e right, the me	ean < the media	an.	
	ANS: F BLM: Higher Order -	PTS: 1 Understand	REF:	59	TOP:	1–3
51.	When the distribution	is symmetric an	d unimodal, t	the mean = the	median	
	ANS: T BLM: Higher Order -	PTS: 1 Understand	REF:	57-59	TOP:	1–3
52.	If a distribution is stro rather than the median			extreme values	s, you sl	nould use the mean
	ANS: F BLM: Remember	PTS: 1	REF:	59	TOP:	1–3
53.	Half of the observation	ns in a data set a	re on either s	ide of the mea	n.	
	ANS: F BLM: Higher Order -	PTS: 1 Understand	REF:	58	TOP:	1–3
54.	The mean is a measure	e of the middle of	centre of a dis	stribution.		
	ANS: T BLM: Remember	PTS: 1	REF:	56-57	TOP:	1–3
55.	The sum of the square	d deviations fro	m the mean is	s always zero.		
	ANS: F BLM: Higher Order -	PTS: 1 Understand	REF:	65	TOP:	1–3
56.	The standard deviation	n is always smal	ler than the v	ariance.		
	ANS: F BLM: Higher Order -	PTS: 1 Understand	REF:	65	TOP:	1–3
57.	Tchebysheff's Theorem and a set of measurem within k standard devi	ents, at least (1	$-1/k^2$) of the			
	ANS: T BLM: Remember	PTS: 1	REF:	68-69	TOP:	4–5


REF: 59

TOP: 1–3


ANS: F

PTS: 1

58.	approx	The Empirical Rule states the following: Given a distribution of measurements that is approximately bell-shaped (mound-shaped), then the interval $^{\mu \pm \sigma}$ contains approximately 68% of the measurements; the interval $^{\mu \pm 2\sigma}$ contains approximately 95% of the measurements; and the interval $^{\mu \pm 3\sigma}$ contains all or almost all of the measurements.								
		T Remember	PTS:	1	REF:	69-70	TOP:	4–5		
59.	The En	npirical Rule a	nd Tche	ebysheff's Theo	orem ca	n be used to de	scribe o	lata sets.		
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	68-70	TOP:	4–5		
60.	The En	npirical Rule c	an be a	pplied to any n	umerica	al data set.				
		F Remember	PTS:	1	REF:	69-70	TOP:	4–5		
61.		ger sample size where <i>R</i> is the		igh approximat	tion for	the sample star	ndard de	eviation s is that s		
		T Remember	PTS:	1	REF:	63 69	TOP:	4–5		
62.		•		11		oution, it provid nto a particular		ry conservative l.		
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	69	TOP:	4–5		
63.		vsheff's Theore			d to the	fraction of mea	asureme	ents to be found in		
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	68-69	TOP:	4–5		
64.	Tcheby	sheff's Theore	em appl	ies only to data	sets wl	nich have a mo	und-sha	aped distribution.		
	ANS: BLM:	F Remember	PTS:	1	REF:	69	TOP:	4–5		
65.		•		m applies to an ions that are m	•	_	ess of sl	nape, the Empirical		
	ANS: BLM:	T Remember	PTS:	1	REF:	69	TOP:	4–5		

	ANS: BLM:	F Higher Order	PTS: - Under		REF:	77-78	TOP:	6–7
74.	•			,	•	_), or any unusually d to be an outlier.
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	77-78	TOP:	6–7
75.						value that exce of the measuren		% of the
	ANS: BLM:	F Higher Order	PTS: - Under		REF:	78	TOP:	6–7
76.		fference betwe artile range.	en the la	argest and sma	llest val	ues in an order	ed array	is called the
	ANS: BLM:	F Remember	PTS:	1	REF:	63 80	TOP:	6–7
77.	Quartil	les divide the v	alues in	a data set into	four pa	erts of equal siz	e.	
	ANS: BLM:	T Remember	PTS:	1	REF:	79-81	TOP:	6–7
78.	The int	terquartile rang	ge is the	difference bet	ween th	e lower and up	per qua	rtiles.
	ANS: BLM:	T Remember	PTS:	1	REF:	80	TOP:	6–7
79.	Expres	sed in percenti	iles, the	upper quartile	is the 7	5th percentile.		
	ANS: BLM:	T Remember	PTS:	1	REF:	79-81	TOP:	6–7
80.		res of relative s ations in a set		g indicate the p	osition	of one observat	tion rela	ntive to other
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	77-78	TOP:	6–7
81.	The me	edian equals th	e secon	d quartile.				
	ANS: BLM:	T Higher Order	PTS: - Under		REF:	79-81	TOP:	6–7
82.	The sta	andard deviation	n is a n	neasure of relat	ive stan	ding.		

90. The following five-number summary for a sample of size 500 was obtained: Minimum = 250, $Q_1 = 1,200$, $Q_2 = 3,600$, $Q_3 = 4,800$, and Maximum = 4,950. Based on this information, if you were to construct a box plot, the value corresponding to the right-hand edge of the box would be 4,800.

ANS: T PTS: 1 REF: 118-120 TOP: 6-7

BLM: Higher Order - Apply

91. The following five-number summary for a sample of size 500 was obtained: Minimum = 250, $Q_1 = 1,200$, $Q_2 = 3,600$, $Q_3 = 4,800$, and Maximum = 4,950. Based on this information, if you were to construct a box plot, the value corresponding to the upper fence is 10,200.

ANS: T PTS: 1 REF: 118-120 TOP: 6-7

BLM: Higher Order - Apply

92. A sample of 2500 vehicles in Minnesota showed the following statistics related to the number of accidents per month: $Q_1 = 15$, $Q_2 = 48$, and $Q_3 = 62$. Based on these data, we can conclude that the distribution of accidents is skewed.

ANS: T PTS: 1 REF: 59 | 79-81 TOP: 6-7

BLM: Higher Order - Understand

PROBLEM

Motor Skills of Children

The times required for 10 children to learn a particular motor skill were recorded as 9, 15, 23, 20, 16, 15, 24, 18, 10, and 20 minutes.

1. Refer to Motor Skills of Children statement. Find the mean time to learn this task.

ANS:

 $\bar{x} = 17$ minutes

PTS: 1 REF: 57-58 TOP: 1–3

BLM: Higher Order - Apply

2. Refer to Motor Skills of Children statement. Find the median time to learn this task.

ANS:

m = 17

PTS: 1 REF: 58 TOP: 1–3

BLM: Higher Order - Apply

3. Refer to Motor Skills of Children statement. Based on the values of the mean and median in the previous two questions, are the measurements symmetric or skewed? Give a reason for your answer.

ANS:

Since the mean and median values are the same, we conclude that the measurements are symmetric.

PTS: 1 REF: 59 TOP: 1–3

BLM: Higher Order - Understand

4. Suppose someone told you that each value of a data set of 5 measurements had been multiplied by 100 and the sample mean was calculated to be 17.20. What was the sample mean of the original data?

ANS:

$$\overline{x}_{org.} = 0.172$$

PTS: 1 REF: 57 TOP: 1–3

BLM: Higher Order - Apply

Flu Shot

Eight doctors were asked how many flu shots they had given to patients this fall. The numbers of flu shots were 6, 3, 5, 24, 2, 6, 0, and 8.

5. Refer to Flu Shot statement. Find the sample mean.

ANS:

 $\bar{x} = 6.75$

PTS: 1 REF: 57-58 TOP: 1–3

BLM: Higher Order - Apply

6. Refer to Flu Shot statement. Find the median number of flu shots given.

ANS:

m = 5.5

PTS: 1 REF: 58 TOP: 1–3

BLM: Higher Order - Apply

7. Refer to Flu Shot statement. Based on the values of the mean and median in the previous two questions, are the measurements symmetric or skewed? Why?

ANS:

Since the mean is larger than the median, we conclude that the measurements are skewed to the right.

PTS: 1 REF: 59 TOP: 1–3

BLM: Higher Order - Understand

8. In assembling a home appliance, workers generally finish the process within 30 minutes to 1 hour. Occasionally, due to system failures, the assembly process takes a long time, possibly as long as 4 to 5 hours. What is the most appropriate measure of central tendency to use in this case if you want the measure to be representative of most of the observed times? Why is it the most appropriate measure?

ANS:

Median is the most appropriate measure because it is not influenced by extreme values.

PTS: 1 REF: 59 TOP: 1–3

BLM: Higher Order - Analyze

9. The following data represent scores on a 15-point aptitude test: 8, 10, 15, 12, 14, and 13. Subtract 5 from every observation and compute the sample mean for both the original data and the new data. What effect, if any, does subtracting 5 from every observation have on the sample mean?

ANS:

 $\overline{X}_{\text{prg.}} = 12$, and $\overline{X}_{\text{MeW}} = 7$. The sample mean \overline{X} is shifted to the left (decreased) by 5.

PTS: 1 REF: 57 TOP: 1–3

BLM: Higher Order - Apply

Student Ratings

Thirty-three students were asked to rate themselves on whether they were outgoing or not, using this five-point scale: 1 = extremely extroverted, 2 = extremely, 3 = neither extroverted nor introverted, 4 = introverted, or 5 = extremely introverted. The results are shown in the table below:

Rating X _i	1	2	3	4	5	
Frequency f_i	1	7	20	5	0	

10. Refer to Student Ratings table. Calculate the sample mean.

ANS:

 $\bar{x} = 2.88$

PTS: 1 REF: 57-58 TOP: 1–3

BLM: Higher Order - Apply

11. Refer to Student Ratings table. Calculate the median.

ANS:

m = 3

PTS: 1 REF: 58 TOP: 1–3

BLM: Higher Order - Apply

Cracks in Bar

The following data represent the number of small cracks per bar for a sample of eight steel bars: 4, 6, 10, 1, 3, 1, 25, and 8.

12. Refer to Cracks in Bar statement. What is the average number of small cracks per bar?

ANS:

$$\bar{x} = 7.25$$

PTS: 1 REF: 57-58 TOP: 1-3

BLM: Higher Order - Apply

13. Refer to Cracks in Bar statement. Which, if any, of the observations appear to be outliers? Justify your answer.

ANS:

The value 25 has a z-score of 2.26 making it a suspect outlier.

PTS: 1 REF: 59 TOP: 6–7

BLM: Higher Order - Apply

14. Refer to Cracks in Bar statement. Find the standard deviation for the number of small cracks per bar.

ANS:

$$s = \sqrt{\frac{852 - (58)^2 / 8}{7}} = 7.85$$

PTS: 1 REF: 66 TOP: 1–3

BLM: Higher Order - Apply

Aptitude Tests

Twenty-eight applicants interested in working in community services took an examination designed to measure their aptitude for social work. A stem-and-leaf plot of the 28 scores appears below, in which the first column is the count per "branch," the second column is the stem value, and the remaining digits are the leaves.

Count	Stems	Leaves

1	4	6
1	5	9
4	6	3688
6	7	026799
9	8	145667788

15. Refer to Aptitude Tests table. What is the median score?

ANS:

m = 84.5

PTS: 1 REF: 58 TOP: 1–3

BLM: Higher Order - Apply

16. Refer to Aptitude Tests table. What is the sample mean for this data set?

ANS:

 $\bar{x} = 80.64$

PTS: 1 REF: 57-58 TOP: 1–3

BLM: Higher Order - Apply

17. Refer to Aptitude Tests table. Should the Empirical Rule be applied to this data set?

ANS:

No. The data do not appear to be mound-shaped.

PTS: 1 REF: 69-71 TOP: 4–5

BLM: Higher Order - Analyze

18. Refer to Aptitude Tests table. Use the range approximation to determine an approximate value for the standard deviation. Is this a good approximation?

ANS:

 $s \sim R/4 = 13$. This approximation is very close to the actual value of s = 12.85.

PTS: 1 REF: 72-73 TOP: 4–5

BLM: Higher Order - Apply

19. Refer to Aptitude Tests table. What is the value of the sample standard deviation?

ANS:

s = 12.85

PTS: 1 REF: 66 TOP: 1–3

BLM: Higher Order - Apply

20. Refer to Aptitude Tests table. What is the range of these data?

ANS:

R = 52

PTS: 1 REF: 63 | 72-73 TOP: 1-3

BLM: Higher Order - Apply

21. Refer to Aptitude Tests table. What is the value of the first and third quartiles?

ANS:

Position of first quartile = 0.25(29) = 7.25, then $Q_1 = 70 + 0.25(2) = 70.5$ Position of third quartile = 0.75(29) = 21.75, then $Q_3 = 88 + 0.75(3) = 90.25$

PTS: 1 REF: 79-81 TOP: 6-7

BLM: Higher Order - Apply

22. Refer to Aptitude Tests table. What is the interquartile range?

ANS:

$$IQR = Q_3 - Q_1 = 19.75$$

PTS: 1 REF: 80 TOP: 6–7

BLM: Higher Order - Apply

23. Refer to Aptitude Tests table. Find the inner fences.

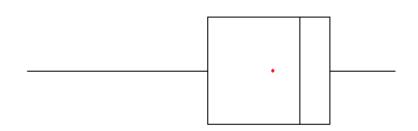
ANS:

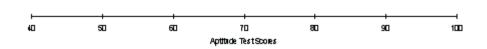
$$Q_1 - 1.5(IQR) = 70.5 - 1.5(19.75) = 40.875$$
, and $Q_3 + 1.5(IQR) = 90.25 + 1.5(19.75) = 119.875$

PTS: 1 REF: 81-84 TOP: 6-7

BLM: Higher Order - Apply

24. Refer to Aptitude Tests table. Find the outer fences.


ANS:


$$Q_1 - 3(IQR) = 70.5 - 3(19.75) = 11.25$$
, and $Q_3 + 3(IQR) = 90.25 + 3(19.75) = 149.50$

PTS: 1 REF: 81-84 TOP: 6-7

BLM: Higher Order - Apply

25. Refer to Aptitude Tests table. Construct a box plot for these data.

PTS: 1 REF: 81-84 TOP: 6-7

BLM: Higher Order - Apply

26. Refer to Aptitude Tests table. Does the box plot indicate the presence of any outliers?

ANS:

There do not appear to be any outliers present since there are no observations between the inner and outer fences or outside the outer fences.

PTS: 1 REF: 82 TOP: 6–7

BLM: Higher Order - Understand

27. Suppose you are given the following set of sample measurements: -1, 0, 2, 6, 5, and 6.

- a. Calculate the sample mean.
- b. Find the median.
- c. Find the mode.

d. Are these data symmetric, skewed to the right or skewed to the left? Justify your answer.

ANS:

a.
$$\overline{x} = 3$$

b.
$$m = (2+5)/2 = 3.5$$

d. The data are skewed to the left since the mean is less than the median.

PTS: 1 REF: 57-59 TOP: 1-3

BLM: Higher Order - Apply

Ice Cream Cone Sales

A neighbourhood ice cream vendor reports the following sales of single-scoop ice cream cones (measured in hundreds of cones) for five randomly selected weeks: 5, 4, 6, 5, and 3.

28. Refer to the Ice Cream Cone Sales statement. Find the average number of weekly sales of single-scoop ice cream cones.

ANS:

 $\overline{x} = 4.6$

PTS: 1 REF: 57-58 TOP: 1–3

BLM: Higher Order - Apply

29. Refer to the Ice Cream Cone Sales statement. Find the median number of weekly sales of single-scoop ice cream cones.

ANS:

m = 5

PTS: 1 REF: 58 TOP: 1–3

BLM: Higher Order - Apply

30. Refer to the Ice Cream Cone Sales statement. Find the variance for the weekly sales of single scoop ice cream cones.

ANS:

 $s^2 = 1.3$

PTS: 1 REF: 65-66 TOP: 1–3

BLM: Higher Order - Apply

31. The following data represent the sales (measured in \$10,000s) of seven real estate salespersons employed by a local agency: 23, 34, 56, 47, 45, 60, and 249. Which measure of centre, the mean or the median, would provide a better measure of the average sales of the company? Give a reason for your answer.

ANS:

The median would seem to provide a better measure of the average sales since it will not be adversely affected by the extreme value of 249. (The mean will be pulled strongly to the right by the extreme value of 249.)

PTS: 1 REF: 59 TOP: 1–3

BLM: Higher Order - Analyze

Athletic Training Time

The following data represent the numbers of minutes an athlete spends training per day: 73, 74, 76, 77, 79, 79, 83, 84, 88, 84, 84, 85, 86, 86, 87, 87, 88, 91, 92, 92, 93, 97, 98, 98, 81, and 82. The mean and standard deviation were computed to be 85.54 and 6.97, respectively.

32. Refer to the Athletic Training Time statement. Create a stem-and-leaf plot for the distribution of training times.

ANS:

Stems	<u>Leaves</u>
7	34
7	6799
8	123444
8	5667788
9	1223
9	788

PTS: 1 REF: 52 TOP: 1–3

BLM: Higher Order - Apply

33. Refer to the Athletic Training Time statement. Is the distribution relatively mound-shaped?

ANS:

Yes, the distribution of training times appears to be relatively mound-shaped.

PTS: 1 REF: 53 TOP: 1–3

BLM: Higher Order - Understand

34. Refer to the Athletic Training Time statement. What percentage of measurements would you expect to be between 71.60 and 99.48?

ANS:

Since the distribution appears to be relatively mound-shaped, the Empirical Rule applies. The interval (71.60, 99.48) represents two standard deviations from the mean, so we would expect approximately 95% of the measurements to lie in this interval.

PTS: 1 REF: 69-71 TOP: 4-5

BLM: Higher Order - Analyze

35. Refer to the Athletic Training Time statement. What percentage of the measurements lies in the interval (71.60, 99.48)?

ANS:

26 of the 26 measurements or 100% of the measurements lie in the given interval.

PTS: 1 REF: 69-70 TOP: 4-5

BLM: Higher Order - Apply

Calories in Soft Drinks

The following data represent the number of calories in 340 mL cans of a sample of 8 popular soft drinks: 124, 144, 147, 146, 148, 154, 150, and 234.

36. Refer to the Calories in Soft Drinks statement. Find the median and the sample mean.

$$m = (147 + 148)/2 = 147.5, \ \overline{x} = 155.875$$

PTS: 1 REF: 57-58 TOP: 1–3

BLM: Higher Order - Apply

37. Refer to the Calories in Soft Drinks statement. Are these measurements of numbers of calories symmetric or skewed? Justify your conclusion.

ANS:

Since the mean \bar{x} is larger than the median, we conclude that the measurements are skewed to the right.

PTS: 1 REF: 59 TOP: 1–3

BLM: Higher Order - Understand

Psychological Experiments

In a psychological experiment, the time on task was recorded for ten subjects having a five-minute time constraint. These measurements (in seconds) were 182, 197, 207, 272, 192, 257, 247, 197, 232, and 237.

38. Refer to the Psychological Experiments statement. Find the average time on task.

ANS:

 $\overline{x} = 222$

PTS: 1 REF: 57-58 TOP: 1–3

BLM: Higher Order - Apply

39. Refer to the Psychological Experiments statement. Find the median time on task.

ANS:

m = (207 + 232)/2 = 219.5

PTS: 1 REF: 58 TOP: 1–3

BLM: Higher Order - Apply

40. Refer to the Psychological Experiments statement. If you were writing a report to describe these data, which measure of central tendency would you use? Explain.

ANS:

Since there are no unusually large or small observations to affect the value of the mean, we would probably report the mean or average time on task.

PTS: 1 REF: 57-59 TOP: 1–3

BLM: Higher Order - Analyze

41. You are given a sample of 8 measurements: 13, 11, 15, 16, 14, 14, 13, and 15. Calculate the sample mean.

$$\bar{x} = 13.875$$

PTS: 1 REF: 57-58 TOP: 1-3

BLM: Higher Order - Apply

42. A sample of n = 10 measurements consists of the following values: 15, 12, 13, 16, 11, 12, 14, 15, 11, and 13. Calculate the sample mean and the median of this data set. Are the data mound-shaped?

ANS:

 \overline{x} = 13.2, and m = 13. No; the data is slightly skewed to the right since the mean is slightly larger than the median.

PTS: 1 REF: 57-59 TOP: 1–3

BLM: Higher Order - Apply

43. The following data represent the scores for a sample of 10 students on a 20-point chemistry quiz: 16, 14, 2, 8, 12, 12, 9, 10, 15, and 13. Find the median and the sample mean.

ANS:

Median m = (12 + 12)/2 = 12, and $\bar{x} = 11.1$

PTS: 1 REF: 57-58 TOP: 1-3

BLM: Higher Order - Apply

Community College Raises

Assume that all employees of a community college received a monthly raise.

44. Refer to the Community College Raises statement. How would a \$150 raise affect the mean of salaries? How would a \$150 raise affect the standard deviation of salaries?

ANS:

a. The mean of salaries will increase by \$150.

b. The standard deviation of salaries will remain unchanged.

PTS: 1 REF: 57 | 65-66 TOP: 1-3

BLM: Higher Order - Apply

45. Refer to the Community College Raises statement. What would happen to the mean of salaries if all salaries were raised by 5%? What would happen to the standard deviation of salaries if all salaries were raised by 4%?

ANS:

a. The mean of salaries will increase by 5%.

b. The standard deviation of salaries will increase by 4%.

PTS: 1 REF: 57 | 65-66 TOP: 1-3

BLM: Higher Order - Apply

Optometrist Customers

The following values denote the number of customers handled by an optometrist during a random sample of four periods of one hour each: 4, 6, 2, and 5.

46. Refer to the Optometrist Customers statement. Find the standard deviation of these values.

ANS:

s = 1.708 customers

PTS: 1 REF: 65-66 TOP: 1–3

BLM: Higher Order - Apply

47. Refer to the Optometrist Customers statement. Find the range R.

ANS:

R = 6 - 2 = 4

PTS: 1 REF: 63 TOP: 1–3

BLM: Higher Order - Apply

48. The following data represent scores on a 15-point aptitude test: 8, 10, 15, 12, 14, and 13. Subtract 5 from every observation and compute the sample variance for the original data and the new data. What effect, if any, does subtracting 5 from every observation have on the sample variance?

ANS:

 $S_{org.}^2 = 6.80$, and $S_{new}^2 = 6.80$. The sample variance remains unchanged.

PTS: 1 REF: 64-65 TOP: 1-3

BLM: Higher Order - Analyze

Student Extroversion

Thirty-three students were asked to rate themselves on whether they were outgoing or not using this five-point scale: 1 = extremely extroverted, 2 = extroverted, 3 = neither extroverted nor introverted, 4 = introverted, or 5 = extremely introverted. The results are shown in the table below:

Rating X _i	1	2	3	4	5
Frequency f_i	1	7	20	5	0

49. Refer to the Student Extroversion statement and table. Calculate the sample standard deviation.

ANS:

s = 0.696

PTS: 1 REF: 65-66 TOP: 1–3

BLM: Higher Order - Apply

50. Refer to the Student Extroversion statement and table. Find the percentage of measurements in the intervals $\bar{x} \pm s$ and $\bar{x} \pm 2s$. Compare these results with the Empirical Rule percentages, and comment on the shape of the distribution.

ANS:

Sixty-one percent of the observations are in the interval $\bar{x} \pm s = (2.19, 3.57)$. The Empirical Rule says if the data set is mound-shaped, we should expect to see approximately 68% of the data within one standard deviation of the mean.

Ninety-seven percent of the observations are in the interval $\bar{x} \pm 2s = (1.50, 4.26)$. The Empirical Rule says that if the data set is mound-shaped, we should expect to see approximately 95% of the observations within two standard deviations of the mean.

Since both percentages are relatively close to those predicted by the Empirical Rule, the data must be approximately mound-shaped.

PTS: 1 REF: 69-71 TOP: 4-5

BLM: Higher Order - Analyze

- 51. Suppose you are given the following set of sample measurements: -1, 0, 2, 6, and 6.
 - a. Calculate the sample variance.
 - b. Calculate the sample standard deviation.
 - c. Calculate the range.

ANS:

a.
$$s^2 = 10.8$$

b.
$$s = \sqrt{s^2} = 3.286$$

c.
$$R=7$$

PTS: 1 REF: 63 | 64-66 TOP: 1-3

BLM: Higher Order - Apply

- 52. You are given a sample of 8 measurements: 13, 11, 15, 16, 14, 14, 13, and 15.
 - a. Calculate the range.
 - b. Calculate the sample variance and standard deviation.
 - c. Compare the range and the standard deviation. Approximately how many standard deviations equal the value of the range?

ANS:

a.
$$R = 5$$

b.
$$s^2 = 2.4107$$
, and $s = 1.5526$

c. The range R = 5, is 5/1.5526 = 3.22 standard deviations.

PTS: 1 REF: 63 | 64-66 TOP: 1-3

BLM: Higher Order - Apply

53. A sample of n = 10 measurements consists of the following values: 15, 12, 13, 16, 11, 12, 14, 15, 11, and 13. Calculate the value of the standard deviation (s) and the range (R), and use R to approximate s. Is this a good approximation?

ANS:

s = 1.75, R = 5, $s^{\text{Nu}}R/4 = 1.25$. Yes, this is a good approximation.

PTS: 1 REF: 63 | 65-66 | 72-73 TOP: 1-3

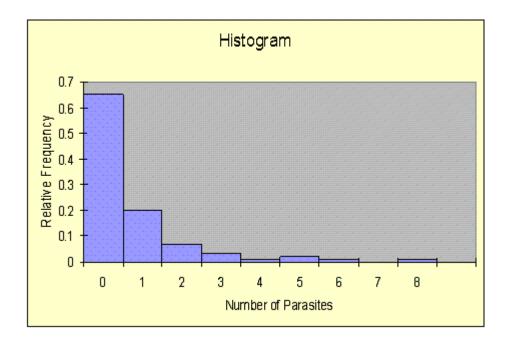
BLM: Higher Order - Apply

54. The following data represent the scores for a sample of 10 students on a 20-point chemistry quiz: 16, 14, 2, 8, 12, 12, 9, 10, 15, and 13. Calculate the sample variance, the lower and upper quartiles, and the IQR for these data.

ANS:

 $s^2 = 16.767$, position of lower quartile = 0.25(11) = 2.75; $Q_1 = 8 + 0.75(1) = 8.75$; position of upper quartile = 0.75(11) = 8.25; $Q_3 = 14 + 0.25(1) = 14.25$, and $IQR = Q_3 - Q_1 = 5.5$.

PTS: 1 REF: 64-65 | 79-81 TOP: 1-3


BLM: Higher Order - Apply

Parasites in Foxes

A random sample of 100 foxes was examined by a team of veterinarians to determine the prevalence of a particular type of parasite. Counting the number of parasites per fox, the veterinarians found that 65 foxes had no parasites, 20 had one parasite, and so on. A frequency tabulation of the data is given here:

Number of Parasites, <i>x</i>	0	1	2	3	4	5	6	7	8
Number of Foxes, f	65	20	7	3	1	2	1	0	1

55. Refer to the Parasites in Foxes statement and table. Construct a relative frequency histogram for *x*, the number of parasites per fox.

PTS: 1 REF: 56-58 TOP: 1-3

BLM: Higher Order - Apply

56. Refer to the Parasites in Foxes statement and table. Calculate the sample mean \bar{x} and the sample standard deviation \bar{x} for the sample.

ANS:

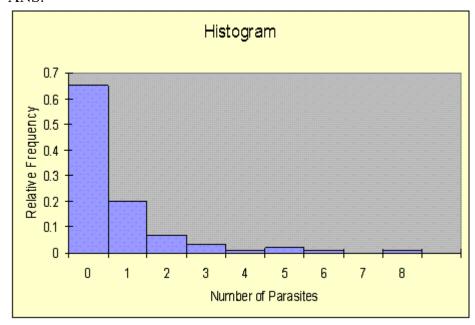
$$\bar{x} = 0.71$$
, and $\bar{s} = 1.387$

PTS: 1 REF: 76 TOP: 1–3

BLM: Higher Order - Apply

57. Refer to the Parasites in Foxes statement and table. What fraction of the parasite counts fall within two standard deviations of the mean? Do they fall within three standard deviations or the mean? Do these results agree with Tchebysheff's Theorem? Do they agree with the Empirical Rule?

ANS:


The two intervals $\bar{x} \pm k\bar{z}$ for k = 2, 3 are calculated in the table below along with the actual proportion of measurements falling in the intervals. Tchebysheff's Theorem is satisfied and the approximations given by the Empirical Rule are fairly close for k = 2 and k = 3.

k	$\bar{x} \pm k \bar{x}$ Interv	al Fraction	Fraction in Interval		Tchebysheff's Theorem		
Rule							
2	0.71 ± 2.774	-2.064 to 3.48	34 95/10	0 = 0.95 A	At least 0.75	™.95	
3	0.71 ± 4.161	-3.451 to 4.87	96/10	0 = 0.96 A	At least 0.89	№ 1.00	
$PTS \cdot$	1	REF: 68-71	TOP·	4-5			

BLM: Higher Order - Analyze

58. Refer to the Parasites in Foxes statement and table. Construct a relative frequency histogram for *x*, the number of parasites per fox.

ANS:

PTS: 1 REF: 56-58 | 76 TOP: 6-7

BLM: Higher Order - Apply

59. Refer to the Parasites in Foxes statement and table. Calculate the sample mean \bar{x} and sample standard deviation \bar{x} for the sample.

ANS:

$$\bar{x} = 0.71$$
, and $\bar{s} = 1.387$

PTS: 1 REF: 76 TOP: 6–7

BLM: Higher Order - Apply

60. Refer to the Parasites in Foxes statement and table. What fraction of the parasite counts fall within two standard deviations of the mean? Within three standard deviations? Do these results agree with Tchebysheff's Theorem? Do they agree with the Empirical Rule?

ANS:

The two intervals $\bar{x} \pm k\bar{z}$ for k = 2, 3 are calculated in the table below along with the actual proportion of measurements falling in the intervals. Tchebysheff's Theorem is satisfied and the approximations given by the Empirical Rule are fairly close for k = 2 and k = 3.

k	$\bar{x} \pm k s$	Interval	Fraction in	Tchebysheff'	Empirical	
			Interval	s Theorem	Rule	
2	0.71 ± 2.77	-2.064 to	95/100 =	At least 0.75	™.95	
	4	3.484	0.95			
3	0.71 ± 4.16	-3.451 to	96/100 =	At least 0.89	™ 1.00	

4	4.071	0.06	
	1 4 8 / 1	1 () 96	
_ -	1.071	0.70	i

PTS: 1 REF: 68-71 TOP: 6-7

BLM: Higher Order - Analyze

61. The times required to service customers' cars at a repair shop are skewed to the right, with a mean of 2.5 hours and a standard deviation of 0.75 hours. What can be said about the percentage of cars whose service time is either less than 1 hour or more than 4 hours?

ANS:

Applying Tchebysheff's Theorem, we can say that at most 25% of the cars take less than one hour or more than four hours to service.

PTS: 1 REF: 68-69 | 71 TOP: 4-5

BLM: Higher Order - Analyze

Cola Bottling

When a machine dispensing cola at a bottling plant is working correctly, it dispenses a mean of 340 mL of cola per bottle, with a standard deviation of 6 mL.

62. Refer to the Cola Bottling statement. When the machine is working correctly, what percentage of the bottles will be filled with between 328 and 352 mL of cola?

ANS:

At least 75% of the bottles will be filled with between 328 and 352 mL of cola.

PTS: 1 REF: 68-69 TOP: 4-5

BLM: Higher Order - Apply

63. Refer to the Cola Bottling statement. On a particular day, the bottling plant supervisor randomly selects two bottles from among those filled by the machine. One bottle contains 336 mL of cola, and the other contains 344 mL of cola. Based on the contents of these two bottles, what can the supervisor conclude about the machine's performance?

ANS:

The machine seems to be working correctly.

PTS: 1 REF: 68-69 TOP: 4-5

BLM: Higher Order - Evaluate

Job Applicant Test Scores

A new manufacturing plant has 20 job openings. To select the best 20 applicants from among the 1000 job seekers, the plant's personnel office administers a written aptitude test to all applicants. The average score on the aptitude test is 150 points, with a standard deviation of 10 points. Assume the distribution of test scores is approximately mound-shaped.

64. Refer to the Job Applicant Test Scores statement. What percentage of the test scores will fall between 130 and 160 points?

ANS:

Approximately 81.5% of the test scores will fall between 130 and 160 points.

PTS: 1 REF: 69-71 TOP: 4-5

BLM: Higher Order - Analyze

65. Refer to the Job Applicant Test Scores statement. How many applicants will score between 130 and 160 points?

ANS:

Approximately 815 applicants will score between 130 and 160 points.

PTS: 1 REF: 69-70 TOP: 4-5

BLM: Higher Order - Apply

66. Refer to the Job Applicant Test Scores statement. One of the applicants scored 192 points on the test. What might you conclude about this test score?

ANS:

The score should be regarded as an outlier; the score should be double-checked to see if it was recorded correctly.

PTS: 1 REF: 59 | 69-70 TOP: 4-5

BLM: Higher Order - Analyze

Frequency Table

Suppose you are given the following frequency table of ratings from 0 to 8:

Rating X _i	0	1	2	3	4	5	6	7	8
Frequency f_i	69	17	6	3	1	2	1	0	1

Assume that the sample mean and the sample standard deviation are 0.66 and 1.387, respectively.

67. Refer to the Frequency Table. What fraction of the *x*-values fall within two standard deviations of the mean? Within three standard deviations of the mean?

ANS:

0.95 of the x values fall within two standard deviations of the mean.

0.96 of the x values fall within three standard deviations of the mean.

PTS: 1 REF: 68-69 | 71 TOP: 4-5

BLM: Higher Order - Analyze

68. Refer to the Frequency Table. Do the results of the previous question agree with Tchebysheff's Theorem?

ANS:

Yes. According to Tchebysheff's Theorem, at least 3/4 or 0.75 of the measurements fall within two standard deviations of the mean, and at least 8/9 or 0.89 of the measurements fall within three standard deviations of the mean.

PTS: 1 REF: 68-69 TOP: 4-5

BLM: Higher Order - Analyze

69. Refer to the Frequency Table Do the results of the previous question agree with the Empirical Rule?

ANS:

Yes. According to the Empirical Rule, approximately 95% of the measurements fall within two standard deviations of the mean, and all or almost all of the measurements fall within three standard deviations of the mean.

PTS: 1 REF: 69-71 TOP: 4-5

BLM: Higher Order - Analyze

Amount of Food Sold

Suppose the hourly dollar amount of food sold by a local restaurant follows an approximately mound-shaped distribution, with a mean sales level of \$400 per hour and a standard deviation of \$60 per hour.

70. Refer to the Amount of Food Sold statement. During what percentage of working hours does this restaurant sell between \$280 and \$520 worth of food per hour?

ANS:

95% of working hours

PTS: 1 REF: 69-71 TOP: 4–5

BLM: Higher Order - Analyze

71. Refer to the Amount of Food Sold statement. During a one-hour period, this restaurant had sales at the 84th percentile. What dollar sales figure does this represent?

ANS:

\$460

PTS: 1 REF: 78 TOP: 4–5

BLM: Higher Order - Apply

72. For Labrador Retrievers, the average weight at 12 months of age is 23 kg, with a standard deviation of 1.2 kg. What can be said about the proportion of 12-month-old Labrador Retrievers that will weigh between 21.2 kg and 24.8 kg?

Since it is not known whether the distribution of weights is mound-shaped, the Empirical Rule doesn't necessarily apply. Using Tchebysheff's Theorem, since the given interval represents 1.5 standard deviations on each side of the mean, at least $1 - 1/(1.5)^2 = 0.56$ of the weights will lie in the interval.

PTS: 1 REF: 68-69 TOP: 4-5

BLM: Higher Order - Analyze

73. The mean and variance of a sample of n = 25 measurements are 80 and 100, respectively. Explain in detail how to use Tchebysheff's Theorem to describe the distribution of the measurements.

ANS:

You are given $\bar{x} = 80$, and $s^2 = 100$. The standard deviation is s = 10. The distribution of measurements is centred about $\bar{x} = 80$, and Tchebysheff's Theorem states that

- At least 3/4 of the 25 measurements lie in the interval $\bar{x} \pm 2s = 80 \pm 20$; that is, 60 to 100.
- At least 8/9 of the measurements lie in the interval $\bar{x} \pm 3s = 80 \pm 30$; that is, 50 to 110.

PTS: 1 REF: 68-69 TOP: 4-5

BLM: Higher Order - Apply

Manufacturing Operation Time

In a time study conducted at a manufacturing plant, the length of time to complete a specified operation is measured for each one of n = 40 workers. The mean and standard deviation are found to be 15.2 and 1.40, respectively.

74. Refer to the Manufacturing Operation Time statement. Describe the sample data using the Empirical Rule.

ANS:

To describe the data using the Empirical Rule, calculate these intervals:

$$(\bar{x} \pm s) = 15.2 \pm 1.40$$
, or 13.8 to 16.6
 $(\bar{x} \pm 2s) = 15.2 \pm 2.80$, or 12.4 to 18.0

$$(\bar{x} \pm 3s) = 15.2 \pm 4.20$$
, or 11.0 to 19.4

If the distribution of measurements is mound-shaped, you can apply the Empirical Rule and expect approximately 68% of the measurements to fall into the interval from 13.8 to 16.6, approximately 95% to fall into the interval from 12.4 to 18.0, and all or almost all to fall into the interval from 11.0 to 19.4.

PTS: 1 REF: 69-71 TOP: 4-5

BLM: Higher Order - Apply

75. Refer to the Manufacturing Operation Time statement. Describe the sample data using Tchebysheff's Theorem.

If you doubt that the distribution of measurements is mound-shaped, or if you wish for some other reason to be conservative, you can apply Tchebysheff's Theorem and be absolutely certain of your statements. Tchebysheff's Theorem tells you that at least 3/4 of the measurements fall into the interval from 12.4 to 18.0, and at least 8/9 into the interval from 11.0 to 19.4

PTS: 1 REF: 68-69 | 71 TOP: 4-5

BLM: Higher Order - Apply

- 76. A sample of n = 10 measurements consists of the following values: 15, 12, 13, 16, 11, 12, 14, 15, 11, and 13.
 - a. Can you use Tchebysheff's Theorem to describe this data set? Why or why not?
 - b. Can you use the Empirical Rule to describe this data set? Why or why not?

ANS:

- a. Yes, since the data set is not mound-shaped.
- b. No, since the data set is not mound-shaped.

PTS: 1 REF: 71 TOP: 4–5

BLM: Higher Order - Analyze

- 77. A distribution of measurements is relatively mound-shaped, with mean 70 and standard deviation 10.
 - a. What percentage of the measurements will fall between 60 and 80?
 - b. What percentage of the measurements will fall between 50 and 90?
 - c. What percentage of the measurements will fall between 50 and 80?
 - d. If a measurement is chosen at random from this distribution, what is the probability that it will be greater than 80?

ANS:

- a. The interval from 60 to 80 represents $\mu \pm \sigma = 70 \pm 10$. Since the distribution is relatively mound-shaped, the percentage of measurements between 60 and 80 is approximately 68% according to the Empirical Rule.
- b. Again, using the Empirical Rule, the interval $^{\mu \pm 2\sigma} = 70 \pm 20$ or between 50 and 90 contains approximately 95% of the measurements.
- c. Since approximately 68% of the measurements are between 60 and 80, the symmetry of the distribution implies that approximately 34% of the measurements are between 70 and 80. Similarly, since approximately 95% of the measurements are between 50 and 90, approximately 47.5% of the measurements are between 50 and 70. Thus, the percentage of measurements between 50 and 80 is 34% + 47.5% = 81.5%.
- d. Since the proportion of the measurements between 70 and 80 is 0.34, and the proportion of the measurements that is greater than 70 is 0.50, the proportion that is greater than 80 must be 0.50 0.34 = 0.16.

PTS: 1 REF: 69-71 TOP: 4–5

BLM: Higher Order - Analyze

- 78. A sample of n = 10 measurements consists of the following values: 15, 12, 13, 16, 11, 12, 14, 15, 11, and 13.
 - a. Can you use Tchebysheff's Theorem to describe this data set? Why or why not?
 - b. Can you use the Empirical Rule to describe this data set? Why or why not?

ANS:

- a. Yes, since the data set is not mound-shaped.
- b. No, since the data set is not mound-shaped.

PTS: 1 REF: 71 TOP: 4–5

BLM: Higher Order - Analyze

Height of Basketball Players

A sample of basketball players has a mean height of 190 cm, with a standard deviation of 12 cm. You know nothing else about the size of the data set or the shape of the data distribution.

79. Refer to the Height of Basketball Players statement. Can you use Tchebysheff's Theorem and/or the Empirical Rule to describe the data? Explain.

ANS:

Since nothing is known about the shape of the data distribution, you must use Tchebysheff's Theorem to describe the data.

PTS: 1 REF: 71 TOP: 4–5

BLM: Higher Order - Analyze

80. Refer to the Height of Basketball Players statement. What can you say about the fraction of measurements that fall between 154 and 226 cm?

ANS:

The interval from 154 to 226 represents $\mu \pm 3\sigma = 190 \pm 36$, which will contain at least 8/9 of the measurements.

PTS: 1 REF: 68-69 TOP: 4-5

BLM: Higher Order - Apply

81. Refer to the Height of Basketball Players statement. What can you say about the fraction of measurements that fall between 166 and 214?

ANS:

The interval from 166 to 214 represents $\mu \pm 2\sigma = 190 \pm 24$, which will contain at least 3/4 of the measurements.

PTS: 1 REF: 68-69 TOP: 4-5

BLM: Higher Order - Apply

82. Refer to the Height of Basketball Players statement. What can you say about the fraction of measurements that are less than 166?

ANS:

The value x = 166 lies two standard deviations below the mean. Since at least 3/4 of the measurements are within the two standard deviations range, at most 1/4 can lie outside that range, which means that at most 1/4 can be less than 166.

PTS: 1 REF: 68-69 TOP: 4–5

BLM: Higher Order - Apply

Solution Volumes

An analytical chemist wanted to use electrolysis to determine the number of moles of cupric ions in a given volume of solution. The solution was partitioned into n = 30 portions of 0.2 mL each. Each of the n = 30 portions was tested. The average number of moles of cupric ions for the n = 30 portions was found to be 0.185 mole; the standard deviation was 0.015 mole.

83. Refer to the Solution Volumes statement. Calculate the intervals $(\bar{x} \pm s)$, $(\bar{x} \pm 2s)$, and $(\bar{x} \pm 3s)$.

ANS:

$$(\bar{x} \pm s) = 0.185 \pm 0.015$$
 or 0.170 to 0.200
 $(\bar{x} \pm 2s) = 0.185 \pm 0.030$ or 0.155 to 0.215
 $(\bar{x} \pm 3s) = 0.185 \pm 0.045$ or 0.140 to 0.230

PTS: 1 REF: 57-58 | 65-66 | 68-69 TOP: 4-5

BLM: Higher Order - Analyze

84. Refer to the Solution Volumes statement. Describe the distribution of the measurements for the n = 30 portions of the solution using Tchebysheff's Theorem.

ANS:

If we doubt that the distribution of measurements is mound-shaped, or if no prior information as to the shape of the distribution is available, we use Tchebysheff's Theorem. We would expect none of the measurements to fall in the interval 0.17 to 0.20, at least 3/4 of the measurements to fall in the interval 0.155 to 0.215, and at least 8/9 of the measurements to fall in the interval from 0.14 to 0.23.

PTS: 1 REF: 68-69 TOP: 4-5 BLM: Higher Order - Apply

85. Refer to the Solution Volumes statement. Suppose the chemist had used only n = 5 portions of the solution for the experiment and obtained the readings 0.18, 0.21, 0.20, 0.22, and 0.18. Would the Empirical Rule be suitable for describing the n = 5 measurements? Why?

If the chemist had used only a sample of size n = 5 for this experiment, the distribution would not be mound-shaped. Therefore, the Empirical Rule would not be suitable for describing n = 5 measurements.

PTS: 1 REF: 69-71 TOP: 4-5

BLM: Higher Order - Evaluate

86. Attendance at London Symphony concerts for the past two years showed an average of 3000 people per performance, with a standard deviation of 100 people per performance. Attendance at a randomly selected concert was found to be 3290. If attendance data is mound-shaped, does the attendance at the selected concert appear to be unusual? Justify your conclusion.

ANS:

The z-score associated with 3290 is 2.90, indicating that 3290 is 2.90 standard deviations above the mean. Although the z-score does not exceed 3, it is close enough for one to suspect that 3290 is an outlier.

PTS: 1 REF: 77-78 TOP: 6-7

BLM: Higher Order - Evaluate

- 87. Consider the following set of measurements: 5.4, 5.9, 3.5, 4.1, 4.6, 2.5, 4.7, 6.0, 5.4, 4.6, 4.9, 4.6, 4.1, 3.4, and 2.2.
 - a. Find the 25th, 50th, and 75th percentiles.
 - b. What is the value of the interquartile range?

ANS:

- a. 25th percentile = Q_1 = 3.5; 50th percentile = Q_2 = 4.6; 75th percentile = Q_3 = 5.4
- b. $IQR = Q_3 Q_1 = 5.4 3.5 = 1.9$

PTS: 1 REF: 78-80 TOP: 6-7

BLM: Higher Order - Apply

Number of Calories in Soft Drinks

The following data represent the number of calories in 340 mL cans of a sample of 8 popular soft drinks: 124, 144, 147, 146, 148, 154, 150, and 234.

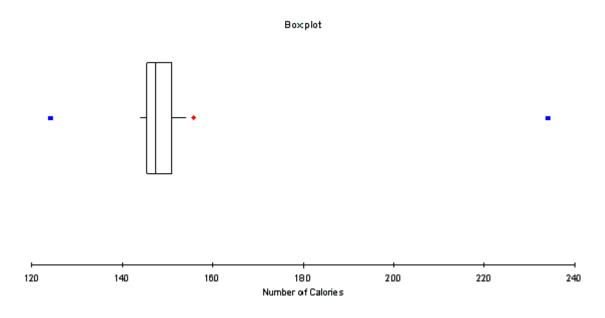
88. Refer to the Number of Calories in Soft Drinks statement. Find the inner fences.

ANS:

$$Q_1 - 1.5(IQR) = 144.5 - 1.5(8.5) = 131.75$$
, and $Q_3 + 1.5(IQR) = 153 + 1.5(8.5) = 166.75$

PTS: 1 REF: 81-84 TOP: 6-7

BLM: Higher Order - Apply


89. Refer to the Number of Calories in Soft Drinks statement. Find the outer fences.

ANS:

$$Q_1 - 3(IQR) = 144.5 - 3(8.5) = 119$$
, and $Q_3 + 3(IQR) = 153 + 3(8.5) = 178.5$

90. Refer to the Number of Calories in Soft Drinks statement. Construct a box plot for these data. Does the box plot indicate the presence of any outliers?

ANS:

Yes, the observation 124 is a suspect outlier since it lies between the lower outer fence and the lower inner fence. Also, the observation 234 is an extreme outlier since it lies above the upper outer fence.

91. The following data represent the scores for a sample of 10 students on a 20-point chemistry quiz: 16, 14, 2, 8, 12, 12, 9, 10, 15, and 13. Calculate the *z*-score for the smallest and largest observations. Is either of these observations unusually large or unusually small?

For
$$x = 2$$
, z -score = $(2 - 11.1)/4.095 = -2.22$. For $x = 16$, z -score = $(16 - 11.1)/4.095 = 1.197$. Since the z -score for the smallest observation exceeds 2 in absolute value, the smallest observation is unusually small. However, the largest observation is not unusually large.

92. Two students are enrolled in different sections of an introductory statistics class at a local university. The first student, enrolled in the morning section, earns a score of 76 on a midterm exam where the class mean was 64 with a standard deviation of 8. The second student, enrolled in the afternoon section, earns a score of 72 on a midterm exam where the class mean was 60 with a standard deviation of 7.5. If the scores on the midterm exams are normally distributed, which student scored better relative to his or her classmates?

ANS:

 $\mathbb{Z}_1 = (76-64)/8 = 1.5$; $\mathbb{Z}_2 = (72-60)/7.5 = 1.6$; the student in the afternoon section scored better relative to her classmates since her z-score is larger.

PTS: 1 REF: 77-78 TOP: 6-7

BLM: Higher Order - Evaluate

93. If the 90th and 91st observations in a set of 100 data values are 158 and 167, respectively, what is the 90th percentile value?

ANS:

166.1

PTS: 1 REF: 78 TOP: 6–7

BLM: Higher Order - Apply

94. If the 18th and 19th observations in a set of 25 data values are 42.6 and 43.8, what is the 70th percentile value?

ANS:

42.84

PTS: 1 REF: 78 TOP: 6–7

BLM: Higher Order - Apply