Chapter 1: And the archance tion its Composition of the Composition of

TR	TI	\mathbf{F}	TΓΛ	T	CL
ΙK		н./	PΑ		, 5 F.

ANS: F, algorithm

1.	The evolution of con	nputer s	cience began b	efore th	e development of the first computer system.
	ANS: T	PTS:	1	REF:	2
2.	Computer science is	the stud	ly of computers	s.	
	ANS: F	PTS:	1	REF:	2
3.	Computer science is	the stud	ly of how to wr	ite com	puter programs.
	ANS: F	PTS:	1	REF:	3
4.	Algorithms are exclu	sive to	the field of con	nputer s	science.
	ANS: F	PTS:	1	REF:	7
5.	All conceivable prob	lems ca	n be solved alg	orithm	ically.
	ANS: F	PTS:	1	REF:	11
6.	Algorithms usually c	ontain a	a set of instruct	ions to	be executed in any order.
	ANS: F	PTS:	1	REF:	12
7.	. When an operation is unambiguous, we call it a primitive operation, or simply a primitive of the computing agent carrying out the algorithm.				
	ANS: T	PTS:	1	REF:	13-14
8.	Mechanical devices t	for perfo	orming comple	x calcul	lations existed prior to the 20th century.
	ANS: T	PTS:	1	REF:	18-19
9.	. Hollerith's machines were one of the first examples of the use of automated information processing to solve large-scale, real-world problems.				
	ANS: T	PTS:	1	REF:	22
10.	The first electronic p	rogram	mable compute	r, ENI <i>A</i>	AC, was built during World War I.
	ANS: F	PTS:	1	REF:	24-25
MOD	IFIED TRUE/FALSI	E			
1.	According to Normal computer science is t				efinition of computer science, the central concept in

	PTS: 1	REF: 5			
2.		ne mixture is too dry, t		of water to the bowl"	is an example of
	ANS: F, conditiona	1			
	PTS: 1	REF: 7			
3.	The discovery by G	ödel places a limit on	the capabilities of co	imputers and computer	scientists.
	ANS: T		PTS: 1	REF: 10	
4.	The Analytic Engine	e was the first comput	ing device to use the	base-2 binary numbering	ng system.
	ANS: F Mark I Harvard Mark I				
	PTS: 1	REF: 24			
5.		BOL, the first high-leration of computing.		programming languages	s, appeared
	ANS: F, second				
	PTS: 1	REF: 29			
COM	PLETION				
1.	The three types of _ and iterative.		used to construct a	algorithms are sequentia	al, conditional,
	ANS: operations				
	PTS: 1	REF: 6-7			
2.	One of the most fun specify one to solve	damentally important a problem, then we ca	virtues of a(n)an automate the solut		hat if we can
	ANS: algorithm				
	PTS: 1	REF: 10			
3.	Leibniz's	could	carry out addition, su	ıbtraction, multiplicatio	on, and division.
	ANS: Wheel				
	PTS: 1	REF: 19			

4.	Charles Babbage gav not support his project		s second	because the current technology could
	ANS: Difference En	ngine		
	PTS: 1	REF: 21		
5.	Wireless communica	tions are a((n)	generation innovation in computing.
	ANS: fifth			
	PTS: 1	REF: 31		
MUL	TIPLE CHOICE			
1.	In theoretical computa. mathematical prob. difficulty level	ter science, operties	c.	the logical and of problems and their solutions mathematical uniqueness mathematical formulation
	ANS: A	PTS: 1	REF:	2-3
2.	is one of the mo a. Searching a list b. Running a compa c. Writing a program d. Generating a list	any m		omputers.
	ANS: A	PTS: 1	REF:	4
3.		ning langua	ges and translating	algorithms into these languages is known as
	realization. a. programming lar b. compiler	iguage		linguistic interpreter
	ANS: C	PTS: 1	REF:	6
4.	A(n) instruction	n carries ou	•	
	a. sequentialb. conditional			iterative hierarchal
	ANS: A	PTS: 1	REF:	6
5.	In computer science algorithm is called a	~.	y, the machine, rob	oot, person, or thing carrying out the steps of the
	a. computing agentb. algorithmic agen			computing representative algorithmic representative
	ANS: A	PTS: 1	REF:	10
6.	An algorithm is essent a. it's difficult to reb. it takes too long	ad	c.	it takes too long to create people might be offended by the results
	ANS: B	PTS: 1	REF:	10

7.	A(n) is a well-own when executed, produce a. sequence b. computing agent	uces a result	and halts in a fini c.	uous and effectively computable operations that, ite amount of time. mechanical calculator algorithm
	ANS: D	PTS: 1	REF:	11
8.	An operation that is a algorithm. a. primary b. complementary	ınambiguous	c.	operation of the computing agent carrying out the basic primitive
	ANS: D	PTS: 1	REF:	13-14
9.	What is wrong with to 1. Set X to be 1. 2. Increment X. 3. Print X. 4. If X > 0, repeat for a. It does not product b. It is ambiguous. c. It does not halt in d. It is not well-ord.	rom 2 ce a result.		
	ANS: C	PTS: 1	REF:	15
10.	Automation of repeti a. industrial b. technological	tive mental t	c.	a movement known as the revolution. computer designer
	ANS: C	PTS: 1	REF:	17
11.	The history of mathe a. 250 b. 1,000 ANS: D	matics begin PTS: 1	c.	2,000 3,000 or more
12.	calculators named the a. Pascaline b. Leibniz Wheel	e that c	ould do addition a c. d.	abacus TI-85
	ANS: A	PTS: 1	REF:	18
13.	The first slide rule ap a. 1183 b. 1622	peared arour	c.	1882 1945
	ANS: B	PTS: 1	REF:	18
14.	In 1614, John Napier a. algorithms b. logarithms	invented	c.	nplify difficult mathematical computations. electronic computers mechanical calculators
	ANS: B	PTS: 1	REF:	18

15.	a. A Leibniz Wheel		nable device.		The Pascaline
	b. The Analytic Eng	;ine		d.	Jacquard's loom
	ANS: D	PTS:	1	REF:	21
16.	In Babbage's analytic a. store memory b. process instruction		ne, a mill was u	c.	perform arithmetic operations accept input
	ANS: C	PTS:	1	REF:	22
17.	The was the first a. EDVAC b. EDSAC	st fully	electronic gene	c.	pose programmable computer. ENIAC Mark I
	ANS: C	PTS:	1	REF:	24-25
18.	In 1946, John Von Ne the computer. a. stored program b. external program		proposed a rad	c.	different computer design based on a model called programmable function memory unit
	ANS: A	PTS:	1	REF:	26
	a. first b. second ANS: C	PTS:	1	c. d. REF:	oduced during the generation of computing. third fourth 29 top machine shrunk to the size of a typewriter.
	a. firstb. second				third fourth
	ANS: D	PTS:	1	REF:	
SHOI	RT ANSWER				
1.	Briefly respond to the implications of your			y probl	em can be solved algorithmically, and discuss the
	logician Kurt Gödel p possibly exist. No ma they are unsolvable a mathematical world, scientists.	proved to atter how nd no s effective	that there are pr w much time an olution will eve rely places a lim	oblems od effor er be fo od the	wed algorithmically, in the early 1930s the German s for which no generalized algorithmic solution car t is put into obtaining a solution to these problems and. This discovery, which staggered the ne ultimate capabilities of computers and computer
	PTS: 1	REF:	10	TOP:	Critical Thinking

2. Explain the meaning and significance of the term "effectively computable."

ANS:

It is not enough for an operation to be understandable; it must also be doable by the computing agent. If an algorithm tells me to flap my arms really quickly and fly, while I understand perfectly what it is asking me to do, I am incapable of doing it. "Doable" means there exists a computational process that allows the computing agent to complete that operation successfully, the formal term for which is "effectively computable."

PTS: 1 REF: 14 TOP: Critical Thinking

3. What was the major change brought about by the second generation of computing?

ANS:

In the late 1950s, the bulky vacuum tube of the first generation of computers was replaced by a single transistor only a few millimeters in size, and memory was now constructed using tiny magnetic cores only 1/50 of an inch in diameter, drastically changing the size and complexity of computers.

PTS: 1 REF: 29 TOP: Critical Thinking

4. What were the marks of the user-friendly systems that emerged in the fourth generation of computers?

ANS:

They included new graphical user interfaces with pull-down menus, icons, and other visual aids to make computing easier and more fun.

PTS: 1 REF: 31 TOP: Critical Thinking

5. What are embedded systems?

ANS:

Embedded systems are devices that contain a computer system that is designed to control internal operations to specifically perform one or two dedicated functions. Examples of embedded systems are cell phones, certain military weapon systems, dishwashers, GPS receivers, traffic lights, and emergency room equipment.

PTS: 1 REF: 31 TOP: Critical Thinking

ESSAY

1. Respond to the observation that computer science is the study of how to write computer programs. Include an example to illustrate your argument.

ANS:

Many people are introduced to computer science when learning to write programs in a language such as C++, Python, or Java. This almost universal use of programming as the entry to the discipline can create the misunderstanding that computer science is equivalent to computer programming.

Programming is extremely important to the discipline—researchers use it to study new ideas and build and test new solutions—but like the computer itself, it is a tool. When computer scientists design and analyze a new approach to solving a problem or create new ways to represent information, they often implement their ideas as programs to test them on an actual computer system. This enables researchers to see how well these new ideas work and whether they perform better than previous methods.

For example, searching a list is one of the most common applications of computers, and it is frequently applied to huge problems, such as finding one name among the approximately 20,000,000 listings in the New York City telephone directory. A more efficient lookup method could significantly reduce the time that customers must wait for directory assistance. Assume that we have designed what we believe to be a "new and improved" search technique. After analyzing it theoretically, we would study it empirically by writing a program to implement our new method, executing it on our computer, and measuring its performance. These tests would demonstrate under what conditions our new method is or is not faster than the directory search procedures currently in use.

In computer science, it is not simply the construction of a quality program that is important but also the methods it embodies, the services it provides, and the results it produces. It is possible to become so enmeshed in writing code and getting it to run that we forget that a program is only a means to an end, not an end in itself.

PTS: 1 REF: 3-4 TOP: Critical Thinking

2. Define each of the categories to which the operations used to construct algorithms belong. Provide two to three examples within each category

ANS:

All the operations used to construct algorithms belong to one of only three categories:

Sequential operations A sequential instruction carries out a single well-defined task. When that task is finished, the algorithm moves on to the next operation. Sequential operations are usually expressed as simple declarative sentences.

- Add 1 cup of butter to the mixture in the bowl.
- Subtract the amount of the check from the current account balance.
- Set the value of x to 1.

Conditional operations These are the "question-asking" instructions of an algorithm. They ask a question, and the next operation is selected on the basis of the answer to that question.

- If the mixture is too dry, then add one-half cup of water to the bowl.
- If the amount of the check is less than or equal to the current account balance, then cash the check; otherwise, tell the person there are insufficient funds.
- If x is not equal to 0, then set y equal to 1/x; otherwise, print an error message that says you cannot perform division by 0.

Iterative operations These are the "looping" instructions of an algorithm. They tell us not to go on to the next instruction but, instead, to go back and repeat the execution of a previous block of instructions.

- Repeat the previous two operations until the mixture has thickened.
- While there are still more checks to be processed, do the following five steps.
- Repeat Steps 1, 2, and 3 until the value of y is equal to 1.

PTS: 1 REF: 6-7 TOP: Critical Thinking

3. Explain the achievement of the Difference Engine of Charles Babbage, and explain the challenge he confronted in trying to construct the larger model.

ANS:

In 1823, Babbage extended the ideas of Pascal and Leibniz and constructed a working model of the largest and most sophisticated mechanical calculator of its time. This machine, called the Difference Engine, could do addition, subtraction, multiplication, and division to 6 significant digits, and it could solve polynomial equations and other complex mathematical problems as well. Babbage tried to construct a larger model of the Difference Engine that would be capable of working to an accuracy of 20 significant digits, but after 12 years of work he had to give up his quest. The technology available in the 1820s and 1830s was not sufficiently advanced to manufacture cogs and gears to the precise tolerances his design required. Like Galileo's helicopter or Jules Verne's atomic submarine, Babbage's ideas were fundamentally sound but years ahead of their time. (In 1991, the London Museum of Science, using Babbage's original plans, built an actual working model of the Difference Engine. It worked exactly as Babbage had planned.)

PTS: 1 REF: 21 TOP: Critical Thinking

4. Explain the significance of the Von Neumann architecture.

ANS:

In 1946, John Von Neumann proposed a radically different computer design based on a model called the stored program computer. Until then, all computers were programmed externally using wires, connectors, and plugboards. The memory unit stored only data, not instructions. For each different problem, users had to rewire virtually the entire computer. For example, the plugboards on the ENIAC contained 6,000 separate switches, and reprogramming the ENIAC involved specifying the new settings for all these switches—not a trivial task.

Von Neumann proposed that the instructions that control the operation of the computer be encoded as binary values and stored internally in the memory unit along with the data. To solve a new problem, instead of rewiring the machine, you would rewrite the sequence of instructions—that is, create a new program. Von Neumann invented programming as it is known today. The model of computing proposed by Von Neumann included many other important features found on all modern computing systems, and to honor him this model of computation has come to be known as the Von Neumann architecture.

PTS: 1 REF: 26 TOP: Critical Thinking

5. List at least six of the recent developments in computer systems.

ANS:

Some of the recent developments in computer systems include the following:

- Massively parallel processors capable of quadrillions of computations per second
- Smartphones, tablets, and other types of handheld digital devices
- High-resolution graphics for imaging, animation, movie making, video games, and virtual reality
- Powerful multimedia user interfaces incorporating sound, voice recognition, touch, photography, video, and television
- Integrated digital devices incorporating data, television, telephone, camera, the Internet, the World Wide Web and, struggling for relevancy, the fax
- Wireless communications
- Massive storage devices capable of holding 100 petabytes of data
- Ubiquitous computing, in which miniature computers are embedded into our cars, cameras, kitchen appliances, home heating systems, clothing, and even our bodies

PTS: 1 REF: 31 TOP: Critical Thinking