e:

Chapter 01: An Introduction to Computer Science

1. The evolution of com	puter science began	n before the development of the fi	irst computer system.
	a.	True	
	b.	False	
ANSWER:			True
POINTS:			1
REFERENCES:			2
2. Computer science is t	he study of comput	ers.	
	a.	True	
	b.	False	
ANSWER:			False
POINTS:			1
REFERENCES:			2
3. Computer science is t	the study of how to	write computer programs.	
	a.	True	
	b.	False	
ANSWER:			False
POINTS:			1
REFERENCES:			3
4. Algorithms are exclusi	sive to the field of o	computer science.	
	a.	True	
	b.	False	
ANSWER:			False
POINTS:			1
REFERENCES:			7
5. All conceivable probl	ems can be solved	algorithmically.	
	a.	True	
	b.	False	
ANSWER:			False
POINTS:			1
REFERENCES:			11
6. Algorithms usually co	ontain a set of instr	actions to be executed in any orde	er.
	a.	True	
	b.	False	
ANSWER:			False
POINTS:			1
REFERENCES:			12

Name :		Class ::	Dat e:
Chapter 01: An Intro	oduction to Com	puter Science	
carrying out the algorith	nm.		
	a.	True	
	b.	False	
ANSWER:			True
POINTS:			1
REFERENCES:			13-14
8. Mechanical devices f	for performing com	plex calculations existed prior to	the 20th century.
	a.	True	
	b.	False	
ANSWER:			True
POINTS:			1
REFERENCES:			18-19
9. Hollerith's machines real-world problems.	were one of the fire	st examples of the use of automat	ed information processing to solve large-scale,
	a.	True	
	b.	False	
ANSWER:			True
POINTS:			1
REFERENCES:			22
10. The first electronic	programmable com	puter, ENIAC, was built during V	Vorld War I.
	a.	True	
	b.	False	
ANSWER:			False
POINTS:			1
REFERENCES:			24-25
11. According to Norms science is the compiler.			science, the central concept in computer
ANSWER:		False - algorit	hm
POINTS:		1	
REFERENCES:		5	
12. The statement: "If the operation.		y, then add one-half cup of water	to the bowl" is an example of a(n) iterative
ANSWER:		False - condition	al
POINTS:		1	
REFERENCES:		7	
13. The discovery by <u>G</u>	ödel places a limit	on the capabilities of computers a	nd computer scientists.
ANSWER:			True

Name :	Class ::	Dat e:e:
Chapter 01: An Introduction to Comp	outer Science	
POINTS:		1
REFERENCES:		10
14. The <u>Analytic Engine</u> was the first comp	uting device to use the base-2 binary	numbering system.
ANSWER:	False - Mark I, Harvard Mark I	
POINTS:	1	
REFERENCES:	24	
15. FORTRAN and COBOL, the first high-generation of computing.		anguages, appeared during the <u>first</u>
ANSWER:	False - second	d
POINTS:	1	
REFERENCES:	29	
16. The three types of	used to construct algorithms are	sequential, conditional, and iterative.
ANSWER:	oper	rations
POINTS:	1	
REFERENCES:	6-7	
17. One of the most fundamentally importan		is that if we can specify one to solve
a problem, then we can automate the solution		*.1
ANSWER:		gorithm
POINTS:	1	
REFERENCES:	10)
	d carry out addition, subtraction, mul	-
ANSWER:		
POINTS:		1
REFERENCES:		19
19. Charles Babbage gave up on his second	because the	e current technology could not support his
project.	D:00 E :	
ANSWER:	Difference Engine	
POINTS:	1	
REFERENCES:	21	
20. Wireless communications are a(n)	-generation innov	vation in computing.
ANSWER:		fifth
POINTS:		1
REFERENCES:		31
21. In computer science, researchers st	-	
a. theoretical	b. sc	ientific

Name :	Class :	Dat _e:e
Chapter 01: An Introduction to Compute	er Science	
c. practical	d. logical	
ANSWER:	_	a
POINTS:		1
REFERENCES:		2-3
22 is one of the most common application	ns of computers.	
a. Searching a list		
b. Running a company		
c. Writing a program		
d. Generating a list of all the prim	e numbers	
ANSWER:		a
POINTS:		1
REFERENCES:		4
23. Designing programming languages and tran a. programming language c. linguistic ANSWER: POINTS: REFERENCES:	slating algorithms into these languages is known b. compiler d. interprete	
24. A(n) instruction carries out a single we	ell-defined task.	
a. sequential	b. conditional	
c. iterative	d. hierarchal	
ANSWER:		a
POINTS:		1
REFERENCES:		6
25. In computer science terminology, the machina(n)	ine, robot, person, or thing carrying out the steps	of the algorithm is called
a. computing agent	b. algorithmic agent	
c. computing representative	d. algorithmic representative	
ANSWER:		a
POINTS:		1
REFERENCES:		10
26. An algorithm is essentially useless when		
a. it's difficult to read	b. it takes too long to execute	
c. it takes too long to create	d. people might be offended by the results	S
ANSWER:		b
POINTS:		1
REFERENCES:		10

Name :		: :	class		Dat e:
Chapter 01: An Intro	oduction to Computer Sc	ience			
	ordered collection of unambi		nd effectively	computable operations	that, when executed,
a. sequence		•	b.	computing agent	
-	cal calculator		d.	algorithm	
ANSWER:				\mathcal{S}	d
POINTS:					1
REFERENCES:					11
28. An operation that is	unambiguous is called a				out the algorithm.
-	nary	b.	complemen	ntary	
c. bas	ic	d.	primitive		
ANSWER:				d	
POINTS:				1	
REFERENCES:				13-14	
 Set X to be 1 Increment X Print X If X > 0, repeat from a. It does b. It is am 	the following algorithm? 2 not produce a result. biguous. not halt in a finite amount of	time.			
d. It is not	well-ordered.				
ANSWER:					c
POINTS:					1
REFERENCES:					15
a. ind	titive mental tasks was part of ustrial nputer	f a move		ological	
ANSWER:					c
POINTS:					1
REFERENCES:					17
31. The history of mathe	ematics begins years ag	o.			
a. 2:	50	b.	1,000		
c. 2,	,000,	d.	3,000 or mo	re	
ANSWER:					d
POINTS:					1
REFERENCES:					18

32. In 1672, a French philosopher and mathematician designed and built one of the first mechanical calculators named the ____ that could do addition and subtraction.

b.

Leibniz Wheel

Chapter 01: An	Introduction to	Computer	Science

Pascaline

a.

	c.	abacus	d.	TI-85	
ANSWER:				;	a
POINTS:					1
REFERENC	$^{\gamma}ES$.				18

33. The first slide rule appeared around ____.

a. 1183b. 1622c. 1882d. 1945

ANSWER: b
POINTS: 1
REFERENCES: 18

34. In 1614, John Napier invented ____ as a way to simplify difficult mathematical computations.

a. algorithms b. logarithms

c. electronic computers d. mechanical calculators

ANSWER: b
POINTS: 1

REFERENCES: 18

35. ____ was the first programmable device.

a. A Leibniz Wheel b. The Analytic En

a. A Leibniz Wheelb. The Analytic Enginec. The Pascalined. Jacquard's loom

ANSWER: d
POINTS: 1

POINTS:

REFERENCES: 21

36. In Babbage's analytical engine, a mill was used to _____.a. store memoryb. process instructions

c. perform arithmetic operations d. accept input

ANSWER:

POINTS:

REFERENCES: 22

37. The _____ was the first fully electronic general-purpose programmable computer.

a. EDVAC b. EDSAC c. ENIAC d. Mark I

ANSWER: c
POINTS: 1

REFERENCES: 24-25

38. In 1946, John Von Neumann proposed a radically different computer design based on a model called the _____ computer.

Name :			Clas :	ss		Dat e:
Chapter 01: Ar	n Introd	luction to Comp	uter Science			
a. sto	red prog	ram		b	. external progran	n
		ible function		d		
ANSWER:					·	a
POINTS:						1
REFERENCES:						26
39. Integrated circ	cuits, bu	ilt on silicon chips,	were introduced du	iring the _	generation of co	omputing.
	a.	first		b.	second	
	c.	third		d.	fourth	
ANSWER:						c
POINTS:						1
REFERENCES:						29
40. During the	gene	ration of computing	g, the desktop mach	ine shrunk	to the size of a type	ewriter.
	a.	first		b.	second	
	c.	third		d.	fourth	
ANSWER:						d
POINTS:						1
REFERENCES:						29
	nd to the	observation that ev	very problem can be	e solved al	gorithmically, and d	liscuss the implications of
your response.						
ANSWER:						the early 1930s the German zed algorithmic solution can
						solution to these problems,
	they a	are unsolvable and	no solution will eve	r be found	l. This discovery, wl	hich staggered the
			ectively places a lim	nit on the u	ıltimate capabilities	of computers and computer
DOINTS.	scient	usts.				
POINTS: REFERENCES:	10					
TOPICS:		ol Thinking				
TOFICS.	Critic	cal Thinking				
_	eaning a	and significance of	the term "effectivel	y computa	able."	
ANSWER:						ble by the computing agent.
						derstand perfectly what it is a computational process that
	allow	_	ent to complete that			ormal term for which is
POINTS:	1	. 1				
REFERENCES:	14					
TOPICS:	Critic	cal Thinking				
43. What was the	major c	hange brought abou	ut by the second ger	neration of	f computing?	

In the late 1950s, the bulky vacuum tube of the first generation of computers was replaced by a single

transistor only a few millimeters in size, and memory was now constructed using tiny magnetic cores

ANSWER:

Name	Class	Dat
		e:

Chapter 01: An Introduction to Computer Science

only 1/50 of an inch in diameter, drastically changing the size and complexity of computers.

POINTS: 1
REFERENCES: 29

TOPICS: Critical Thinking

44. What were the marks of the user-friendly systems that emerged in the fourth generation of computers?

ANSWER: They included new graphical user interfaces with pull-down menus, icons, and other visual aids to

make computing easier and more fun.

POINTS: 1
REFERENCES: 31

TOPICS: Critical Thinking

45. What are embedded systems?

ANSWER: Embedded systems are devices that contain a computer system that is designed to control internal

operations to specifically perform one or two dedicated functions. Examples of embedded systems are cell phones, certain military weapon systems, dishwashers, GPS receivers, traffic lights, and

emergency room equipment.

POINTS: 1
REFERENCES: 31

TOPICS: Critical Thinking

46. Respond to the observation that computer science is the study of how to write computer programs. Include an example to illustrate your argument.

ANSWER:

Many people are introduced to computer science when learning to write programs in a language such as C++, Python, or Java. This almost universal use of programming as the entry to the discipline can create the misunderstanding that computer science is equivalent to computer programming.

Programming is extremely important to the discipline—researchers use it to study new ideas and build and test new solutions—but like the computer itself, it is a tool. When computer scientists design and analyze a new approach to solving a problem or create new ways to represent information, they often implement their ideas as programs to test them on an actual computer system. This enables researchers to see how well these new ideas work and whether they perform better than previous methods.

For example, searching a list is one of the most common applications of computers, and it is frequently applied to huge problems, such as finding one name among the approximately 20,000,000 listings in the New York City telephone directory. A more efficient lookup method could significantly reduce the time that customers must wait for directory assistance. Assume that we have designed what we believe to be a "new and improved" search technique. After analyzing it theoretically, we would study it empirically by writing a program to implement our new method, executing it on our computer, and measuring its performance. These tests would demonstrate under what conditions our new method is or is not faster than the directory search procedures currently in use.

In computer science, it is not simply the construction of a quality program that is important but also the methods it embodies, the services it provides, and the results it produces. It is possible to become so enmeshed in writing code and getting it to run that we forget that a program is only a means to an end, not an end in itself.

Name	Class	Dat
	·	۵.
		Ե.

Chapter 01: An Introduction to Computer Science

POINTS: 1
REFERENCES: 3-4

TOPICS: Critical Thinking

47. Define each of the categories to which the operations used to construct algorithms belong. Provide two to three examples within each category

ANSWER:

All the operations used to construct algorithms belong to one of only three categories:

Sequential operations A sequential instruction carries out a single well-defined task. When that task is finished, the algorithm moves on to the next operation. Sequential operations are usually expressed as simple declarative sentences.

- Add 1 cup of butter to the mixture in the bowl.
- Subtract the amount of the check from the current account balance.
- Set the value of x to 1.

Conditional operations These are the "question-asking" instructions of an algorithm. They ask a question, and the next operation is selected on the basis of the answer to that question.

- If the mixture is too dry, then add one-half cup of water to the bowl.
- If the amount of the check is less than or equal to the current account balance, then cash the check; otherwise, tell the person there are insufficient funds.
- If x is not equal to 0, then set y equal to 1/x; otherwise, print an error message that says you cannot perform division by 0.

Iterative operations These are the "looping" instructions of an algorithm. They tell us not to go on to the next instruction but, instead, to go back and repeat the execution of a previous block of instructions.

- Repeat the previous two operations until the mixture has thickened.
- While there are still more checks to be processed, do the following five steps.
- Repeat Steps 1, 2, and 3 until the value of y is equal to 1.

POINTS: 1
REFERENCES: 6-7

TOPICS: Critical Thinking

48. Explain the achievement of the Difference Engine of Charles Babbage, and explain the challenge he confronted in trying to construct the larger model.

ANSWER:

In 1823, Babbage extended the ideas of Pascal and Leibniz and constructed a working model of the largest and most sophisticated mechanical calculator of its time. This machine, called the Difference Engine, could do addition, subtraction, multiplication, and division to 6 significant digits, and it could solve polynomial equations and other complex mathematical problems as well. Babbage tried to construct a larger model of the Difference Engine that would be capable of working to an accuracy of 20 significant digits, but after 12 years of work he had to give up his quest. The technology available in the 1820s and 1830s was not sufficiently advanced to manufacture cogs and gears to the precise tolerances his design required. Like Galileo's helicopter or Jules Verne's atomic submarine, Babbage's ideas were fundamentally sound but years ahead of their time. (In 1991, the London Museum of Science, using Babbage's original plans, built an actual working model of the Difference Engine. It worked exactly as Babbage had planned.)

POINTS: 1
REFERENCES: 21

TOPICS: Critical Thinking

Name	Class	Dat
		٥.
		Ե.

Chapter 01: An Introduction to Computer Science

49. Explain the significance of the Von Neumann architecture.

ANSWER:

In 1946, John Von Neumann proposed a radically different computer design based on a model called the stored program computer. Until then, all computers were programmed externally using wires, connectors, and plugboards. The memory unit stored only data, not instructions. For each different problem, users had to rewire virtually the entire computer. For example, the plugboards on the ENIAC contained 6,000 separate switches, and reprogramming the ENIAC involved specifying the new settings for all these switches—not a trivial task.

Von Neumann proposed that the instructions that control the operation of the computer be encoded as binary values and stored internally in the memory unit along with the data. To solve a new problem, instead of rewiring the machine, you would rewrite the sequence of instructions—that is, create a new program. Von Neumann invented programming as it is known today. The model of computing proposed by Von Neumann included many other important features found on all modern computing systems, and to honor him this model of computation has come to be known as the Von Neumann architecture.

POINTS: 1
REFERENCES: 26

TOPICS: Critical Thinking

50. List at least six of the recent developments in computer systems.

ANSWER:

Some of the recent developments in computer systems include the following:

- Massively parallel processors capable of quadrillions of computations per second
- Smartphones, tablets, and other types of handheld digital devices
- High-resolution graphics for imaging, animation, movie making, video games, and virtual reality
- Powerful multimedia user interfaces incorporating sound, voice recognition, touch, photography, video, and television
- Integrated digital devices incorporating data, television, telephone, camera, the Internet, the World Wide Web and, struggling for relevancy, the fax
- Wireless communications
- Massive storage devices capable of holding 100 petabytes of data
- Ubiquitous computing, in which miniature computers are embedded into our cars, cameras, kitchen appliances, home heating systems, clothing, and even our bodies

POINTS: 1
REFERENCES: 31

TOPICS: Critical Thinking