/test-bank-johll-investigating-chemistry-test-bank-johll-invest

chapter 2

Indicate the answer choice that best completes the statement or answers the question.

1. Select the number that corresponds to 5.4801×10^{-3} written in decimal notation.

- 5.4801 a.
- b. 0.0054801
- 0.054801 c.
- d. 54801
- 548.01 e.
- 2. Select the metric prefix for micro.
 - a.

m

b.

M

c.

μ

d.

mi

3. Select the number that corresponds to 785.0 written in scientific notation.

- 7.85×10^{2}
- 7.85×10^{-2} b.
- 7.850×10^{2} c.
- 7.850×10^{-2} d.

4. A student measures the mass of a beaker three times on a scale. The mass of the beaker is reported as 100.25 g, 100.22 g, and 100.30 g. The manufacturer states that the mass of the beaker is 110.28 g. Select the answer that best describes the student's measurement.

- precise but not accurate a.
- b. accurate but not precise
- both accurate and precise c.
- d. neither accurate nor precise

5. Select the metric prefix that corresponds to the decimal equivalent of 1,000,000,000.

- G

b. c. k M

d.

D

Enter the appropriate word(s) to complete the statement.

6. Using the correct number of significant figures, solve $32.5 \times 0.0025 \div 2.900 =$

7. Using the correct number of significant figures, solve (19.3209 - 14.20) * 100.0 =

Name		Class	Dat
:		:	e:e
chapter 2			
8. Cyanide poisoning car	be deadly at blood levels of	3 mg/L. What is this dosa	age in g/mL?
9. Using the correct num	ber of significant figures, solv	ve 21.056 + 32.0008 + 0.0	002 =
10. Rewrite the number (0.00324010 in scientific notat	ion, and round the answe	r to contain 4 significant figures.
A) brittleness B) malleability C) toxicity D) viscosity 12. An experiment calls to volume, in mL, of ethyl and the second secon	following as either a chemical for 26.4 g of ethyl alcohol. The alcohol that should be used in the following question.	ne density of ethyl alcoho	operty. 1 is 0.789 g/mL. Calculate the
Type of Class	Softening Daint (9C)	Donaity (a/mL)	Refractive Index
Type of Glass Alkali borosilicate	Softening Point (°C) 718	Density (g/mL) 2.29	1.486
Lead borosilicate	447	5.46	1.860
Potash soda lead	630	3.05	1.560
Soda-lime	696	2.47	1.510
range of 690°C to 720°C	. The density of the sample is		ss has a softening point in the mL. The type of glass is
14. Convert 192,000 g to 15. Convert 24.21 m/s to	_		
	n kg, of 76.47 L of a solution	with a density of 1.54 g/r	nL.
17. Identify each of the fand A) burning charcoal B) caramelizing sugar C) melting chocolate D) formation of acid rain	following as either a chemical	change or a physical cha	nge.

18. A student is trying to determine the density of an unknown metal object. The mass of the object is 15.34 g. When the object was submerged in a graduated cylinder, the volume of the cylinder rose from 17.25 mL to 19.02 mL. What is the density of the metal?

19. For each of the following, write the number of significant figures.

A) 0.510400

Name :	Class :	Da e:	t
chapter 2			
B) 12,000 C) 0.000012402 D) 2,908.0			

20. Use the table to answer the following question.

Type of Glass	Softening Point (°C)	Density (g/mL)	Refractive Index
Alkali borosilicate	718	2.29	1.486
Lead borosilicate	447	5.46	1.860
Potash soda lead	630	3.05	1.560
Soda-lime	696	2.47	1.510

A 13.58-	g piece of glass	was recovered	from a	crime scene.	When the glass	was submerged	l in a graduated
cylinder,	the volume inc	reased from 27.	.89 mL	to 32.41 mL.			

- A) The density of the glass is _____.

 B) This type of glass is most likely _____.

e:

chapter 2

Answer Key

- 1. b
- 2. c
- 3. c
- 4. a
- 5. a
- 6. 0.028
- 7. 512
- $8.3 \times 10^{-6} \text{ g/mL}$
- 9. 53.059
- $10.\ 3.240 \times 10^{-3}$
- 11. physical; physical; chemical; physical
- 12. 33.5 mL
- 13. alkali borosilicate
- 14. 0.192 mg
- 15. 54.16 mi/hr
- 16. 118 kg
- 17. chemical; chemical; physical; chemical
- 18. 8.67 g/mL
- 19. 6; 2; 5; 5
- 20. 3.00 g/mL; potash soda lead