https://selldocx.com/products/test-bank-learning-and-memory-1e-eichenbaum

Chapter 2

The Neural Bases of Learning and Memory

1.	Motor neurons have long axons that send signals specifically to muscles.							
	ANS: T	PTS:	1	DIF:	low	REF:	page 44	
2.	Action potentials can vary from creating a large effect to a small effect.							
	ANS: F	PTS:	1	DIF:	low	REF:	page 46	
3.	Following an action neuron.	potentia	al, the exchange	e of sod	ium ions for po	tassiun	n ions restores the balance in a	
	ANS: T	PTS:	1	DIF:	medium	REF:	page 48	
4.	An EEG measures th	ne single	e firing of a neu	ıron, on	e at a time.			
	ANS: T	PTS:	1	DIF:	low	REF:	page 49	
5.	When the charge of a potential.	a neuroi	n changes from	negativ	ve to positive th	e result	t is an inhibitory postsynaptic	
	ANS: F	PTS:	1	DIF:	low	REF:	page 51	
6.	Donald Hebb propose cell assembly.	sed the t	heory that whe	n neuro	ons are activated	l they h	ave the potential to form a	
	ANS: T	PTS:	1	DIF:	low	REF:	page 55	
7.	Normally, long-term depression (LTD) occurs when either presynaptic activity or postsynaptic activity occurs alone.							
	ANS: T	PTS:	1	DIF:	low	REF:	page 59	
8.	The brain and the spinal cord are the two main parts of the autonomic nervous system.							
	ANS: F	PTS:	1	DIF:	low	REF:	page 66	
9.	The role of the symp	athetic	nervous system	is to c	alm our bodies	down a	fter something stressful.	
	ANS: F	PTS:	1	DIF:	low	REF:	page 67	
10.	The cerebellum is es at the eye.	sential t	for conditioned	behavi	ors like blinkin	g in res	ponse to a puff of air directed	
	ANS: T	PTS:	1	DIF:	medium	REF:	page 68	

MULTIPLE CHOICE

1.	are groups o thought.	f interco	nnected neuro	ns that v	work together to	o repre	sent stimuli, actions, and
	a. Cells b. Circuits			c. d.	Systems Neuronal sets		
	ANS: B	PTS:	1	DIF:	low	REF:	page 41
2.	Early anatomists cor of the	npared n	eural networks	s to an i	nterconnected s	spider v	web. This idea led to the idea
	a. reticular theory ofb. reticular activati				neuron doctrin		eory of the brain
	ANS: A	PTS:	1	DIF:	medium	REF:	page 41
3.	Which of the follows Cajal?	ing was	NOT a type of	neuron	described by S	panish	anatomist Santiago Ramón y
	a. principalb. motor			c. d.	sensory interconnectin	ng	
	ANS: D	PTS:	1	DIF:	low	REF:	page 44
4.	Which of the followsa. Brain cells linke in size.b. Blood flow to thage.	d with m	nemory declin	ne c.	The number of neurons degra	of connade .	ay decline as we age? ections between the ith memory decline
	ANS: C	PTS:	1	DIF:	medium	REF:	page 45
5.	The synapse consists a. presynaptic mate b. postsynaptic ma	erial. terial.		c. d.	synaptic cleft.	ector.	
	ANS: D	PTS:	1	DIF:	low	REF:	page 46
6.	Which of the followsa. The charge of thb. Sodium ions flow	e cell is	slightly positiv	e. c.	Potassium ion	is flow	in and out of the cell. emembrane close.
	ANS: C	PTS:	1	DIF:	high	REF:	page 47
7.	A change of about _ a. 5-10 b. 10-15	mV	in potential is	c.	h to fire a neuro 15-20 20-25	on and	generate an action potential.
	ANS: C	PTS:	1	DIF:	low	REF:	page 47
8.	The synaptic potenti at the cell body. a. small b. large	al create	d in a distant d	c.	e branch would average it depends on		ikely be when it arrived it occurred
	ANS: A	PTS:	1		low		
9.	Findings by Otto Lo	ewi in no	euronal transm	ission s	upported his the	eory th	at

	nervous system activities			c.	action potentials were larger than synaptic potential			
	b.	chemical agents system activities	cal agents could stimulate nervous n activities			action potentials are based on an all-or- none principle		
	AN	NS: B	PTS:	1	DIF:	high	REF:	page 49
10.	pos a.	inhibitory postsystsynaptic potentia sodium; potassiu chloride; sodium	ıl is due m		of		loride	hile an excitatory
	AN	NS: D	PTS:	1	DIF:	high	REF:	page 50
11.	a.	caine enhances the norepinephrine acetylcholine	e synap	tic potential for	c.	of the following serotonin GABA	g neuro	otransmitters?
	AN	IS: A	PTS:	1	DIF:	low	REF:	page 52
12.	a.	arles Sherrington cell assembly reciprocal arc	discove	red the simples	c.	circuit called th reflex arc reciprocal refl		
	AN	NS: C	PTS:	1	DIF:	low	REF:	page 53
13.	a.	several hours.	ellular r	responses last for	or c.	More cells wi action potential It requires a d	thin the al. ecrease	e assembly reached e in the potential of followed by an
	AN	NS: D	PTS:	1	DIF:	high	REF:	page 58
14.	a.	e most frequent ex GABA glutamate	citatory	/ neurotransmit	c.	ne hippocampus norepinephrin dopamine		·
	AN	IS: B	PTS:	1	DIF:	low	REF:	page 58
15.	neu a.	lcium ions in the purotrophins, which increase the mag decrease the size	nesium	ion levels	c.	permanently s	sensitiz	otentiation by synthesizing e the synapses f more calcium ions
	AN	NS: C	PTS:	1	DIF:	medium	REF:	page 58
16.	In a study by Richard Morris, injecting rats with the a. quickly finding the platform c.				e drug AP5 resulted in the rats eventually finding the maze after circling the area			
		swimming in the	_	-				e vicinity of the maze
	AN	VS: D	PTS:	1	DIF:	medium	REF:	page 62

17.	How was long-term potentiation (LTP) affected in genetically modified mice with extra NMDA receptors?								
	a. LTP was delayeb. LTP was induce				as normal at first but				
	ANG. D	DTC. 1	DIE.	then it decreased.	E. 1000 (2)				
	ANS: B	PTS: 1	DIF:	medium RE	F: page 62				
18.	a. <i>typology</i>	enology was	c.	by Francis Gall. organology					
	b. somatology ANS: C	PTS: 1		somatotyping low RE	F: page 64				
					1. pu50 01				
19.	Which of the follow a. He used only m				zuhiaativa				
	a. He used only mb. He used small s			His research was subjective. He examined the skull, not the brain					
	110 0000 011011		-	directly.					
	ANS: A	PTS: 1	DIF:	low RE	F: page 64				
20.	Correct examples of localization of function in the brain include all but which of the following?								
	a. Left frontal lob	e for speech		Left frontal lobe for spatial reasoning.					
	comprehension h Right frontal lo		n production d	Right frontal lobe	for verbal gestures.				
	ANS: B	PTS: 1			F: page 65				
	ANS. D	115. 1	DII [*] .	iow KE	r. page 03				
21.	The spinal nerves c	-							
	a. central nervousb. central peripher	•		peripheral nervous	•				
		•		perinatal nervous					
	ANS: C	PTS: 1	DIF:	low RE	F: page 66				
22.	Key cranial nerves	responsible f	or the heart, circula	atory system, and th	ne diaphragm are located in the				
	a. forebrain		c.	hindbrain					
	b. midbrain		d.	prefrontal					
	ANS: C	PTS: 1	DIF:	low RE	F: page 68				
23.	After the car accident, Dan was not able to regulate when he was hungry, thirsty, or sleepy. Damage most likely occurred to the, located in the								
	1 1 1	d to the	, located 1	n the thalamus; midbrain					
	a. hypothalamus;b. hypothalamus;			thalamus; forebra					
	ANS: B	PTS: 1	DIF:	high RE	F: page 68				
24.	According to evolu	tionary princ	iples, one of the fir	rst cortical areas to develop was the					
	a. striatum	J F		hypothalamus	<u></u> .				
	b. thalamus		d.	hippocampus					
	ANS: D	PTS: 1	DIF:	medium RE	F: page 68				
25.	Which of the follow	ving is not tru	ue of the cerebral c	ortex?					
	a. It contains 4 lol	bes.	c.	Its neurons are arr	ranged in layers.				

	b. It is the second hemispheres.	largest part of the o	cerebral d.	It is divided into symmetrical halves.			
	ANS: B	PTS: 1	DIF:	low	REF:	page 69	
26.	If your dog rubs up a. The left parietal b. The left tempora	lobe.	c.	pecific brain area would process this information? The right parietal lobe. The right temporal lobe.			
	ANS: C	PTS: 1	DIF:	high	REF:	page 70	
27.	The some about the distance the a. primary b. secondary		r is from you c.		ponsibl	e for processing information	
	ANS: B	PTS: 1	DIF:	low	REF:	page 72	
28.	After the accident, J be to thea. auditory b. cerebral		c.	s wife's face. S motor inferotempora		e damage would most likely	
	ANS: D	PTS: 1	DIF:	medium	REF:	page 73	
29.	Which of the follow a. sensory b. rational	-	c. d.	motor emotional			
	ANS: B	PTS: 1	DIF:	low	REF:	page 74	
30.	The second cranial ra. optic b. trigeminal	nerve is the	nerve. c. d.	olfactory vagus			
	ANS: A	PTS: 1	DIF:	medium	REF:	page 74	
31.	The role of the prema. initiate motor m sensory informab. send motor infolobe	ovements with incution	-	coordinate mo			
	ANS: C	PTS: 1	DIF:	high	REF:	page 74	
32.	What type of behaving a. simple motor table b. simple sensory to	sks	c.	atal subsystem complex moto complex sens	or tasks	}	
	ANS: C	PTS: 1	DIF:	medium	REF:	page 75	
33.	The amygdala would a. complex motor b. emotional	d be closely linked		type of learning fine motor familiar object	_		
	ANS: B	PTS: 1	DIF:	low	REF:	page 80	

34. The large prefrontal association cortex is well developed in primates, especially humans and is correlated with:

a. short term memory.

c. emotions.

b. long term memory.

d. intelligence.

ANS: D

PTS: 1

DIF: low

REF: page 78

35. Which of the following would not be a function of the autonomic nervous system?

a. salivation

c. crying

b. sweating

d. respiration

ANS: C

PTS: 1

DIF: low

REF: page 77

ESSAY

1. Describe the biological and electrical changes in the neuron during an action potential.

ANS:

Since an action potential is based on an all-or-none principle, when the synaptic transmission rises above the threshold, the cell fires. When this occurs, sodium molecules flow inside the cell through channels, resulting in a +40mV potential (from the -70mV at resting state). Then additional potassium flows outside of the cell, trying to restore the charge of the cell at -70mV. A cellular pump exchanges sodium for potassium to restore balance of the molecular concentrations.

PTS: 1 REF: page 48

2. Discuss how Otto Loewi's study supported his theory that chemical signals also control neuron activity.

ANS:

Otto Loewi took a live frog heart and bathed it in a neutral solution where it continued to beat for a period of time. Next, he electrically stimulated the heart to make it slow down and removed some of the solution surrounding this heart. Loewi placed the solution from the first heart and placed it into a chamber holding another beating heart. After a few seconds the second heart slowed down with no stimulation by the scientist.

PTS: 1 REF: page 49

3. Explain why functional brain imaging is called modern phrenology. Also describe how an fMRI works.

ANS:

Francis Gall tried to map out faculties that were localized in specific brain areas. Clinical and experimental work, however, did not support his map of faculties. Functional magnetic resonance imaging (fMRI) technology has allowed a deeper look into the activity of specific brain areas while individuals are completing tasks. The fMRI sends out magnetic impulses which cause the iron molecules in the hemoglobin (a primary component of blood) to twist. The degree in which the hemoglobin twists is dependent upon the amount of oxygen in the blood. Brain areas that are more active have more oxygen in them, so these areas can be determined easily from brain areas that are not being activated. Computers pick up these sensor readings from the brain and map out the brain's activities.

PTS: 1 REF: page 65

4. Give a general overview of the types of abilities that are regulated by the three main regions of the brain. Start with the most primitive area.

ANS:

The hindbrain is the most primitive brain region. It controls many of the cranial nerves and nuclei that send impulses to and from the spinal cord and cranial nerves. Some of the most basic behaviors, like respiration, sleep and wakefulness, circulation, heart activity, and fine coordination of movement are controlled by this region. There may also be areas responsible for some aspects of language and other cognitive functions housed here. The midbrain has centers for coordinating vision and hearing with movement as well as orienting actions, like following a moving target, and reflexive movements, like freezing and escaping.

The forebrain is at the front of the brain and has two subdivisions with different functions. The lower subarea connects the cerebral cortex and the lower brain area. The thalamus regulates basic survival behaviors, like eating, sex, and sleeping. The pituitary gland is found in the forebrain, and it is the master gland that controls the other glands. Near the surface of the brain is the cerebral cortex, which houses the hippocampus for long term memory and spatial orientation and the amygdala for emotional learning.

PTS: 1 REF: pages 70 and 71

5. Describe the general actions of each of the four functional systems in the brain.

ANS:

The sensory system sends information from the sensory organs to the thalamus for processing. This information initially goes to the primary sensory systems, then to the secondary sensory systems for further processing, and finally on to sensory association areas. In the motor systems, information is organized so that it allows for control and coordination of voluntary movements. The emotional systems mediate emotions and automatic behaviors associated with these emotions. The amygdala is key to the emotional pathways throughout the brain. Last is the cognitive system, which involves the association areas of the cortex and performs the highest level of cognitive processing. One cognitive system connects almost all higher cortical areas and the hippocampus (memory); another focuses on the prefrontal cortex or the area in front of the motor cortex.

PTS: 1 REF: page 77