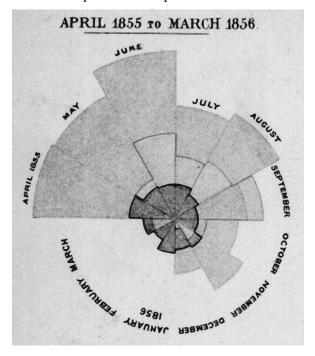
MULTIPLE CHOICE

1. Viruses are


	a. infectious agents that infect exclusively multicellular organisms.b. noncellular particles that take over the metabolism of a cell to generate more virus particles.
	 c. pathogens that replicate in complex growth media. d. cellular particles that belong to the archaea domain. e. microbes that consist of lipid membrane–enclosed genomes.
	ANS: B DIF: Easy REF: 1.1 OBJ: 1.1a Recall the definition of a microbe 1.1b List examples of microbes MSC: Remembering
2.	Analysis of DNA sequences reveals a. the ancient convergence of two cell types (i.e., prokaryotes and eukaryotes). b. that prokaryotes and eukaryotes evolved from a common ancestral cell. c. that bacteria share a common ancestor with archaea but not with eukarya. d. that prokaryotes are cells with a nucleus. e. that the genome of <i>Haemophilus influenzae</i> has about 2 billion base pairs.
	ANS: B DIF: Easy REF: 1.1 OBJ: 1.1d Explain the implications of microbial genome sequencing MSC: Understanding
3.	Which of these groups are considered to be microbes but NOT considered to be cells? a. viruses b. bacteria c. archaea d. protists e. filamentous fungi
	ANS: A DIF: Easy REF: 1.1 OBJ: 1.1a Recall the definition of a microbe 1.1c Describe some problems with the definition of a microbe MSC: Understanding
4.	A microbe is commonly defined as a that requires a microscope to be seen. a. virus d. multicellular eukaryote b. bacterium e. living organism c. single-cellular prokaryote
	ANS: E DIF: Easy REF: 1.1 OBJ: 1.1a Recall the definition of a microbe MSC: Remembering
5.	 Which one of the following statements regarding microbial cells is FALSE? a. Microbial cells acquire food, gain energy to build themselves, and respond to environmental change. b. Most single-celled organisms require a microscope to render them visible, but some bacterial cells are large enough to be seen with naked eyes. c. Microbes function as individual entities. d. Many microbes form complex multicellular assemblages. e. Viruses are not considered microbial cells. ANS: C DIF: Easy REF: 1.1
	ANO. C DII. Lasy REF. 1.1

OBJ: 1.1a Recall the definition of a microbe MSC: Understanding 6. Which of the following statements is FALSE? a. A genome is the total genetic information contained in an organism's chromosomal DNA. b. If a microbe's genome includes genes for nitrogenase, that microbe probably can fix nitrogen. c. By comparing DNA sequences of different organisms, we can figure out how closely related they are. d. Fred Sanger developed the first applicable DNA sequencing method. e. Fred Sanger completed the sequences of *Haemophilus influenzae*. ANS: E DIF: Easy REF: 1.1 OBJ: 1.1d Explain the implications of microbial genome sequencing MSC: Remembering 7. The first cellular genomes to be sequenced were those of d. prions. b. bacteria. e. fungi. c. viruses. ANS: B DIF: Easy REF: 1.1 OBJ: 1.1d Explain the implications of microbial genome sequencing MSC: Remembering 8. The environment of early Earth may have contained all of the following EXCEPT a. ferrous iron. d. oxygen. b. methane. e. hydrogen gas. c. ammonia. REF: Special Topic 1.1 DIF: Medium OBJ: 1.1a Recall the definition of a microbe MSC: Remembering 9. The development of the theory of the "RNA world" resulted from the discovery of a. archaea. d. ribozymes. b. prions. e. endosymbionts. c. bacteria. ANS: D DIF: Medium REF: 1.6 OBJ: 1.6b Explain how studies on microbes fostered our knowledge of DNA function and enhanced DNA technology MSC: Remembering 10. What is the evidence that living cells existed on Earth up to 3.8 billion years ago? a. microfossils d. Martian folded rock formations b. 16S ribosomal RNA e. diatom shells c. Miller and Urey's experiments REF: Special Topic 1.1 ANS: A DIF: Medium OBJ: 1.5a Explain why microbes can be challenging to classify taxonomically | 1.5b Outline how microbial classification has changed over time MSC: Remembering 11. What did van Leeuwenhoek discover using microscopic observations before and after drinking hot beverages? a. Heat did not kill microbes.

b. Heat killed microbes.c. Heat did not kill algae.

	d. Caffeine in coffee killed microbes.e. The existence of spiral-shaped microbes.		
	ANS: B DIF: Medium REF: 1.2 OBJ: 1.2b Explain why the microscope is an important tool in the field of microbiology 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van Leeuwenhoek, Pasteur, and Tyndall MSC: Analyzing		
12.	Tyndall's spontaneous generation experiments occasionally failed due to a. nutrient chirality. d. lack of oxygen. b. dust. e. endospores. c. fermentation.		
	ANS: E DIF: Easy REF: 1.2 OBJ: 1.2d Compare and contrast Spallanzani's, Pasteur's, and Tyndall's experiments that tested spontaneous generation MSC: Analyzing		
13.	The discovery of microbes occurred in the century? a. seventeenth		
	ANS: C DIF: Easy REF: 1.2 OBJ: 1.2b Explain why the microscope is an important tool in the field of microbiology MSC: Remembering		
14.	Robert Koch won the Nobel Prize for his contribution to medical bacteriology regarding a. Escherichia coli. b. Bacillus subtilis. c. Mycobacterium tuberculosis.		
	ANS: C DIF: Medium REF: 1.3 OBJ: 1.3b List Koch's postulates MSC: Remembering		
15.	How did European invaders to North America kill much of the native population? a. tuberculosis d. HIV b. leprosy e. bubonic plague c. smallpox		
	ANS: C DIF: Medium REF: 1.2 OBJ: 1.2a List both positive and negative impacts that microbes have had on human history MSC: Understanding		
16.	Florence Nightingale a. is best known as the founder of professional nursing. b. was the first to use disinfectant to demonstrate the significance of aseptic technique. c. developed the pie chart of mortality data during the Crimean War. d. performed the first controlled experiment on the chemical conversion of matter, known today as chemotherapy. e. argued that the environment of early Earth contained mainly reduced compounds.		
	ANS: A DIF: Easy REF: 1.2 OBJ: 1.2a List both positive and negative impacts that microbes have had on human history 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van Leeuwenhoek, Pasteur, and Tyndall MSC: Remembering		

17. Who developed the concept of medical statistics?

- a. Francis Crick
- b. Florence Nightingale
- c. Edward Jenner

- d. Louis Pasteur
- e. Alexander Fleming

ANS: B DIF: Easy REF: 1.2

OBJ: 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van

Leeuwenhoek, Pasteur, and Tyndall MSC: Remembering

18. The first person to visualize individual microbial cells was

a. Antonie van Leeuwenhoek.

d. Lady Montagu.

b. Robert Hooke.

e. Edward Jenner.

c. Louis Pasteur.

ANS: A DIF: Easy REF: 1.2

OBJ: 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van

Leeuwenhoek, Pasteur, and Tyndall MSC: Remembering

19. Semmelweis and Lister noted that many of their patients' deaths were due to

a. fungi. d. pathogen transmission by doctors.

b. Escherichia coli. e. Staphylococcus.

c. chlorine.

ANS: D DIF: Medium REF: 1.3

OBJ: 1.3a Describe what constitutes a pure culture and how to obtain one

MSC: Understanding

20. What is the standard sterilization method for the controlled study of microbes?

a. boilingb. pasteurizationd. autoclavinge. irradiation

c. filter sterilization

ANS: D

DIF: Medium REF: 1.2

OBJ: 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van

Leeuwenhoek, Pasteur, and Tyndall MSC: Remembering 21. How does the Winogradsky column differ from Koch's plate media? a. Koch's media creates a gradient from oxygen-rich conditions at the surface to highly reduced conditions below. b. The Winogradsky column is used for culturing viruses. c. The Winogradsky column is used for growing extremophiles. d. The Winogradsky column uses the kinds of nutrients that feed humans. e. The bacteria that Winogradsky isolated can grow only on inorganic minerals. ANS: E REF: 1.4 DIF: Easy OBJ: 1.4a List Winogradsky's contributions to microbial culture technique | 1.4b Define what distinguishes lithotrophs from other organisms MSC: Understanding 22. Suppose Pasteur's swan-necked flasks containing boiled broth became cloudy twenty-four hours after boiling. Which choice could best explain the turbidity or cloudiness in the broth without supporting spontaneous generation? a. Endospores in the broth survived boiling and grew after the broth cooled. b. Contaminating organisms in the broth killed by boiling became alive again after the broth cooled. c. Chemicals in the broth came together to form living organisms. d. The broth allowed light to pass through it with less interference after boiling. e. Solid material in the broth dissolved during boiling. ANS: A DIF: Difficult REF: 1.2 OBJ: 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van Leeuwenhoek, Pasteur, and Tyndall | 1.2d Compare and contrast Spallanzani's, Pasteur's, and Tyndall's experiments that tested spontaneous generation MSC: Applying 23. Which of the following is NOT considered to be an extremophilic condition for bacteria? a. high alkalinity d. high nutrients b. high salinity e. high temperature c. high acidity DIF: Medium REF: 1.4 OBJ: 1.4c Explain the role of microbes in geochemical cycling, especially that of nitrogen MSC: Remembering 24. The use of agar as a more robust gelling agent in solid media was suggested by a. Robert Koch. d. Louis Pasteur. b. Ignaz Semmelweis. e. Richard Petri. c. Angelina Hesse. ANS: C DIF: Easy REF: 1.3 OBJ: 1.3a Describe what constitutes a pure culture and how to obtain one | 1.3c Assess some of the practical obstacles in applying Koch's postulates MSC: Remembering 25. It took the advent of the polymerase chain reaction to detect the presence of the causative agent for which disease? a. anthrax d. rabies b. tuberculosis e. smallpox c. AIDS

REF: 1.3 OBJ: 1.3c Assess some of the practical obstacles in applying Koch's postulates | 1.3f Describe how

ANS: C

DIF: Difficult

26. The word "vaccination" is derived from the Latin word *vacca*, which means

a. inject.b. smallpox.d. cow.e. pustule.

c. immunize.

ANS: D DIF: Easy REF: 1.3

OBJ: 1.3d Recall the contributions of various individuals to the discovery and implementation of vaccination | 1.3e Compare the roles of immunization, antiseptics, and antibiotics in human disease treatment and prevention MSC: Remembering

27. What was the basis for the original smallpox vaccine?

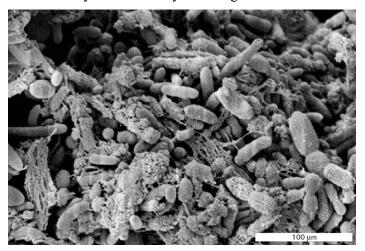
a. chickenpox virusb. cowpox virusd. smallpox viruse. anthrax

c. rabies virus

ANS: B DIF: Medium REF: 1.3

OBJ: 1.3d Recall the contributions of various individuals to the discovery and implementation of vaccination MSC: Remembering

28. Penicillin was first used to save the lives of many people during which war?


a. the U.S. Civil Warb. the Korean Ward. World War Ie. World War II

c. the Vietnam War

ANS: E DIF: Easy REF: 1.3

OBJ: 1.3e Compare the roles of immunization, antiseptics, and antibiotics in human disease treatment and prevention MSC: Remembering

29. How do many animal endosymbionts grow?

a. on the surface of the host

d. on inorganic minerals

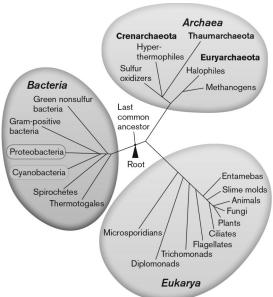
e. in biofilms

b. on low nutrientsc. by reducing iron oxide

ANS: E DIF: Medium REF: 1.4

OBJ: 1.4d Compare the roles of animal endosymbionts and plant endosymbionts

MSC: Remembering


30. All of the following are true about penicillin EXCEPT that it

	 a. was discovered by Alexander Fleming. b. was an accidental discovery. c. is produced by a bacterium. d. was the first antibiotic used by humans. e. was purified by Florey and Chain. 			
	ANS: C DIF: Difficult REF: 1.3 OBJ: 1.3e Compare the roles of immunization, antiseptics, and antibiotics in human disease treatmen and prevention MSC: Remembering			
31.	 Which of the following statements regarding viruses is FALSE? a. Most are too small to be seen by a light microscope. b. They are "filterable agents" that can pass through porcelain filters that have a pore size that blocks microbes. c. Their genomes could be composed of DNA or RNA. d. They are smaller than plasmids and prions. e. Viral particles, when pure enough, can be crystallized. 			
	ANS: D DIF: Medium REF: 1.3 OBJ: 1.3f Describe how viruses were discovered MSC: Analyzing			
32.	You have isolated a bacterium that you believe to be the causative agent of a new disease in frogs. How would you test the third of Koch's postulates? a. Determine the shape of the bacterial cells. b. Inject the bacteria into a healthy frog. c. Isolate the bacterium from a sick frog. d. Show that the bacterium is not present in healthy frogs. e. Grow a pure culture of the bacterium outside the frog.			
	ANS: B DIF: Difficult REF: 1.3 OBJ: 1.3b List Koch's postulates MSC: Applying			
33.	How did Sergei Winogradsky grow lithotrophs? a. enrichment culture d. endosymbiosis b. organic media e. chain of infection c. pure culture			
	ANS: A DIF: Easy REF: 1.4 OBJ: 1.4a List Winogradsky's contributions to microbial culture technique 1.4b Define what distinguishes lithotrophs from other organisms MSC: Understanding			
34.	Organisms that live symbiotically inside a larger organism are known as a. organelles. b. cyanobacteria. c. mitochondria. d. endosymbionts. e. chloroplasts.			
	ANS: D DIF: Easy REF: 1.4 OBJ: 1.4d Compare the roles of animal endosymbionts and plant endosymbionts MSC: Remembering			
35.	Animal microbiomes are NOT significant in a. digesting plant fibers. b. bioluminescence. c. protection from pathogens. d. converting ammonia to nitrate. e. providing nutrients to the host.			
	ANS: D DIF: Easy REF: 1.4			

36.	Carl Woese's discovery replaced the classification scheme of five kingdoms with a scheme of three a. phyla. d. orders. b. domains. e. genera. c. classes.
	ANS: B DIF: Easy REF: 1.5 OBJ: 1.5b Outline how microbial classification has changed over time 1.5d Describe the importance of DNA sequencing in classification MSC: Remembering
37.	The gene expression machinery of archaea is MOST similar to a. monera. d. eukaryotes. b. prokaryotes. e. mitochondria. c. bacteria.
	ANS: D DIF: Medium REF: 1.5 OBJ: 1.5e Compare and contrast archaea, bacteria, and eukaryotes MSC: Understanding
38.	In the three-domain model, the bacterial ancestor of mitochondria derives from ancient a. fungi. d. archaea. b. cyanobacteria. e. protists. c. respiring bacteria.
	ANS: C DIF: Medium REF: 1.5 OBJ: 1.5c Appraise endosymbiosis as an explanation for mitochondria and chloroplasts MSC: Remembering
39.	Which of the following organelles are thought to be of prokaryotic origin? a. chloroplast d. chloroplast and mitochondria b. mitochondria e. chloroplast and nucleus c. nucleus
	ANS: D DIF: Medium REF: 1.5 OBJ: 1.5c Appraise endosymbiosis as an explanation for mitochondria and chloroplasts MSC: Understanding
40.	In the three-domain model, the bacterial ancestor of chloroplasts derives from ancient a. fungi. d. archaea. b. cyanobacteria. e. protists. c. proteobacteria.
	ANS: B DIF: Medium REF: 1.5 OBJ: 1.5c Appraise endosymbiosis as an explanation for mitochondria and chloroplasts MSC: Remembering
41.	Which commonly used microbial classification advancement led to the tree by Carl Woese in 1977?

OBJ: 1.4d Compare the roles of animal endosymbionts and plant endosymbionts

MSC: Applying

		Zunarya	
	a. comparative genomicsb. microscopyc. X-ray diffraction	d. e.	protein sequencing 16S rRNA sequencing
	ANS: E DIF: Medium OBJ: 1.5b Outline how microbial classific of DNA sequencing in classification	REF: eation ha	1.5 as changed over time 1.5d Describe the importance MSC: Understanding
42.	Electron microscopes use what to focus the a. electromagnets b. a condenser lens c. light rays	d.	f electrons? X-ray diffraction glass
	ANS: A DIF: Easy OBJ: 1.6a Describe the roles of the electro knowledge of cell structure and function		oscope and the ultracentrifuge in advancing our
43.	Peter Mitchell and Jennifer Moyle discover a. germplasm b. evolution c. chemiosmotic	d.	theory in the 1960s. DNA synthesis polymerase chain reaction
	ANS: C DIF: Easy OBJ: 1.6a Describe the roles of the electro knowledge of cell structure and function		oscope and the ultracentrifuge in advancing our
44.	The X-ray diffraction studies by which of thelix?	ne follo	wing scientists concluded that DNA was a double
	a. James Watsonb. Rosalind Franklinc. Francis Crick		Maurice Wilkins Kary Mullis
	ANS: B DIF: Easy OBJ: 1.6a Describe the roles of the electro knowledge of cell structure and function		oscope and the ultracentrifuge in advancing our
45.	What feature of bacteria facilitated the DNA	A revolu	ation in the 1970s?

	a. They are very small.b. They readily recombine DNA.c. They have very large genomes.		All of their genes were known. They do not cause disease.
			1.6 red our knowledge of DNA function and enhanced
46.	This scientist first discovered the process of a. Francis Crick b. Robert Koch c. Edward Jenner	d.	ormation. Louis Pasteur Frederick Griffith
		REF: s foste	1.6 red our knowledge of DNA function and enhanced
47.	Taq polymerase forms the basis of a techniqua.comparative genomics.recombinant DNA.X-ray diffraction.		DNA amplification. protein synthesis.
	ANS: D DIF: Easy OBJ: 1.6c State some uses of microbes in r MSC: Understanding	REF: nedicii	
48.	In 1975, scientists held a conference at Asiloa. recombinant DNA.b. comparative genomics.c. DNA sequencing.		DNA amplification.
	ANS: A DIF: Medium OBJ: 1.6c State some uses of microbes in r MSC: Understanding	REF: nedicii	
49.	The study of and cause of disease in humans a. microbiology. b. phylogeny. c. genomics.		
	ANS: D DIF: Medium OBJ: 1.6c State some uses of microbes in r MSC: Remembering	REF: nedicii	
50.	The ultracentrifuge is a high-speed centrifug a. cellular proteins and nucleotides. b. microbial cells. c. mold spores.	d.	ly suited for separating individual secondary metabolites. base pairs.
			oscope and the ultracentrifuge in advancing our
ноі	RT ANSWER		

1. What is the MOST recent evidence suggesting that all life on Earth shares a common ancestry?

ANS:

Many genomes have now been sequenced, and those sequences are available in databases for comparison. This field is referred to as comparative genomics. Comparisons have revealed that there is a set of core genes shared by all organisms.

DIF: Difficult REF: 1.1 | 1.5

OBJ: 1.1d Explain the implications of microbial genome sequencing | 1.5b Outline how microbial classification has changed over time MSC: Analyzing

2. How are prokaryotes and eukaryotes different?

ANS:

A prokaryote lacks a nucleus and membrane-bounded organelles, whereas a eukaryote has a nucleus and membrane-bounded organelles.

DIF: Easy REF: 1.1 | 1.5 OBJ: 1.1a Recall the definition of a microbe

MSC: Remembering

3. How do microbes help in the extraction of minerals?

ANS:

Several lithotrophic bacteria help in the rapid oxidation of minerals, which generates strong acids that expedite the breakdown of mineral ore. Currently, approximately 20% of the world's copper, as well as some uranium and zinc, is produced by bacterial leaching.

DIF: Medium REF: 1.2

OBJ: 1.2a List both positive and negative impacts that microbes have had on human history

MSC: Applying

4. Antonie van Leeuwenhoek worked as a cloth draper, inspecting the quality of cloth. How did this lead to his interest in microscopy?

ANS:

His work introduced him to magnifying lenses. He began the hobby of grinding lenses, ultimately making a microscope that enabled him to observe single-celled microbes.

DIF: Medium REF: 1.2

OBJ: 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van

Leeuwenhoek, Pasteur, and Tyndall MSC: Understanding

5. What was the major complaint about Lazzaro Spallanzani's experiment to disprove spontaneous generation, and how did Louis Pasteur's swan-neck flasks overcome this?

ANS:

Spallanzani's flasks were plugged so as not to let organisms accidentally enter the boiled medium. Opponents argued that no growth was observed simply due to the lack of oxygen. Pasteur's swan-neck flasks did not allow organisms to enter the flask but did allow oxygen to enter. Growth was still not observed.

DIF: Medium REF: 1.2

OBJ: 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van

Leeuwenhoek, Pasteur, and Tyndall MSC: Evaluating

6. Describe the discoveries of Louis Pasteur while working with the French beer and wine manufacturers in assessing alcohol versus vinegar production during fermentation.

ANS:

Previously, it was believed that the conversion of grapes and grain to wine and beer was a spontaneous chemical process. Pasteur discovered that this fermentation was caused by living yeast, which did not require oxygen for growth. He also discovered that when the grapes or grain are contaminated with bacteria instead of yeast, acetic acid is produced instead of alcohol.

DIF: Medium REF: 1.2

OBJ: 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van

Leeuwenhoek, Pasteur, and Tyndall MSC: Understanding

7. Describe the effects of three microbial diseases that have significantly affected human populations throughout history.

ANS:

Answers may vary. Some examples include bubonic plague, which killed one-third of Europe's population in the fourteenth century; tuberculosis, which was common in the nineteenth century; AIDS, which affects many people today; and smallpox, which killed a large number of native North Americans.

DIF: Medium REF: 1.2

OBJ: 1.2a List both positive and negative impacts that microbes have had on human history | 1.2c Identify the contributions of the following individuals: Nightingale, Hooke, van Leeuwenhoek, Pasteur, and Tyndall MSC: Applying

8. Why did it take so long for humans to determine that microbes cause infectious diseases?

ANS:

Microbes are too small to be seen with the naked eye, so until powerful-enough microscopes were invented, humans did not know that microbes existed. Even after humans were aware of the presence of microbes, they did not suspect them of causing disease until people such as Joseph Lister and Ignaz Semmelweis performed experiments that showed antiseptics decrease the incidence of infection.

DIF: Difficult REF: 1.2 | 1.3

OBJ: 1.2b Explain why the microscope is an important tool in the field of microbiology

MSC: Understanding

9. Robert Koch's postulates have not been used to prove HIV as the causative agent of AIDS. Why not?

ANS:

Answers may vary, but a major reason is that humans cannot be injected with HIV to see if they develop AIDS, and a suitable animal host doesn't exist for testing.

DIF: Medium REF: 1.3

OBJ: 1.3c Assess some of the practical obstacles in applying Koch's postulates

MSC: Understanding

10. Define "attenuation" and describe some mechanisms used to attenuate pathogens.

ANS:

Attenuation results in a weakened organism that will not produce full-blown disease but will generate immunity. Answers for mechanisms may vary, but heat treatment or aging for various periods or natural attenuation in the host are mentioned in the chapter.

DIF: Medium REF: 1.3

OBJ: 1.3d Recall the contributions of various individuals to the discovery and implementation of vaccination | 1.3e Compare the roles of immunization, antiseptics, and antibiotics in human disease treatment and prevention

MSC: Applying

11. What is the significance of the work of Ignaz Semmelweis and Joseph Lister?

ANS:

They showed that use of antiseptics on doctors' hands and medical instruments drastically reduced the mortality rate of hospital patients. They made these observations before Robert Koch's germ theory of disease.

DIF: Medium REF: 1.3

OBJ: 1.3e Compare the roles of immunization, antiseptics, and antibiotics in human disease treatment and prevention MSC: Understanding

12. How would you use Robert Koch's postulates to prove that a specific organism causes a new disease in mice?

ANS:

See Figure 1.17 in the textbook:

- (1) The suspected organism is found in all diseased mice, but is absent from healthy mice.
- (2) The suspected organism is isolated from the diseased mice and grown in pure culture.
- (3) When the suspected organism is introduced into a healthy mouse, the same disease occurs.
- (4) The same strain of microbe is obtained from the newly diseased mouse.

DIF: Difficult REF: 1.3 OBJ: 1.3b List Koch's postulates

MSC: Applying

13. Explain why the organisms that were studied by Sergei Winogradsky could not be grown on Robert Koch's plate media containing agar or gelatin.

ANS:

The organisms studied by Winogradsky were lithotrophs, which feed solely on inorganic substances. Koch's plate media contained organic nutrient sources, which may even be toxic to the organisms he was attempting to grow.

DIF: Medium REF: 1.4

OBJ: 1.4a List Winogradsky's contributions to microbial culture technique

MSC: Analyzing

14. Is it true that only culturable bacteria contribute to ecology? Explain your answer.

ANS:

No, this is not a true statement. It is estimated that barely 0.1% of microbial species can be cultured. The work of Winogradsky and later microbial ecologists showed that bacteria are necessary for geochemical cycling. Many of these organisms can't be grown in pure culture on laboratory media but can be grown in enrichment culture such as a Winogradsky column.

DIF: Difficult REF: 1.4

OBJ: 1.4c Explain the role of microbes in geochemical cycling, especially that of nitrogen

MSC: Analyzing

15. Define the term "endosymbiont" and give an example of an endosymbiotic relationship found in nature.

ANS:

An endosymbiont is an organism living symbiotically inside a larger organism. Examples may vary, but include the following: *Rhizobium* in a leguminous plant, bioluminescent bacteria in the light organs of fish and squid, and photosynthetic algae and coral.

DIF: Medium REF: 1.4

OBJ: 1.4d Compare the roles of animal endosymbionts and plant endosymbionts

MSC: Applying

16. Give two reasons why microbes have been difficult to classify.

ANS:

First, even with the use of light microscopes, only the basic shape of microbes can be determined, and many microbes have similar shapes even though they are very different in other ways. Second, microbes do not fit the classic definition of a species, which is a group of organisms that interbreed. Microbes typically reproduce asexually. When they do exchange genes, they may do so with distantly related species.

DIF: Medium REF: 1.5

OBJ: 1.5a Explain why microbes can be challenging to classify taxonomically

MSC: Analyzing

17. Briefly explain the endosymbiosis theory and the evidence that supports it.

ANS:

The endosymbiosis theory proposes that mitochondria and chloroplasts evolved from bacteria that were engulfed by pre-eukaryotic cells, and that over time these endosymbiotic prokaryotic cells lost the ability to survive outside of the host cell but were maintained as organelles. Evidence supporting the endosymbiosis theory includes the fact that mitochondria and chloroplasts possess circular DNA with similarity to modern bacteria.

DIF: Medium REF: 1.5

OBJ: 1.5c Appraise endosymbiosis as an explanation for mitochondria and chloroplasts

MSC: Understanding

18. What were Rosalind Franklin's contributions toward discovering the structure of DNA, and why wasn't she one of the recipients of the Nobel Prize for this discovery?

ANS:

She was an X-ray crystallographer who studied the structure of DNA. Her X-ray micrographs showed for the first time that DNA was a double helix. A colleague showed her micrographs to James Watson, who was also studying the structure of DNA. Watson and Francis Crick published their model of the structure of DNA in the journal *Nature* and denied that they had used Franklin's micrographs. Franklin also died before the awarding of the prize.

DIF: Medium REF: 1.6

OBJ: 1.6a Describe the roles of the electron microscope and the ultracentrifuge in advancing our

knowledge of cell structure and function MSC: Understanding

19. Briefly describe how the ultracentrifuge is used to determine the sizes of cellular macromolecules.

ANS:

The ultracentrifuge uses centrifugal forces to separate cell components. Theodor Svedberg calculated that the particle sizes could be determined based on the rate of sedimentation of the particles in an ultracentrifuge.

DIF: Medium REF: 1.6

OBJ: 1.6a Describe the roles of the electron microscope and the ultracentrifuge in advancing our knowledge of cell structure and function MSC: Understanding

20. If you want to produce DNA polymerases like those used in polymerase chain reaction (PCR) for amplification of DNA, from which natural environment would you try to isolate the producers?

ANS:

Since DNA polymerase in PCR must survive many rounds of cycling to near-boiling temperatures, the most conducive environment for finding DNA polymerase, such as the enzymes used in PCR reactions, would be searching for microbes in an environment where the temperature is extremely high.

DIF: Difficult REF: 1.6

OBJ: 1.6c State some uses of microbes in medicine and industry

MSC: Applying