https://selldocx.com/products/test-bank-molecular-diagnostics-fundamentals-methods-and-clinical-applications-2e-buckingham

Chapter 2: RNA

Multip Identify		Choice choice that best completes the statement or answers the question.
	1.	In an RNA molecule, adenine always base-pairs with: a. Thymine b. Cytosine c. Uracil d. Guanine
	2.	RNA and DNA are structurally similar because they both: a. Have ribose as their sugar moiety b. Consist of a single strand that folds on itself c. Consist of two complementary strands d. Are polymers of four different nucleotide bases
	3.	RNA is degraded by: a. Helicases b. Polymerases c. Ribonucleases d. Methylases
	4.	The large ribosome subunit in prokaryotes consists of ribosomal proteins and: a. 16S rRNA b. 18S rRNA c. 23S rRNA and 5S rRNA d. 28S rRNA, 5S rRNA, and 5.8S rRNA
	5.	Transfer RNA is different from other types of RNA because transfer RNA has: a. A 3'polyA tail b. Introns and exons c. A 3'methylated cap d. Anticodons
	6.	Synthesis of RNA guided by a DNA template is: a. Translation b. DNA replication c. Transcription d. Reverse transcription
	7.	Synthesis of DNA guided by a RNA template is: a. Translation b. DNA replication c. Transcription d. Reverse transcription

8.	In transcription, what is the starting material, the ending material, and the major enzyme that catalyzes the process? a. DNA, RNA, DNA polymerase b. RNA, protein, peptidyl transferase c. RNA, DNA, reverse transcriptase d. DNA, RNA, RNA polymerase
9.	If the following oligonucleotide of double-stranded DNA were transcribed, what would be the sequence of the RNA? 5'TGCTAGCTA3' 3'ACGATCGAT5' a. 5'UGCUAGCUA3' b. 5'ACGAUCGAU3' c. 3'ACGATCGAT5' d. 3'ACGAUCGAU5'
10.	 Which of the following enzymes performs transcription in bacteria? a. RNA-dependent DNA polymerase b. DNA-dependent RNA polymerase c. DNA-dependent DNA polymerase d. RNA-dependent RNA polymerase
11.	The RNA polymerase holoenzyme consists of which of the following subunits? a. $\alpha 2$, β , β' b. $\alpha 2$, β , $\beta'\sigma$ c. α , α' , β , β' d. $\alpha 2$, β , β' , ρ
12.	Which component of RNA polymerase is responsible for initiating transcription at the correct site? a. α b. β c. β' d. ρ e. σ
13.	Which of the following is required for termination of transcription in bacteria? a. DNA polymerase b. Sigma c. Rho d. PolyA signal
14.	Which of the following is involved in termination of transcription in eukaryotes? a. RNA polymerase b. Sigma c. Rho d. PolyA signal

15	Which of the following types of RNA is directly involved in removing introns from RNA in eukaryotes? a. Micro b. Transfer c. Small nuclear d. Small interfering
16	 What is the secondary structure of transfer RNA? a. Cruciform, or inverted L b. Hairpin c. Triple helix, or triplex d. Ring, or inverted C
17	The loop of transfer RNA that interacts with the codon on mRNA in translation is called the: a. D loop b. TψC loop c. Variable loop d. Anticodon loop
18	DNA sequences that are involved in the regulation of gene expression are called: a. Cis factors b. Trans factors c. Inducers d. Repressors
19	Which of the following is the binding site for the repressor protein of the lactose operon? a. P site b. Operator c. A site d. Promoter
20	 Which of the following would prevent transcription of the lactose operon? a. Loss of promoter b. Presence of inducer c. Loss of the repressor protein d. RNA polymerase binding to the promoter
21	 Which of the following is a cis factor of the lactose operon? a. Inducer b. Operator c. Repressor d. Polymerase
22	 In the lactose operon, which of the following configurations would result in gene expression? a. Promoter +, Operator +, Repressor +, no inducer present b. Promoter -, Operator +, Repressor +, no inducer present c. Promoter -, Operator -, Repressor +, inducer present d. Promoter +, Operator +, Repressor -, no inducer present

 23.	Multiple products are generated from the same gene by what mechanism? a. Alternative splicing b. Polyadenylation c. Capping
 24.	Thalassemias arise from changes in what part of the beta-globin gene? a. 3'untranslated region b. PolyA tail c. Splice recognition site d. Ribosome binding site
 25.	When gene expression is regulated by mechanisms other than the interaction of cis elements and trans factors, the regulation is called: a. Induction b. Epigenetics c. Attenuation d. Combinatorial control
 26.	Genomic imprinting is accomplished primarily through: a. Methylation b. Acetylation c. Transcription d. Cis and trans factor interactions
 27.	The most frequently methylated base in vertebrates is: a. Adenine b. Cytosine c. Guanine d. Thymine
 28.	MicroRNAs, short endogenous RNA, perform what function in the eukaryotic cell? a. Controlling DNA replication b. Priming RNA synthesis c. RNA splicing d. Repressing gene expression
29.	What mechanism may explain the difference in symptoms in Prader-Willi and Angelman syndromes? a. Genomic imprinting b. Alternative splicing c. Genetic recombination d. Capping
 30.	Alteration of the nucleotide sequence of RNA after transcription is called: a. Methylation b. RNA silencing c. RNA editing d. Capping

Chapter 2: RNA Answer Section

MULTIPLE CHOICE

1.	ANS:	C	F	TS:	1
2.	ANS:	D	F	PTS:	1
3.	ANS:	C	F	TS:	1
4.	ANS:	C	F	TS:	1
5.	ANS:	D	F	TS:	1
6.	ANS:	C	F	TS:	1
7.	ANS:	D	F	TS:	1
8.	ANS:	D	F	PTS:	1
9.	ANS:	A	F	TS:	1
10.	ANS:	В	F	TS:	1
11.	ANS:	В	F	PTS:	1
12.	ANS:	E	F	PTS:	1
13.	ANS:	C	F	PTS:	1
14.	ANS:	D	F	PTS:	1
15.	ANS:	C	F	PTS:	1
16.	ANS:	A	F	PTS:	1
17.	ANS:	D	F	PTS:	1
18.	ANS:	A	F	TS:	1
19.	ANS:	В	F	PTS:	1
20.	ANS:	A	F	PTS:	1
21.	ANS:	В	F	PTS:	1
22.	ANS:	D	F	PTS:	1
23.	ANS:	A	F	TS:	1
24.	ANS:	C	F	PTS:	1
25.	ANS:	В	F	PTS:	1
26.	ANS:	A	F	PTS:	1
27.	ANS:	В	F	PTS:	1
28.	ANS:	D	F	PTS:	1
29.	ANS:	A	F	PTS:	1
30.	ANS:	C	F	PTS:	1