10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1. $x = t^2 + t$, $y = 3^{t+1}$, t = -2, -1, 0, 1, 2

t	-2	-1	0	1	2
x	2	0	0	2	6
y	$\frac{1}{3}$	1	3	9	27

Therefore, the coordinates are $(2, \frac{1}{3}), (0, 1), (0, 3), (2, 9), \text{ and } (6, 27).$

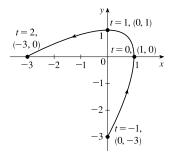
2. $x = \ln(t^2 + 1)$, y = t/(t+4), t = -2, -1, 0, 1, 2

t	-2	-1	0	1	2
x	$\ln 5$	$\ln 2$	0	$\ln 2$	$\ln 5$
y	-1	$-\frac{1}{3}$	0	$\frac{1}{5}$	$\frac{1}{3}$

Therefore, the coordinates are $(\ln 5, -1)$, $(\ln 2, -\frac{1}{3})$, (0, 0), $(\ln 2, \frac{1}{5})$, and $(\ln 5, \frac{1}{3})$.

3. $x = 1 - t^2$, $y = 2t - t^2$, $-1 \le t \le 2$

t	-1	0	1	2
x	0	1	0	-3
y	-3	0	1	0

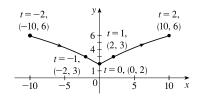


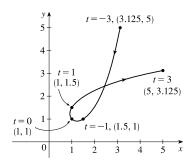
4. $x = t^3 + t$, $y = t^2 + 2$, $-2 \le t \le 2$

t	-2	-1	0	1	2
x	-10	-2	0	2	10
y	6	3	2	3	6

5. $x = 2^t - t$, $y = 2^{-t} + t$, $-3 \le t \le 3$

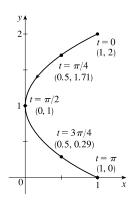
	t	-3	-2	-1	0	1	2	3
	\boldsymbol{x}	3.125	2.25	1.5	1	1	2	5
ſ	y	5	2	1	1	1.5	2.25	3.125





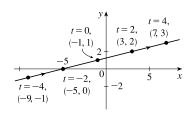
6. $x = \cos^2 t$.	$y = 1 + \cos t$,	$0 < t < \pi$
v. x — $cos v$,	$g-1$ cos ι ,	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

t	0	$\pi/4$	$\pi/2$	$3\pi/4$	π
x	1	0.5	0	0.5	1
y	2	1.707	1	0.293	0



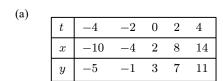
7.
$$x = 2t - 1$$
, $y = \frac{1}{2}t + 1$

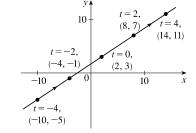
(a)						
()	t	-4	-2	0	2	4
	x	-9	-5	-1	3	7
	y	-1	0	1	2	3



(b)
$$x = 2t - 1 \implies 2t = x + 1 \implies t = \frac{1}{2}x + \frac{1}{2}$$
, so $y = \frac{1}{2}t + 1 = \frac{1}{2}(\frac{1}{2}x + \frac{1}{2}) + 1 = \frac{1}{4}x + \frac{1}{4} + 1 \implies y = \frac{1}{4}x + \frac{5}{4}$

8.
$$x = 3t + 2$$
, $y = 2t + 3$

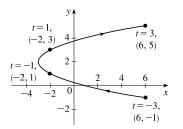




(b)
$$x = 3t + 2 \implies 3t = x - 2 \implies t = \frac{1}{3}x - \frac{2}{3}$$
, so $y = 2t + 3 = 2\left(\frac{1}{3}x - \frac{2}{3}\right) + 3 = \frac{2}{3}x - \frac{4}{3} + 3 \implies y = \frac{2}{3}x + \frac{5}{3}$

9. $x = t^2 - 3$, y = t + 2, $-3 \le t \le 3$

(a)					
()	t	-3	-1	1	3
	x	6	-2	-2	6
	y	-1	1	3	5

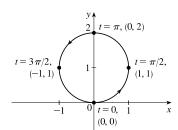


(b)
$$y = t+2 \implies t = y-2$$
, so
$$x = t^2 - 3 = (y-2)^2 - 3 = y^2 - 4y + 4 - 3 \implies x = y^2 - 4y + 1, -1 \le y \le 5$$

10.	$r = \sin t$	$u=1-\cos t$.	$0 < t < 2\pi$

(a)

t	0	$\pi/2$	π	$3\pi/2$	2π
x	0	1	0	-1	0
y	0	1	2	1	0



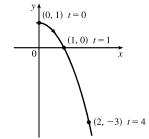
(b)
$$x = \sin t$$
, $y = 1 - \cos t$ [or $y - 1 = -\cos t$] \Rightarrow
$$x^2 + (y - 1)^2 = (\sin t)^2 + (-\cos t)^2 \Rightarrow x^2 + (y - 1)^2 = 1.$$

As t varies from 0 to 2π , the circle with center (0,1) and radius 1 is traced out.

11.
$$x = \sqrt{t}, y = 1 - t$$

(a)

t	0	1	2	3	4
x	0	1	1.414	1.732	2
y	1	0	-1	-2	-3



(b) $x = \sqrt{t} \implies t = x^2 \implies y = 1 - t = 1 - x^2$. Since $t \ge 0, x \ge 0$.

So the curve is the right half of the parabola $y = 1 - x^2$.

12.
$$x = t^2$$
, $y = t^3$

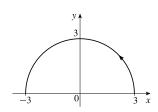
(a)

t	-2	-1	0	1	2
x	4	1	0	1	4
y	-8	-1	0	1	8

(b)
$$y=t^3 \quad \Rightarrow \quad t=\sqrt[3]{y} \quad \Rightarrow \quad x=t^2=\left(\sqrt[3]{y}\right)^2=y^{2/3}. \quad t\in\mathbb{R}, y\in\mathbb{R}, x\geq 0.$$

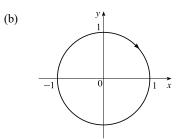
13. (a) $x = 3\cos t$, $y = 3\sin t$, $0 \le t \le \pi$

 $x^{2} + y^{2} = 9\cos^{2}t + 9\sin^{2}t = 9(\cos^{2}t + \sin^{2}t) = 9$, which is the equation of a circle with radius 3. For $0 \le t \le \pi/2$, we have $3 \ge x \ge 0$ and $0 \le y \le 3$. For $\pi/2 < t \le \pi$, we have $0 > x \ge -3$ and $3 > y \ge 0$. Thus, the curve is the top half of the circle $x^2 + y^2 = 9$ traced counterclockwise.

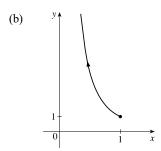


(b)

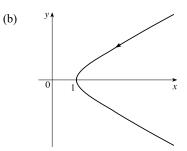
14. (a) $x=\sin 4\theta, \quad y=\cos 4\theta, \quad 0\leq \theta\leq \pi/2$ $x^2+y^2=\sin^2 4\theta+\cos^2 4\theta=1, \text{ which is the equation of a circle with radius 1. When $\theta=0$, we have $x=0$ and $y=1$. For $0\leq \theta\leq \pi/4$, we have $x\geq 0$. For $\pi/4<\theta\leq \pi/2$, we have $x\leq 0$. Thus, the curve is the circle $x^2+y^2=1$ traced clockwise starting at $(0,1)$.$



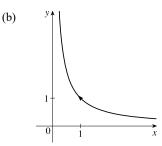
15. (a) $x=\cos\theta, \quad y=\sec^2\theta, \quad 0\leq \theta<\pi/2.$ $y=\sec^2\theta=\frac{1}{\cos^2\theta}=\frac{1}{x^2}. \text{ For } 0\leq \theta<\pi/2, \text{ we have } 1\geq x>0$ and $1\leq y.$



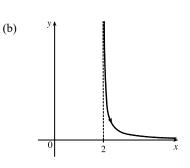
16. (a) $x=\csc t, y=\cot t, 0 < t < \pi$ $y^2-x^2=\cot^2 t-\csc^2 t=1. \text{ For } 0 < t < \pi, \text{ we have } x>1.$ Thus, the curve is the right branch of the hyperbola $y^2-x^2=1.$



17. (a) $y=e^t=1/e^{-t}=1/x$ for x>0 since $x=e^{-t}$. Thus, the curve is the portion of the hyperbola y=1/x with x>0.



18. (a) $x=t+2 \Rightarrow t=x-2$. y=1/t=1/(x-2). For t>0, we have x>2 and y>0. Thus, the curve is the portion of the hyperbola y=1/(x-2) with x>2.

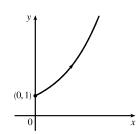


(b)

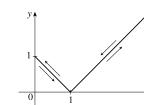
(b)

(b)

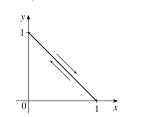
19. (a) $x = \ln t$, $y = \sqrt{t}$, $t \ge 1$. $x = \ln t \quad \Rightarrow \quad t = e^x \quad \Rightarrow \quad y = \sqrt{t} = e^{x/2}, x \ge 0.$



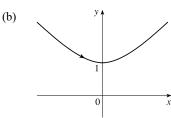
20. (a) $x=|t|,y=\left|1-|t|\right|=|1-x|.$ For all t, we have $x\geq 0$ and $y\geq 0$. Thus, the curve is the portion of the absolute value function y=|1-x| with $x\geq 0$.



21. (a) $x=\sin^2 t$, $y=\cos^2 t$. $x+y=\sin^2 t+\cos^2 t=1$. For all t, we have $0 \le x \le 1$ and $0 \le y \le 1$. Thus, the curve is the portion of the line x+y=1 or y=-x+1 in the first quadrant.



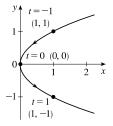
22. (a) $x=\sinh t, y=\cosh t \Rightarrow y^2-x^2=\cosh^2 t-\sinh^2 t=1.$ Since $y=\cosh t\geq 1$, we have the upper branch of the hyperbola $y^2-x^2=1.$



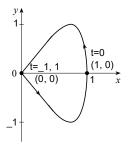
- 23. The parametric equations $x=5\cos t$ and $y=-5\sin t$ both have period 2π . When t=0, we have x=5 and y=0. When $t=\pi/2$, we have x=0 and y=-5. This is one-fourth of a circle. Thus, the object completes one revolution in $4\cdot\frac{\pi}{2}=2\pi$ seconds following a clockwise path.
- **24.** The parametric equations $x=3\sin\left(\frac{\pi}{4}t\right)$ and $y=3\cos\left(\frac{\pi}{4}t\right)$ both have period $\frac{2\pi}{\pi/4}=8$. When t=0, we have x=0 and y=3. When t=2, we have x=3 and y=0. This is one-fourth of a circle. Thus, the object completes one revolution in $4\cdot 2=8$ seconds following a clockwise path.
- **25.** $x = 5 + 2\cos \pi t$, $y = 3 + 2\sin \pi t$ $\Rightarrow \cos \pi t = \frac{x-5}{2}$, $\sin \pi t = \frac{y-3}{2}$. $\cos^2(\pi t) + \sin^2(\pi t) = 1$ \Rightarrow $\left(\frac{x-5}{2}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1$. The motion of the particle takes place on a circle centered at (5,3) with a radius 2. As t goes from 1 to 2, the particle starts at the point (3,3) and moves counterclockwise along the circle $\left(\frac{x-5}{2}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1$ to (7,3) [one-half of a circle].
- **26.** $x = 2 + \sin t, y = 1 + 3\cos t \implies \sin t = x 2, \cos t = \frac{y 1}{3}. \sin^2 t + \cos^2 t = 1 \implies (x 2)^2 + \left(\frac{y 1}{3}\right)^2 = 1.$

The motion of the particle takes place on an ellipse centered at (2,1). As t goes from $\pi/2$ to 2π , the particle starts at the point (3,1) and moves counterclockwise three-fourths of the way around the ellipse to (2,4).

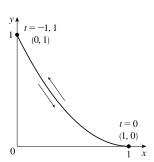
- 27. $x = 5\sin t, y = 2\cos t \implies \sin t = \frac{x}{5}, \cos t = \frac{y}{2}. \sin^2 t + \cos^2 t = 1 \implies \left(\frac{x}{5}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$. The motion of the particle takes place on an ellipse centered at (0,0). As t goes from $-\pi$ to 5π , the particle starts at the point (0,-2) and moves clockwise around the ellipse 3 times.
- 28. $y = \cos^2 t = 1 \sin^2 t = 1 x^2$. The motion of the particle takes place on the parabola $y = 1 x^2$. As t goes from -2π to $-\pi$, the particle starts at the point (0,1), moves to (1,0), and goes back to (0,1). As t goes from $-\pi$ to 0, the particle moves to (-1,0) and goes back to (0,1). The particle repeats this motion as t goes from 0 to 2π .
- **29**. We must have $1 \le x \le 4$ and $2 \le y \le 3$. So the graph of the curve must be contained in the rectangle [1,4] by [2,3].
- **30.** (a) From the first graph, we have $1 \le x \le 2$. From the second graph, we have $-1 \le y \le 1$. The only choice that satisfies either of those conditions is III.
 - (b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
 - (c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \le y \le 2$. Choice IV satisfies these conditions.
 - (d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
- 31. When t = -1, (x, y) = (1, 1). As t increases to 0, x and y both decrease to 0. As t increases from 0 to 1, x increases from 0 to 1 and y decreases from 0 to -1. As t increases beyond 1, x continues to increase and y continues to decrease. For t < -1, x and y are both positive and decreasing. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.</p>



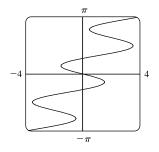
32. When t = -1, (x, y) = (0,0). As t increases to 0, x increases from 0 to 1, while y first decreases to -1 and then increases to 0. As t increases from 0 to 1, x decreases from 1 to 0, while y first increases to 1 and then decreases to 0. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.



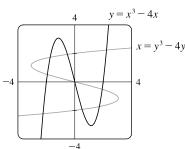
33. When t = -1, (x, y) = (0, 1). As t increases to 0, x increases from 0 to 1 and y decreases from 1 to 0. As t increases from 0 to 1, the curve is retraced in the opposite direction with x decreasing from 1 to 0 and y increasing from 0 to 1. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.



- **34.** (a) $x = t^4 t + 1 = (t^4 + 1) t > 0$ [think of the graphs of $y = t^4 + 1$ and y = t] and $y = t^2 \ge 0$, so these equations are matched with graph V.
 - (b) $y = \sqrt{t} \ge 0$. $x = t^2 2t = t(t 2)$ is negative for 0 < t < 2, so these equations are matched with graph I.
 - (c) $x = t^3 2t = t(t^2 2) = t(t + \sqrt{2})(t \sqrt{2}), y = t^2 t = t(t 1)$. The equation x = 0 has three solutions and the equation y = 0 has two solutions. Thus, the curve has three y-intercepts and two x-intercepts, which matches graph II. Alternate method: $x = t^3 - 2t$, $y = t^2 - t = \left(t^2 - t + \frac{1}{4}\right) - \frac{1}{4} = \left(t - \frac{1}{2}\right)^2 - \frac{1}{4}$ so $y \ge -\frac{1}{4}$ on this curve, whereas x is unbounded. These equations are matched with graph II.
 - (d) $x = \cos 5t$ has period $2\pi/5$ and $y = \sin 2t$ has period π , so x will take on the values -1 to 1, and then 1 to -1, before y takes on the values -1 to 1. Note that when t = 0, (x, y) = (1, 0). These equations are matched with graph VI.
 - (e) $x = t + \sin 4t$, $y = t^2 + \cos 3t$. As t becomes large, t and t^2 become the dominant terms in the expressions for x and y, so the graph will look like the graph of $y = x^2$, but with oscillations. These equations are matched with graph IV.
 - (f) $x = t + \sin 2t$, $y = t + \sin 3t$. As t becomes large, t becomes the dominant term in the expressions for both x and y, so the graph will look like the graph of y = x, but with oscillations. These equations are matched with graph III.
- **35.** Use y = t and $x = t 2\sin \pi t$ with a t-interval of $[-\pi, \pi]$.



36. Use $x_1 = t$, $y_1 = t^3 - 4t$ and $x_2 = t^3 - 4t$, $y_2 = t$ with a *t*-interval of [-3, 3]. There are 9 points of intersection; (0, 0) is fairly obvious. The point in quadrant I is approximately (2.2, 2.2), and by symmetry, the point in quadrant III is approximately (-2.2, -2.2). The other six points are approximately $(\mp 1.9, \pm 0.5)$, $(\mp 1.7, \pm 1.7)$, and $(\mp 0.5, \pm 1.9)$.



37. (a) $x = x_1 + (x_2 - x_1)t$, $y = y_1 + (y_2 - y_1)t$, $0 \le t \le 1$. Clearly the curve passes through $P_1(x_1, y_1)$ when t = 0 and through $P_2(x_2, y_2)$ when t = 1. For 0 < t < 1, x is strictly between x_1 and x_2 and y is strictly between y_1 and y_2 . For every value of t, x and y satisfy the relation $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$, which is the equation of the line through $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.

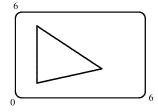
Finally, any point (x,y) on that line satisfies $\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$; if we call that common value t, then the given parametric equations yield the point (x, y); and any (x, y) on the line between $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ yields a value of t in [0, 1]. So the given parametric equations exactly specify the line segment from $P_1(x_1, y_1)$ to $P_2(x_2, y_2)$.

(b)
$$x = -2 + [3 - (-2)]t = -2 + 5t$$
 and $y = 7 + (-1 - 7)t = 7 - 8t$ for $0 \le t \le 1$.

38. For the side of the triangle from A to B, use $(x_1,y_1)=(1,1)$ and $(x_2,y_2)=(4,2)$. Hence, the equations are

$$x = x_1 + (x_2 - x_1)t = 1 + (4 - 1)t = 1 + 3t,$$

 $y = y_1 + (y_2 - y_1)t = 1 + (2 - 1)t = 1 + t.$



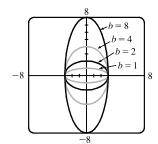
Graphing x=1+3t and y=1+t with $0 \le t \le 1$ gives us the side of the

triangle from A to B. Similarly, for the side BC we use x = 4 - 3t and y = 2 + 3t, and for the side AC we use x = 1 and y = 1 + 4t.

- 39. The result in Example 4 indicates the parametric equations have the form $x=h+r\sin bt$ and $y=k+r\cos bt$ where (h,k) is the center of the circle with radius r and $b=2\pi/\text{period}$. (The use of positive sine in the x-equation and positive cosine in the y-equation results in a clockwise motion.) With h=0, k=0 and $b=2\pi/4\pi=1/2$, we have $x=5\sin\left(\frac{1}{2}t\right)$, $y=5\cos\left(\frac{1}{2}t\right)$.
- **40.** As in Example 4, we use parametric equations of the form $x = h + r \cos bt$ and $y = k + r \sin bt$ where (h, k) = (1, 3) is the center of the circle with radius r = 1 and $b = 2\pi/\text{period} = 2\pi/3$. (The use of positive cosine in the x-equation and positive sine in the y-equation results in a counterclockwise motion.) Thus, $x = 1 + \cos(\frac{2\pi}{3}t)$, $y = 3 + \sin(\frac{2\pi}{3}t)$.
- 41. The circle $x^2 + (y-1)^2 = 4$ has center (0,1) and radius 2, so by Example 4 it can be represented by $x = 2\cos t$, $y = 1 + 2\sin t$, $0 \le t \le 2\pi$. This representation gives us the circle with a counterclockwise orientation starting at (2,1).
 - (a) To get a clockwise orientation, we could change the equations to $x = 2\cos t$, $y = 1 2\sin t$, $0 \le t \le 2\pi$.
 - (b) To get three times around in the counterclockwise direction, we use the original equations $x=2\cos t,\,y=1+2\sin t$ with the domain expanded to $0\leq t\leq 6\pi$.
 - (c) To start at (0,3) using the original equations, we must have $x_1=0$; that is, $2\cos t=0$. Hence, $t=\frac{\pi}{2}$. So we use $x=2\cos t,\,y=1+2\sin t,\,\frac{\pi}{2}\leq t\leq \frac{3\pi}{2}$.

Alternatively, if we want t to start at 0, we could change the equations of the curve. For example, we could use $x=-2\sin t,\,y=1+2\cos t,\,0\leq t\leq \pi.$

42. (a) Let $x^2/a^2 = \sin^2 t$ and $y^2/b^2 = \cos^2 t$ to obtain $x = a \sin t$ and $y = b \cos t$ with $0 \le t \le 2\pi$ as possible parametric equations for the ellipse $x^2/a^2 + y^2/b^2 = 1$.



- (b) The equations are $x = 3 \sin t$ and $y = b \cos t$ for $b \in \{1, 2, 4, 8\}$.
- (c) As b increases, the ellipse stretches vertically.

43. Big circle: It's centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are

$$x = 2 + 2\cos t$$
, $y = 2 + 2\sin t$, $0 \le t \le 2\pi$

Small circles: They are centered at (1,3) and (3,3) with a radius of 0.1. By Example 4, parametric equations are

(left)
$$x = 1 + 0.1 \cos t$$
, $y = 3 + 0.1 \sin t$, $0 \le t \le 2\pi$

and (right)
$$x = 3 + 0.1 \cos t$$
, $y = 3 + 0.1 \sin t$, $0 \le t \le 2\pi$

Semicircle: It's the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are

$$x = 2 + 1\cos t$$
, $y = 2 + 1\sin t$, $\pi \le t \le 2\pi$

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last t-interval to $[0, 2\pi]$ in order to match the others. We can do this by changing t to 0.5t. This change gives us the upper half. There are several ways to get the lower half—one is to change the "+" to a "-" in the y-assignment, giving us

$$x = 2 + 1\cos(0.5t),$$
 $y = 2 - 1\sin(0.5t),$ $0 \le t \le 2\pi$

44. If you are using a calculator or computer that can overlay graphs (using multiple t-intervals), the following is appropriate.

Left side: x = 1 and y goes from 1.5 to 4, so use

$$x = 1, y = t, 1.5 \le t \le 4$$

Right side: x = 10 and y goes from 1.5 to 4, so use

$$x = 10, y = t, 1.5 \le t \le 4$$

Bottom: x goes from 1 to 10 and y = 1.5, so use

$$x = t,$$
 $y = 1.5,$ $1 \le t \le 10$

Handle: It starts at (10, 4) and ends at (13, 7), so use

$$x = 10 + t$$
, $y = 4 + t$, $0 \le t \le 3$

Left wheel: It's centered at (3,1), has a radius of 1, and appears to go about 30° above the horizontal, so use

$$x = 3 + 1\cos t$$
, $y = 1 + 1\sin t$, $\frac{5\pi}{6} \le t \le \frac{13\pi}{6}$

Right wheel: Similar to the left wheel with center (8, 1), so use

$$x = 8 + 1\cos t$$
, $y = 1 + 1\sin t$, $\frac{5\pi}{6} \le t \le \frac{13\pi}{6}$

If you are using a calculator or computer that cannot overlay graphs (using one t-interval), the following is appropriate. We'll start by picking the t-interval [0, 2.5] since it easily matches the t-values for the two sides. We now need to find parametric equations for all graphs with $0 \le t \le 2.5$.

Left side: x = 1 and y goes from 1.5 to 4, so use

$$x = 1,$$
 $y = 1.5 + t,$ $0 \le t \le 2.5$

[continued]

Right side: x = 10 and y goes from 1.5 to 4, so use

$$x = 10,$$
 $y = 1.5 + t,$ $0 \le t \le 2.5$

Bottom: x goes from 1 to 10 and y = 1.5, so use

$$x = 1 + 3.6t$$
, $y = 1.5$, $0 \le t \le 2.5$

To get the x-assignment, think of creating a linear function such that when t = 0, x = 1 and when t = 2.5, x=10. We can use the point-slope form of a line with $(t_1,x_1)=(0,1)$ and $(t_2,x_2)=(2.5,10)$.

$$x - 1 = \frac{10 - 1}{2.5 - 0}(t - 0) \Rightarrow x = 1 + 3.6t.$$

Handle: It starts at (10, 4) and ends at (13, 7), so use

$$x = 10 + 1.2t$$
, $y = 4 + 1.2t$, $0 \le t \le 2.5$

$$(t_1, x_1) = (0, 10)$$
 and $(t_2, x_2) = (2.5, 13)$ gives us $x - 10 = \frac{13 - 10}{2.5 - 0}(t - 0) \implies x = 10 + 1.2t$.

$$(t_1, y_1) = (0, 4)$$
 and $(t_2, y_2) = (2.5, 7)$ gives us $y - 4 = \frac{7 - 4}{2.5 - 0}(t - 0)$ $\Rightarrow y = 4 + 1.2t$.

Left wheel: It's centered at (3,1), has a radius of 1, and appears to go about 30° above the horizontal, so use

$$x = 3 + 1\cos\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad y = 1 + 1\sin\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad 0 \le t \le 2.5$$

$$(t_1, \theta_1) = (0, \frac{5\pi}{6}) \text{ and } (t_2, \theta_2) = (\frac{5}{2}, \frac{13\pi}{6}) \text{ gives us } \theta - \frac{5\pi}{6} = \frac{\frac{13\pi}{6} - \frac{5\pi}{6}}{\frac{5}{2} - 0}(t - 0) \Rightarrow \theta = \frac{5\pi}{6} + \frac{8\pi}{15}t.$$

Right wheel: Similar to the left wheel with center (8, 1), so use

$$x = 8 + 1\cos\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad y = 1 + 1\sin\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad 0 \le t \le 2.5$$

45. (a) (i)
$$x = t^2$$
, $y = t \implies y^2 = t^2 = x$

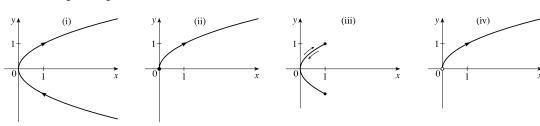
(ii)
$$x = t$$
, $y = \sqrt{t} \implies y^2 = t = x$

(iii)
$$x = \cos^2 t$$
, $y = \cos t$ \Rightarrow $y^2 = \cos^2 t = x$

(iv)
$$x = 3^{2t}$$
, $y = 3^t \Rightarrow y^2 = (3^t)^2 = 3^{2t} = x$.

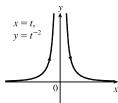
 $y = t \Rightarrow y^2 = t^2 = x$ (ii) $x = t, y = \sqrt{t} \Rightarrow y^2 = t = x$ (iii) $x = \cos^2 t, y = \cos t \Rightarrow y^2 = \cos^2 t = x$ (iv) $x = 3^{2t}, u = 3^{t} \Rightarrow x^2 = x^2$ Thus, the points on all four of the given parametric curves satisfy the Cartesian equation $y^2 = x$.

(b) The graph of $y^2 = x$ is a right-opening parabola with vertex at the origin. For curve (i), $x \ge 0$ and y is unbounded so the graph contains the entire parabola. For (ii), $y = \sqrt{t}$ requires that $t \ge 0$, so that both $x \ge 0$ and $y \ge 0$, which captures the upper half of the parabola, including the origin. For (iii), $-1 \le \cos t \le 1$ so the graph is the portion of the parabola contained in the intervals $0 \le x \le 1$ and $-1 \le y \le 1$. For (iv), x > 0 and y > 0, which captures the upper half of the parabola excluding the origin.

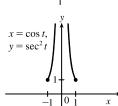


© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

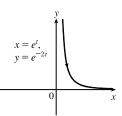
46. (a) x=t, so $y=t^{-2}=x^{-2}$. We get the entire curve $y=1/x^2$ traversed in a left-to-right direction.



(b) $x=\cos t, y=\sec^2 t=\frac{1}{\cos^2 t}=\frac{1}{x^2}.$ Since $\sec t\geq 1$, we only get the parts of the curve $y=1/x^2$ with $y\geq 1.$ We get the first quadrant portion of the curve when x>0, that is, $\cos t>0$, and we get the second quadrant portion of the curve when x<0, that is, $\cos t<0$.

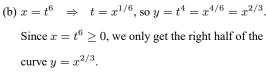


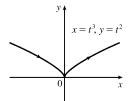
(c) $x=e^t$, $y=e^{-2t}=(e^t)^{-2}=x^{-2}$. Since e^t and e^{-2t} are both positive, we only get the first quadrant portion of the curve $y=1/x^2$.

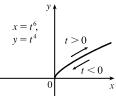


47. (a) $x = t^3 \implies t = x^{1/3}$, so $y = t^2 = x^{2/3}$.

We get the entire curve $y=x^{2/3}$ traversed in a left to right direction.

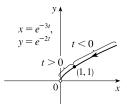




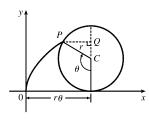


(c) $x = e^{-3t} = (e^{-t})^3$ [so $e^{-t} = x^{1/3}$], $y = e^{-2t} = (e^{-t})^2 = (x^{1/3})^2 = x^{2/3}$.

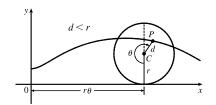
If t < 0, then x and y are both larger than 1. If t > 0, then x and y are between 0 and 1. Since x > 0 and y > 0, the curve never quite reaches the origin.

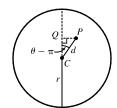


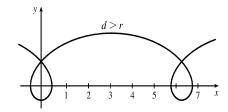
48. The case $\frac{\pi}{2} < \theta < \pi$ is illustrated. C has coordinates $(r\theta, r)$ as in Example 7, and Q has coordinates $(r\theta, r + r\cos(\pi - \theta)) = (r\theta, r(1 - \cos\theta))$ [since $\cos(\pi - \alpha) = \cos\pi\cos\alpha + \sin\pi\sin\alpha = -\cos\alpha$], so P has coordinates $(r\theta - r\sin(\pi - \theta), r(1 - \cos\theta)) = (r(\theta - \sin\theta), r(1 - \cos\theta))$ [since $\sin(\pi - \alpha) = \sin\pi\cos\alpha - \cos\pi\sin\alpha = \sin\alpha$]. Again we have the parametric equations $x = r(\theta - \sin\theta), y = r(1 - \cos\theta)$.



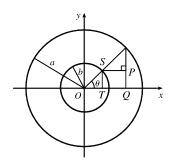
49. The first two diagrams depict the case $\pi < \theta < \frac{3\pi}{2}$, d < r. As in Example 7, C has coordinates $(r\theta, r)$. Now Q (in the second diagram) has coordinates $(r\theta, r + d\cos(\theta - \pi)) = (r\theta, r - d\cos\theta)$, so a typical point P of the trochoid has coordinates $(r\theta + d\sin(\theta - \pi), r - d\cos\theta)$. That is, P has coordinates (x, y), where $x = r\theta - d\sin\theta$ and $y = r - d\cos\theta$. When d = r, these equations agree with those of the cycloid.



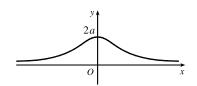




- **50.** In polar coordinates, an equation for the circle is $r=2a\sin\theta$. Thus, the coordinates of Q are $x=r\cos\theta=2a\sin\theta\cos\theta$ and $y=r\sin\theta=2a\sin^2\theta$. The coordinates of R are $x=2a\cot\theta$ and y=2a. Since P is the midpoint of QR, we use the midpoint formula to get $x=a(\sin\theta\cos\theta+\cot\theta)$ and $y=a(1+\sin^2\theta)$.
- 51. It is apparent that x=|OQ| and y=|QP|=|ST|. From the diagram, $x=|OQ|=a\cos\theta$ and $y=|ST|=b\sin\theta$. Thus, the parametric equations are $x=a\cos\theta$ and $y=b\sin\theta$. To eliminate θ we rearrange: $\sin\theta=y/b \Rightarrow \sin^2\theta=(y/b)^2$ and $\cos\theta=x/a \Rightarrow \cos^2\theta=(x/a)^2$. Adding the two equations: $\sin^2\theta+\cos^2\theta=1=x^2/a^2+y^2/b^2$. Thus, we have an ellipse.

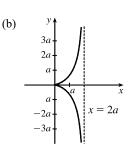


- 52. A has coordinates $(a\cos\theta, a\sin\theta)$. Since OA is perpendicular to AB, $\triangle OAB$ is a right triangle and B has coordinates $(a\sec\theta, 0)$. It follows that P has coordinates $(a\sec\theta, b\sin\theta)$. Thus, the parametric equations are $x=a\sec\theta$, $y=b\sin\theta$.
- **53.** $C=(2a\cot\theta,2a)$, so the x-coordinate of P is $x=2a\cot\theta$. Let B=(0,2a). Then $\angle OAB$ is a right angle and $\angle OBA=\theta$, so $|OA|=2a\sin\theta$ and $A=((2a\sin\theta)\cos\theta,(2a\sin\theta)\sin\theta)$. Thus, the y-coordinate of P is $y=2a\sin^2\theta$.



54. (a) Let θ be the angle of inclination of segment OP. Then $|OB| = \frac{2a}{\cos \theta}$. Let C = (2a, 0). Then by use of right triangle OAC we see that $|OA| = 2a\cos \theta$. Now





So P has coordinates $x = 2a \sin \theta \tan \theta \cdot \cos \theta = 2a \sin^2 \theta$ and $y = 2a \sin \theta \tan \theta \cdot \sin \theta = 2a \sin^2 \theta \tan \theta$.

947

Blue particle:
$$x = 2t + 1, y = 2t + 6$$

Substituting x=1 and y=6 into the parametric equations for the red particle gives 1=t+5 and $6=t^2+4t+6$, which are both satisfied when t=-4. Making the same substitution for the blue particle gives 1=2t+1 and 6=2t+6, which are both satisfied when t=0. Repeating the process for x=6 and y=11, the red particle's equations become 6=t+5 and $11=t^2+4t+6$, which are both satisfied when t=1. Similarly, the blue particle's equations become 6=2t+1 and 11=2t+6, which are both satisfied when t=2.5. Thus, (1,6) and (6,11) are both intersection points, but they are not collision points, since the particles reach each of these points at different times.

(b) Blue particle: $x = 2t + 1 \implies t = \frac{1}{2}(x - 1)$.

Substituting into the equation for y gives $y = 2t + 6 = 2\left[\frac{1}{2}(x-1)\right] + 6 = x + 5$.

Green particle: $x = 2t + 4 \implies t = \frac{1}{2}(x - 4)$.

Substituting into the equation for y gives $y = 2t + 9 = 2\left[\frac{1}{2}(x-4)\right] + 9 = x + 5$.

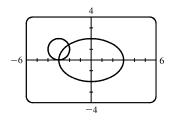
Thus, the green and blue particles both move along the line y = x + 5.

Now, the red and green particles will collide if there is a time t when both particles are at the same point. Equating the x parametric equations, we find t+5=2t+4, which is satisfied when t=1, and gives x=1+5=6. Substituting t=1 into the red and green particles' y equations gives $y=(1)^2+4(1)+6=11$ and y=2(1)+9=11, respectively. Thus, the red and green particles collide at the point (6,11) when t=1.

56. (a)
$$x = 3\sin t$$
, $y = 2\cos t$, $0 \le t \le 2\pi$; $x = -3 + \cos t$, $y = 1 + \sin t$, $0 < t < 2\pi$

There are 2 points of intersection:

(-3,0) and approximately (-2.1, 1.4).



(b) A collision point occurs when $x_1 = x_2$ and $y_1 = y_2$ for the same t. So solve the equations:

$$3\sin t = -3 + \cos t$$
 (1)

$$2\cos t = 1 + \sin t \qquad (2)$$

From (2), $\sin t = 2\cos t - 1$. Substituting into (1), we get $3(2\cos t - 1) = -3 + \cos t \implies 5\cos t = 0 \quad (\star) \implies \cos t = 0 \implies t = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$. We check that $t = \frac{3\pi}{2}$ satisfies (1) and (2) but $t = \frac{\pi}{2}$ does not. So the only collision point occurs when $t = \frac{3\pi}{2}$, and this gives the point (-3,0). [We could check our work by graphing x_1 and x_2 together as functions of t and, on another plot, y_1 and y_2 as functions of t. If we do so, we see that the only value of t for which both pairs of graphs intersect is $t = \frac{3\pi}{2}$.]

(c) The circle is centered at (3,1) instead of (-3,1). There are still 2 intersection points: (3,0) and (2.1,1.4), but there are no collision points, since (\star) in part (b) becomes $5\cos t = 6 \implies \cos t = \frac{6}{5} > 1$.

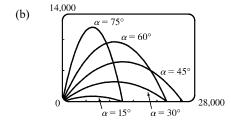
- 57. (a) $x = 1 t^2$, $y = t t^3$. The curve intersects itself if there are two distinct times t = a and t = b (with a < b) such that x(a) = x(b) and y(a) = y(b). The equation x(a) = x(b) gives $1 a^2 = 1 b^2$ so that $a^2 = b^2$. Since $a \ne b$ by assumption, we must have a = -b. Substituting into the equation for y gives $y(-b) = y(b) \Rightarrow -b (-b)^3 = b b^3 \Rightarrow 2b^3 2b = 0 \Rightarrow 2b(b-1)(b+1) = 0 \Rightarrow b = -1, 0, 1$. Since a < b, the only valid solution is b = 1, which corresponds to a = -1 and results in the coordinates x = 0 and y = 0. Thus, the curve intersects itself at (0,0) when t = -1 and t = 1.
 - (b) $x = 2t t^3$, $y = t t^2$. Similar to part (a), we try to find the times t = a and t = b with a < b such that x(a) = x(b) and y(a) = y(b). The equation y(a) = y(b) gives $a a^2 = b b^2 \implies 0 = a^2 a + (b b^2)$. Using the quadratic formula to solve for a, we get

 $a = \frac{1 \pm \sqrt{1 - 4(b - b^2)}}{2} = \frac{1 \pm \sqrt{4b^2 - 4b + 1}}{2} = \frac{1 \pm \sqrt{(2b - 1)^2}}{2} = \frac{1 \pm (2b - 1)}{2} \implies a = b \text{ or } a = 1 - b. \text{ Since } a < b \text{ by assumption, we reject the first solution and substitute } a = 1 - b \text{ into } x(a) = x(b) \implies x(1 - b) = x(b) \implies 2(1 - b) - (1 - b)^3 = 2b - b^3.$ Expanding and simplifying gives $2b^3 - 3b^2 - b + 1 = 0$. By graphing the equation, we see that $b = \frac{1}{2}$ is a zero, so 2b - 1 is a factor, and by long division $b^2 - b - 1$ is another factor. Hence, the solutions are $b = \frac{1}{2}$ and $b = \frac{1}{2} \pm \frac{1}{2}\sqrt{5}$ (found using the quadratic formula). Since a = 1 - b and we require a < b, the only valid solution is $b = \frac{1}{2} + \frac{1}{2}\sqrt{5}$, which corresponds to $a = \frac{1}{2} - \frac{1}{2}\sqrt{5}$ and results in the coordinates $x = 2(\frac{1}{2} - \frac{1}{2}\sqrt{5}) - (\frac{1}{2} - \frac{1}{2}\sqrt{5})^3 = -1$ and $y = \frac{1}{2} - \frac{1}{2}\sqrt{5} - (\frac{1}{2} - \frac{1}{2}\sqrt{5})^2 = -1$. Thus, the curve intersects itself at (-1, -1) when $t = \frac{1}{2} - \frac{1}{2}\sqrt{5}$ and $t = \frac{1}{2} + \frac{1}{2}\sqrt{5}$.

58. (a) If $\alpha=30^\circ$ and $v_0=500$ m/s, then the equations become $x=(500\cos30^\circ)t=250\sqrt{3}t$ and $y=(500\sin30^\circ)t-\frac{1}{2}(9.8)t^2=250t-4.9t^2$. y=0 when t=0 (when the gun is fired) and again when $t=\frac{250}{4.9}\approx51$ s. Then $x=\left(250\sqrt{3}\right)\left(\frac{250}{4.9}\right)\approx22{,}092$ m, so the bullet hits the ground about 22 km from the gun. The formula for y is quadratic in t. To find the maximum y-value, we will complete the square:

$$y = -4.9 \left(t^2 - \tfrac{250}{4.9}t\right) = -4.9 \left[t^2 - \tfrac{250}{4.9}t + \left(\tfrac{125}{4.9}\right)^2\right] + \tfrac{125^2}{4.9} = -4.9 \left(t - \tfrac{125}{4.9}\right)^2 + \tfrac{125^2}{4.9} \le \tfrac{125^2}{4.9} = -\frac{125^2}{4.9} = -\frac{125^2}{4.9$$

with equality when $t=\frac{125}{4.9}$ s, so the maximum height attained is $\frac{125^2}{4.9}\approx 3189$ m.



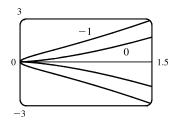
As α (0° < α < 90°) increases up to 45°, the projectile attains a greater height and a greater range. As α increases past 45°, the projectile attains a greater height, but its range decreases.

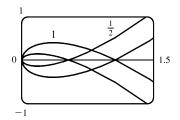
(c)
$$x = (v_0 \cos \alpha)t \implies t = \frac{x}{v_0 \cos \alpha}$$
.

$$y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2 \quad \Rightarrow \quad y = (v_0 \sin \alpha)\frac{x}{v_0 \cos \alpha} - \frac{g}{2}\left(\frac{x}{v_0 \cos \alpha}\right)^2 = (\tan \alpha)x - \left(\frac{g}{2v_0^2 \cos^2 \alpha}\right)x^2,$$

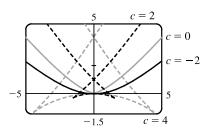
which is the equation of a parabola (quadratic in x).

59. $x = t^2, y = t^3 - ct$. We use a graphing device to produce the graphs for various values of c with $-\pi \le t \le \pi$. Note that all the members of the family are symmetric about the x-axis. For c < 0, the graph does not cross itself, but for c = 0 it has a cusp at (0,0) and for c > 0 the graph crosses itself at x = c, so the loop grows larger as c increases.

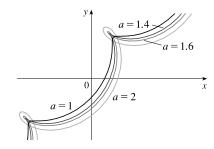




60. $x = 2ct - 4t^3$, $y = -ct^2 + 3t^4$. We use a graphing device to produce the graphs for various values of c with $-\pi \le t \le \pi$. Note that all the members of the family are symmetric about the y-axis. When c < 0, the graph resembles that of a polynomial of even degree, but when c = 0 there is a corner at the origin, and when c > 0, the graph crosses itself at the origin, and has two cusps below the x-axis. The size of the "swallowtail" increases as c increases.

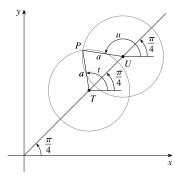


61. $x=t+a\cos t, y=t+a\sin t, a>0$. From the first figure, we see that curves roughly follow the line y=x, and they start having loops when a is between 1.4 and 1.6. The loops increase in size as a increases.



While not required, the following is a solution to determine the *exact* values for which the curve has a loop, that is, we seek the values of a for which there exist parameter values t and u such that t < u and $(t + a\cos t, t + a\sin t) = (u + a\cos u, u + a\sin u)$.

[continued]



In the diagram at the left, T denotes the point (t, t), U the point (u, u), and P the point $(t + a\cos t, t + a\sin t) = (u + a\cos u, u + a\sin u)$. Since $\overline{PT} = \overline{PU} = a$, the triangle PTU is isosceles. Therefore its base angles, $\alpha = \angle PTU$ and $\beta = \angle PUT$ are equal. Since $\alpha = t - \frac{\pi}{4}$ and $\beta = 2\pi - \frac{3\pi}{4} - u = \frac{5\pi}{4} - u$, the relation $\alpha = \beta$ implies that $u + t = \frac{3\pi}{2}$ (1).

Since $\overline{TU}=\operatorname{distance}((t,t),(u,u))=\sqrt{2(u-t)^2}=\sqrt{2}\,(u-t),$ we see that $\cos \alpha = \frac{\frac{1}{2}\overline{TU}}{\overline{PT}} = \frac{(u-t)/\sqrt{2}}{a}$, so $u-t = \sqrt{2}a\cos \alpha$, that is, $u - t = \sqrt{2} a \cos(t - \frac{\pi}{4})$ (2). Now $\cos(t - \frac{\pi}{4}) = \sin[\frac{\pi}{2} - (t - \frac{\pi}{4})] = \sin(\frac{3\pi}{4} - t)$, so we can rewrite (2) as $u-t=\sqrt{2}\,a\sin(\frac{3\pi}{4}-t)$ (2'). Subtracting (2') from (1) and

dividing by 2, we obtain $t = \frac{3\pi}{4} - \frac{\sqrt{2}}{2}a\sin(\frac{3\pi}{4} - t)$, or $\frac{3\pi}{4} - t = \frac{a}{\sqrt{2}}\sin(\frac{3\pi}{4} - t)$ (3).

Since a > 0 and t < u, it follows from (2') that $\sin(\frac{3\pi}{4} - t) > 0$. Thus from (3) we see that $t < \frac{3\pi}{4}$. [We have implicitly assumed that $0 < t < \pi$ by the way we drew our diagram, but we lost no generality by doing so since replacing t by $t+2\pi$ merely increases x and y by 2π . The curve's basic shape repeats every time we change t by 2π .] Solving for a in

(3), we get
$$a = \frac{\sqrt{2}\left(\frac{3\pi}{4} - t\right)}{\sin\left(\frac{3\pi}{4} - t\right)}$$
. Write $z = \frac{3\pi}{4} - t$. Then $a = \frac{\sqrt{2}z}{\sin z}$, where $z > 0$. Now $\sin z < z$ for $z > 0$, so $a > \sqrt{2}$. $\left[\operatorname{As} z \to 0^+, \operatorname{that is, as } t \to \left(\frac{3\pi}{4}\right)^-, a \to \sqrt{2}\right]$.

62. Consider the curves $x = \sin t + \sin nt$, $y = \cos t + \cos nt$, where n is a positive integer. For n = 1, we get a circle of radius 2 centered at the origin. For n > 1, we get a curve lying on or inside that circle that traces out n - 1 loops as t ranges from 0 to 2π .

 $x^{2} + y^{2} = (\sin t + \sin nt)^{2} + (\cos t + \cos nt)^{2}$ Note: $=\sin^2 t + 2\sin t \sin nt + \sin^2 nt + \cos^2 t + 2\cos t \cos nt + \cos^2 nt$ $= (\sin^2 t + \cos^2 t) + (\sin^2 nt + \cos^2 nt) + 2(\cos t \cos nt + \sin t \sin nt)$ $= 1 + 1 + 2\cos(t - nt) = 2 + 2\cos((1 - n)t) < 4 = 2^{2}$

with equality for n = 1. This shows that each curve lies on or inside the curve for n = 1, which is a circle of radius 2 centered at the origin.

