Organic Chemistry, 8e (Bruice)

Chapter 1 Remembering General Chemistry: Electronic Structure and Bonding

1) Atoms with the same number of protons but different numbers of neutrons are called

Answer: isotopes

Section: 1-1

2) Which of the following elements does this electronic configuration represent?

1s² 2s² 2p⁵

- A) F
- B) C
- C) N
- D) Al
- E)O

Answer: A Section: 1-2

- 3) How many unpaired electrons are present in the isolated carbon atom (atomic number = 6)?
- A) none
- B) one
- C) two
- D) three
- E) four

Answer: C

Section: 1-2

- 4) Which of the following is the electronic configuration of the element Fe?
- A) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶
- B) 1s² 2s² 2p⁶ 3s² 3p⁸ 3d⁶
- C) 1s² 2s² 2p⁸ 3s² 3p⁶ 4s² 3d⁶
- D) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 4d⁶
- E) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^6$

Answer: A Section: 1-2

- 5) The atomic number of boron is 5. The correct electronic configuration of boron is
- A) $1s^2 2s^3$.
- B) $1s^2 2p^3$.
- C) $1s^2 2s^2 2p^1$.
- D) $2s^2 2p^3$.
- E) 1s² 2s² 3s¹.

Answer: C

Section: 1-2

- 6) Which of the following statements correctly describes the third electron shell that surrounds the nucleus of an atom?
- A) The third shell contains only *s* and *p* atomic orbitals.
- B) The maximum number of electrons that can occupy the third shell is 18.
- C) The total number of atomic orbitals present in the third shell is 16.
- D) The third shell can contain f orbitals.
- E) All third shell elements must have d electrons.

Answer: B Section: 1-2

7) Ar, K⁺, Cl⁻ are isoelectronic elements (elements with the same number of electrons). What orbital does the last electron occupy?

Answer: 3p orbital

Section: 1-2

- 8) Give the electronic configuration for N-3.
- A) $1s^22s^2$
- B) $1s^22s^22p^3$
- C) $1s^22s^22p^4$
- D) 1s²2s²2p⁶
- E) 1s22s22p63s1

Answer: D Section: 1-2

9) Give the electronic configuration for Ca⁺².

Answer: 1s22s22p63s23p6

Section: 1-2

- 10) Identify the least electronegative atom.
- A) P
- B) Na
- C) I
- D) B

E) O

Answer: B Section: 1-3

- 11) Give the number of nonbonding lone pairs of electrons in H2NOH.
- A) 0
- B) 1
- C) 2
- D) 3
- E) 4

Answer: D Section: 1-4

- 12) The compound methylamine, CH₃NH₂, contains a C-N bond. In this bond, which of the following best describes the charge on the nitrogen atom?
- A) + 1
- B) slightly positive
- C) uncharged
- D) slightly negative
- E) -1

Answer: D Section: 1-3 MCAT: 1.2

- 13) Which of the compounds below have bonds that are predominantly ionic?
- A) KCl
- B) CF₄
- C) NH₃
- D) both A and B
- E) both B and C

Answer: A Section: 1-3 MCAT: 1.3

- 14) What type of bonding is most important in CH3CH2CH2CH2CH2CH3?
- A) ionic
- B) hydrogen
- C) covalent
- D) polar

Answer: C Section: 1-3 MCAT: 1.3 GLO: G2

- 15) Which of the following contain(s) polar covalent bonds?
- A) NH₃
- B) Na₂O
- C) H₂
- D) KF
- E) both A and C

Answer: A Section: 1-3 MCAT: 1.3

- 16) Which of the following covalent bonds has the largest dipole moment?
- A) C-C
- B) C-H
- C) C-O
- D) H-N
- E) H-F

Answer: E

Section: 1-3

MCAT: 2.6, 6.4

17) Using the symbol δ + and δ -, show the direction of the polarity in the indicated bond.

СН30---Н

Answer:

 $\delta - \delta +$

СН30---Н

Section: 1-3 MCAT: 2.6

18) Covalent bonds may be polar or nonpolar. What property of the atoms forming a given bond determines this?

Answer: electronegativity

Section: 1-3 MCAT: 1.5

19) Provide the mathematical equation for the dipole moment of a bond, and identify the variables.

Answer: $\mu = e \times d$, where μ is the bond dipole moment, e is the amount of charge which is separated, and d is the distance over which the charge is separated.

Section: 1-3 MCAT: 1.5

20) The formal charge on nitrogen in the compound below is

- A) +2
- B) +1
- C) 0
- D) -1
- E) -2

Answer: B Section: 1-4

MCAT: 1.2

21) Which of the following is the most likely electronic structure for C₂H₂?

A)

B)

C)

D) H—C≡C—H

E)

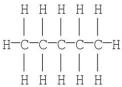
Answer: D

Section: 1-4

MCAT: 1.2, 2.1, 2.2

- 22) Which of the following structures, including formal charges, is correct for diazomethane, CH₂N₂?
- A): $CH_2-N=N$:
- B)
- \ominus \oplus
- CH2=N=N:
- \oplus \ominus
- CH2=N=N:
- D)
- ⊕ ••⊖
- $CH_2 = N = N$:
- E)
- +3 **-3
- CH2-N-N:
- Answer: D
- Section: 1-4
- MCAT: 1.2, 2.1
- 23) What are the formal charges on nitrogen and the starred oxygen atom in the following molecule?
- A) N = -1, O = 0
- B) N = +1, O = -1
- C) N = +1, O = +1
- \vec{D}) N = -1, O = -1
- E) N=+1, O=0
- Answer: E
- Section: 1-4
- MCAT: 2.1

24) Draw the Kekulé structure for each of the following:


a. CH3CH2OH b. CH3CHO c. (CH3)3C+

Answer:

- CH₃ CH₃ CH₃ CH₃ CH₃

Section: 1-4 MCAT: 1.2, 2.1

25) The Kekulé structure of pentane is shown below. Draw the condensed structural formula which corresponds to this Lewis structure.

Answer: CH₃(CH₂)₃CH₃

Section: 1-4

26) Draw condensed structures for the four compounds with formula C₃H₉N.

Answer: CH₃CH₂CH₂NH₂

CH₃CH₂NHCH₃

 $(CH_3)_2CHNH_2$

(CH₃)₃N

Section: 1-4 MCAT: 1.1

GLO: G2

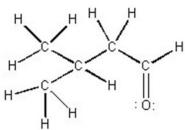
27) Draw a Lewis structure for the molecule given and show all formal charges.

CH₂CO

Answer:

Н

C::0


Η

Section: 1-4 MCAT: 1.2, 2.1

28) Expand the condensed structure below to show the covalent bonds and the lone-pair electrons.

(CH₃)₂CHCH₂CHO

Answer:

Section: 1-4 MCAT: 1.2, 2.1

29) Draw the Lewis structure for CH₃N₂⁺.

Answer:

Section: 1-4 MCAT: 1.2, 2.1

30) Give the formal charge on nitrogen in NH4.

A) -2

B) -1

C)0

D) +1

E)+2

Answer: D Section: 1-4 MCAT: 1.2 31) How many distinct and degenerate p orbitals exist in the second electron shell, where n = 2?

A)0

B) 1

C) 2

D) 3

E) 4

Answer: D Section: 1-5

32) Draw the shape of a 2p orbital.

Answer:

Section: 1-5

33) Consider the interaction of two hydrogen 1s atomic orbitals of the same phase. Which of the statements below is an incorrect description of this interaction?

A) A sigma bonding molecular orbital is formed.

B) The molecular orbital formed is lower in energy than a hydrogen 1s atomic orbital.

C) The molecular orbital formed has a node between the atoms.

D) The molecular orbital formed is cylindrically symmetric.

E) A maximum of two electrons may occupy the molecular orbital formed.

Answer: C Section: 1-6

34) Both sigma (σ) and pi (π) bonds can be formed by overlapping p orbitals. Describe the difference.

Answer: Sigma bonds are formed from the overlap of atomic orbitals along a circular axis of symmetrical nature, i.e., head-on overlap. All single bonds are sigma bonds.

Pi bonds are formed from the overlap of atomic orbitals along a non-symmetrical (parallel) axis, i.e., side-to-side overlap. Double and triple bonds contain both sigma and pi bonds.

Section: 1-6

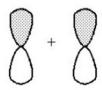
MCAT: 2.7, 7.5, 9.3, 14.3, 15.1

35) What kind of molecular orbital $(\sigma, \sigma^*, \pi, \text{ or } \pi^*)$ results when the two atomic orbitals shown below interact in the manner indicated?

+

Answer: σ^* Section: 1-6

MCAT: 2.7, 7.5, 9.3, 14.3


36) What kind of molecular orbital $(\sigma, \sigma^*, \pi, \text{ or } \pi^*)$ results when the two atomic orbitals shown below interact in the manner indicated?

Answer: σ Section: 1-6

MCAT: 2.7, 7.5, 9.3, 14.3

37) What kind of molecular orbital $(\sigma, \sigma^*, \pi, \text{ or } \pi^*)$ results when the two atomic orbitals shown below interact in the manner indicated?

Answer: π Section: 1-6

MCAT: 2.7, 7.5, 9.3, 14.3

38) What kind of molecular orbital $(\sigma, \sigma^*, \pi, \text{ or } \pi^*)$ results when the two atomic orbitals shown below interact in the manner indicated?

Answer: σ* Section: 1-6

MCAT: 2.7, 7.5, 9.3, 14.3

39) What kind of molecular orbital $(\sigma, \sigma^*, \pi, \text{ or } \pi^*)$ results when the two atomic orbitals shown below interact in the manner indicated?

Answer: π^* Section: 1-6

MCAT: 2.7, 7.5, 9.3, 14.3

40) Choose the correct hybridization for the atom indicated in the molecule below.

CH3CH2CH2CH3

 \uparrow

A) sp

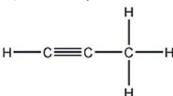
B) sp²

C) sp³

D) none of the above

Answer: C Section: 1-7 MCAT: 2.2

41) What orbitals are used to form the covalent bonds in butane (CH₃CH₂CH₂CH₃)?


Answer: The carbon-carbon σ bonds are formed by the overlap of two carbon sp³ hybrid atomic orbitals. The carbon-hydrogen σ bonds are formed by the overlap of a carbon sp³ hybrid atomic orbital and a hydrogen s orbital.

Section: 1-7

MCAT: 2.7, 7.5, 9.3, 14.3

GLO: G2

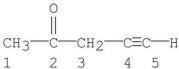
42) How many carbon-carbon sigma bonds are in the molecule shown?

- **A**) 1
- B) 2
- C) 3
- D) 4

Answer: B Section: 1-9

MCAT: 2.7, 7.5, 9.3, 14.3

43) A molecule of acetonitrile CH3CN contains _____ sigma bonds and _____ pi bonds.


- A) 5, 2
- B) 4, 3
- C) 4, 2
- D) 2, 2

E) 4, 0 Answer: A

Answer: A Section: 1-9

MCAT: 2.7, 7.5, 9.3, 14.3

44) Which carbon(s) in the following molecule is (are) sp hybridized?

- A) carbon 1
- B) carbon 2
- C) carbons 1, 3
- D) carbons 4
- E) carbons 4, 5

Answer: E

Section: 1-9

MCAT: 2.2

45) Determine the number of pi bonds in CH₃CN.

- A) 0
- B) 1
- C) 2
- D) 3
- E) 4

Answer: C

Section: 1-9

MCAT: 2.2, 2.7, 7.5, 9.3, 14.3

46) How many sp² hybridized carbons are present in allene (H₂C=C=CH₂)?

- A) 0
- B) 1
- C) 1.5
- D) 2
- E) 3

Answer: D

Section: 1-9

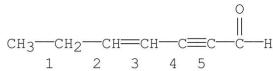
MCAT: 2.2

47) What orbitals overlap to create the C-H bond in ethene (H₂C=CH₂)?

- A) s-sp
- B) s-sp²
- C) s-sp3
- D) s-p
- E) p-p

Answer: B

Section: 1-10

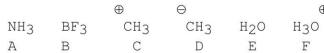

MCAT: 2.2, 2.7, 7.5, 9.3, 14.3

GLO: G2

48) Which of the following is an sp² hybridized carbon? A) \oplus CH₃ B) · CH₃ C) Θ :CH3 D) A and B E) A, B and C Answer: A Section: 1-18 MCAT: 2.2, 4.2 49) What is the predicted shape, bond angle, and hybridization for +CH₃? A) trigonal planar, 120°, sp² B) trigonal planar, 120°, sp3 C) trigonal planar, 109.5°, sp² D) trigonal pyramidal, 120°, sp² E) trigonal pyramidal, 109.5°, sp² Answer: A Section: 1-10 MCAT: 2.2 50) What orbitals overlap to create the H-C bond in CH₃+? A) sp^3-sp^3 B) sp^2-sp^3 C) s-p D) $s-sp^2$ E) $s-sp^3$ Answer: D Section: 1-10 MCAT: 4.2 51) The lone-pair electrons of the methyl anion occupy a(n) _____ orbital. A) s B) p C) sp D) sp^2 E) sp³Answer: E Section: 1-10 MCAT: 2.2, 2.7, 7.5, 9.3, 14.3

56) Which of the following is closest to the C-O-C bond angle in CH3-O-CH3? A) 180° B) 120° C) 109.5° D) 90° E) 160° Answer: C Section: 1-14 MCAT: 2.2
57) Each lone pair of electrons on the O atom in methanol (CH ₃ OH) occupies a(n) orbital. A) s B) p C) sp D) sp ² E) sp ³ Answer: E Section: 1-12 MCAT: 2.2
58) Among the hydrogen halides, the strongest bond is found in and the longest bond is found in A) HF, HF B) HF, HI C) HI, HF D) HI, HI E) HCl, HBr Answer: B Section: 1-13
59) The hydrogen-halogen bond becomes and as the size (atomic weight) of the halogen increases. A) longer, weaker B) longer, stronger C) shorter, weaker D) shorter, stronger Answer: A Section: 1-13

60) Which bond in the following molecule is the shortest?



- A) bond 1
- B) bond 2
- C) bond 3
- D) bond 4
- E) bond 5

Answer: E

Section: 1-15

61) Which of the following species have tetrahedral bond angles?

- A) A, D and E
- B) A, D, E and F
- C) A and E
- D) D only
- E) A, B and E

Answer: B

Section: 1-14

MCAT: 2.2, 4.2

- 62) The carbon-carbon double bond in ethene is _____ and ____ than the carbon-carbon triple bond in ethyne.
- A) stronger; shorter
- B) stronger; longer
- C) weaker; shorter
- D) weaker; longer
- E) stronger; more polar

Answer: D Section: 1-15 63) What is the CNN bond angle in the compound shown below?

- A)~60°
- B) ~90°
- C) $\sim 110^{\circ}$
- D)~120°
- E)~180°

Answer: D Section: 1-14 MCAT: 2.2

64) Draw the structure of a molecule which contains only carbon and hydrogen atoms (only three of which are carbon) and in which two of the carbons are sp² hybridized and the other is sp hybridized.

Answer: H₂C=C=CH₂

Section: 1-15

MCAT: 2.2, 2.7, 7.5, 9.3, 14.3

GLO: G2

65) Why is the C—H bond in ethene (H₂C=CH₂) shorter and stronger than the C—H bond in ethane (CH₃CH₃)?

Answer: The length and strength of a C—H bond depends on the hybridization of the carbon atom. The more s character in the hybrid orbital used by carbon to form the bond, the shorter and stronger the bond. This is because an s orbital is closer to the nucleus than is a p. Ethene uses carbon sp^2 hybrid orbitals (1/3 s character) to make its carbon-hydrogen bonds while ethane uses carbon sp^3 (1/4 s character).

Section: 1-15 GLO: G2

66) How many nonbonding electron pairs, bonding electron pairs, pi bonds, and sigma bonds are present in CO₂?

Answer: 4 nonbonding electron pairs, 4 bonding electrons pairs, 2 pi bonds, 2 sigma bonds

Section: 1-15

- 67) Identify the hybridization of carbon in H2CO.
- A) sp
- B) sp²
- C) sp³
- D) sp4
- E) s^3p

Answer: B Section: 1-14 MCAT: 9.3

- 68) Give the H-C-H bond angle in H₂CO.
- A) 60
- B) 90
- C) 109.5
- D) 120
- E) 180

Answer: D Section: 1-15

- 69) Identify the hybridization of the oxygen in CH3OCH3.
- A) sp
- B) sp²
- C) sp3
- D) sp⁴
- E) sp⁵

Answer: C Section: 1-15

70) Give the hybridizations of the carbons, from left to right, in CH₃CH=CHCl.

Answer: sp³, sp², sp²

Section: 1-15

71) Give the hybridization, shape, and bond angle for the carbon in CO₂.

Answer: sp, linear, 180

Section: 1-15

72) Give the hybridization, shape, and bond angle for each carbon in CH₃CN.

Answer: CH₃ - sp³, tetrahedral, 109.5; C - sp, linear, 180

Section: 1-14

73) Identify the compound with the weakest bond. A) H ₂ B) HF C) HCl D) HBr E) HI Answer: E
Section: 1-15
74) Identify the hybridization of the nitrogen atom in the molecule (CH ₃) ₃ N. Answer: sp ³ Section: 1-15 MCAT: 2.2
75) In what type of orbital are the lone pair electrons of methoxide (CH ₃ O ⁻) found A) s B) p C) sp D) sp ² E) sp ³ Answer: E Section: 1-15 MCAT: 2.2 GLO: G2
76) Which of the following molecules does <u>not</u> exhibit a net dipole moment of zero A) CO ₂ B) CH ₄ C) CCl ₄ D) H ₂ O E) SO ₃ Answer: D Section: 1-16

MCAT: 2.6

77) Which of the following molecules has a net dipole moment of zero?

A)

B)

C)

D)

E)

Answer: B

Section: 1-16

MCAT: 2.6

78) Which of the following molecules has the smallest dipole moment?

- A) Br₂
- B) NH₃
- C) HCl
- D) HBr

E) HI

Answer: A Section: 1-16

MCAT: 2.5, 6.4

GLO: G2

79) BF3 has a dipole moment of zero. Propose a structure for BF3 that is consistent with this information.

Answer: BF3 is trigonal planar.

Section: 1-16 MCAT: 2.2, 2.5

80) Draw the Kekulé structure and show the direction of the dipole moment for CH₂Cl₂.

Answer:

Section: 1-16 MCAT: 2.2, 2.5

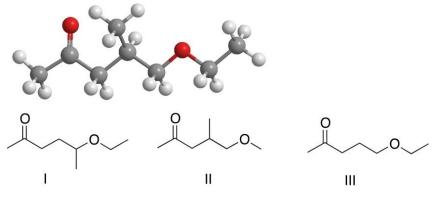
81) Identify the compound(s) that have a nonzero dipole moment. You may choose more than one answer.

A) CH3NH2

B) CO₂

C) CH₃OCH₃

D) $(CH_3)_2C=C(CH_3)_2$


E) BCl₃

Answer: A, C Section: 1-16 MCAT: 2.2, 2.5

82) In 2015, the European Space Agency's Philae Lander detected the presence of methylisocyanate CH₃NCO on the comet 67P. Draw the Lewis structure of this compound, showing all lone pairs.

Answer:

Section: 1-4 MCAT: 2.2 83) Convert the model below into skeletal structure.

- A) I
- B) II
- C) III
- D) IV
- E) V

Answer: E Section: 1-4

84) Several volatile compounds are responsible for the aroma of plums. One of these compounds is γ-decalactone whose Kekulé structure is shown below. Convert it into a skeletal structure.

Answer:

Section: 1-4 GLO: G7

85) Several volatile compounds are responsible for the aroma of plums. One of these compounds is linalool whose a skeletal structure is shown below. Convert it into Kekulé structure.

Answer:

Section: 1-4 GLO: G7

86) Propanal is a compound detected on the surface of comet 67P by the Philae Lander. How many hydrogen atoms are present at the indicated carbon?

A) 0

B) 1

C) 2

D) 3

E) 4

Answer: B Section: 1-4 MCAT: 2.2

87) Nitrous oxide N₂O, also known as laughing gas is often used in surgery and dentistry for its anesthetic and analgesic effects. Draw its Lewis structure?

Answer:

Section: 1-4 MCAT: 2.2 GLO: G7 88) The lobes of the p-orbital are often designated by "+" and "-" signs as shown. What do these signs represent?

- A) opposite charges
- B) phases of the orbital
- C) positive indicates the location of protons and negative indicates the location of electrons
- D) that the orbital has polarity
- E) all of the above

Answer: B Section: 1-5

89) The structure of a widely used anesthetic propofol is given below. How many sp³ hybridized atoms are in this molecule?

- A) 1
- B) 3
- C) 5
- D) 6
- E) 9

Answer: D Section: 1-15 MCAT: 2.2

90) Propanal is a compound detected on the surface of comet 67P by the Philae Lander. How many atoms sp² hybridized atoms are in this molecule?

- A) 0
- B) 1
- C) 2
- D) 3
- E) 4

Answer: C Section: 1-15 MCAT: 2.2