CHAPTER 1 - Carbon and Its Compounds

1. Which of the following represents the ground state electron configuration for a O²⁻ ion?

a.
$$1s^2 2s^2 2p^4$$

b.
$$1s^2 2s^2 2p^2$$

c.
$$1s^2 2s^2 2p^6$$

d.
$$2s^22p^4$$

ANSWER:

c

2. How many valence electrons does a nitrogen atom contain?

3

ANSWER:

c

3. How many valence electrons does an O^{2-} ion contain?

d.

a.

ANSWER: c

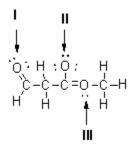
4. What is the Lewis structure of a compound that has the formula of CCl₃ and contains 24 valence electrons?

2

ANSWER: d

5. How many bonded and non-bonded electrons does a molecule with no formal charges and the formula C₂H₄O₂ contain?

- 4 bonded, 4 non-bonded a.
- 7 bonded. 4 non-bonded b.


CHAPTER 1 - Carbon and Its Compounds

- c. 7 bonded, 5 non-bonded
- d. 4 bonded, 7 non-bonded

ANSWER:

b

Figure 1

- 6. Referring to Figure 1, what is the formal charge of the oxygen atom at I?
 - a.
- +1
- b.
- 0
- c.
- -1
- d.
- -2

ANSWER:

b

7. Referring to Figure 1, what is the formal charge of the oxygen atom at **II**?

- -1
- d.

-2

ANSWER:

c

- 8. Referring to Figure 1, what is the formal charge of the oxygen atom at III?
 - a.

$$+1$$

- b.
- 0
- c.
- -1
- d.
- -2

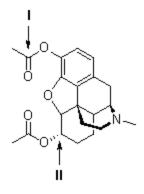
ANSWER:

a

- 9. What best represents a C-H bond in CH₄?
 - s-sp3 orbital overlap a.
 - sp3-sp3 orbital overlap b.
 - s-s orbital overlap
 - d. p-p orbital overlap

ANSWER:

a


- 10. What best represents the C-C bond in C₂H₆?
 - a. s-sp3 orbital overlap
 - b. sp3-sp3 orbital overlap
 - c. s-s orbital overlap
 - d. p-p orbital overlap

ANSWER:

b

Figure 2

The following questions refer to the structure of heroin (shown below).

11. Referring to Figure 2, what is the hybridization of the nitrogen atom?

a.

-

b.

sp

c.

 sp^2

d.

 sp^3

ANSWER:

d

- 12. Referring to Figure 2, what is the geometry of the carbon atom shown at I?
 - a. bent
 - b. trigonal planar
 - c. tetrahedral
 - d. trigonal pyramidal

ANSWER:

b

- 13. Referring to Figure 2, what is the geometry of the carbon atom shown at **II**?
 - a. bent
 - b. trigonal planar
 - c. tetrahedral
 - d. trigonal pyramidal

ANSWER:

c

Name :		Class :	Dat e:
CHAPTER 1 - Carbon	and Its Compound	ds —	
	a.	p	
	b.	sp	
	c.	sp^2	
	d.	sp^3	
ANSWER:		SP	c
15. Referring to Figure 2,	what is the hybridiz	zation of the carbon atom at	II?
	a.	p	
	b.	sp	
	c.	sp^2	
	d.	sp^3	
ANSWER:		S.P.	d
ANSWER:	a. b. c. d.	lectron configuration: 1s ² 2s ² S O Ar Si	а a
17. How many orientation	ns exist for a s orbita	al?	
, , , , , , , , , , , , , , , , , , ,	a.	1	
	b.	2	
	c.	3	
	d.	4	
ANSWER:			a
18. How many orientation	ns exist for a p orbit	al?	
	a.	1	
	b.	2	
	c.	3	
	d.	4	
ANSWER:			c
19. How many orientation	ns exist for a sp ³ orb	ital?	
-	a.	1	
	h	2	

3

4

c.

d.

ANSWER:

d

20. How many orientations exist for an sp orbital?

a.

1

b.

- 2
- c. d.

3

ANSWER:

b

21. What is the geometry around an sp² hybridized carbon?

- a. linear
- b. trigonal planar
- c. tetrahedral
- d. trigonal pyramidal

ANSWER:

b

22. What is the geometry around an sp hybridized carbon?

- a. linear
- b. trigonal planar
- c. tetrahedral
- d. trigonal pyramidal

ANSWER:

a

23. How many bonds does oxygen make while remaining neutral?

- а. b.
- 1
- c.

2

d.

4

ANSWER:

b

24. How many hydrogens does the following line structure contain?

- a.
- b.
- c.
- 10 19

1

- d.
- 26

ANSWER:

c

CHAPTER 1 - Carbon and Its Compounds

25. Which of the following best describes a ó* orbital?

- a. It is a bonding orbital with zero nodes.
- b. It is an anti-bonding orbital with zero nodes.
- c. It is a bonding orbital with one node.
- d. It is an anti-bonding orbital with one node.

ANSWER:

26. What can be said about the carbon atom at I?

- a. It is sp² hybridized and pointed out of the page.
- b. It is sp² hybridized and pointed into the page.
- c. It is sp³ hybridized and pointed out of the page.
- d. It is sp³ hybridized and pointed into the page.

ANSWER: a

27. Which of the following molecules is represented in condensed structure?

- c. CH₃CH₂COCH₃
- d. H H 'O' H H - C - C - C - C - H H H H

ANSWER:

28. What best describes a wedged bond?

- a. It looks like and represents going into the page.
- b. It looks like and represents going out of the page.
- c. It looks like and represents going into the page.
- d. It looks like and represents going out of the page.

ANSWER:

CHAPTER 1 - Carbon and Its Compounds

29. What best represents the hydroxyl group in the molecule shown below?

- a. It is sp hybridized and pointed out of the page.
- b. It is sp hybridized and pointed into the page.
- c. It is sp³ hybridized and pointed out of the page.
- d. It is sp³ hybridized and pointed into the page.

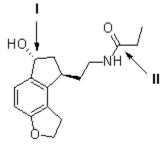
ANSWER:

c

- 30. Which of the following best describes a ð orbital?
 - a. It is a bonding orbital with zero nodes.
 - b. It is an anti-bonding orbital with zero nodes.
 - c. It is a bonding orbital with one node.
 - d. It is an anti-bonding orbital with one node.

ANSWER:

c


- 31. What are the orbital angles around an sp² hybridized atom?
 - a. 180°
 - b. 120°
 - c. 109.5°
 - d. 90°

ANSWER:

b

Figure 3

The following questions refer to the molecule drawn below.

- 32. Referring to Figure 3, how many hydrogen atoms are contained in the molecule shown?
 - a.
- 16
- b.
- 19
- c.
- 21
- d.
- 26

ANSWER:

c

Name :			CI :	ass		Dat e:	
СНАРТЕ	ER 1 - Carb	on and Its Compound	ls				
33. Referr	ing to Figur	e 3, how many sp ² atom	ns are contai	ned in the mole	ecule shown?		
		a.		6			
		b.		7			
		c.		8			
		d.		9			
ANSWER:							d
34. Referr	ing to Figur	e 3, how many sp ³ atom	ns are contai	ned in the mole	ecule shown?		
		a.	9				
		b.	10)			
		c.	1	1			
		d.	12	2			
ANSWER:							c
35 Referr	ing to Figur	e 3, what is the hybridiz	zation of the	carbon atom at	· I ?		
33.1101011		a.	S S		,		
		b.	sp				
		c.	sp^2				
		d.	sp^3				
ANSWER:			SP				d
26 Deform	ing to Figur	e 3, what best represent	e the budge	aul aroun?			
a.		bridized and pointed or	=				
b.	= -	bridized and pointed in					
c.		ybridized and pointed o		oe			
d.		ybridized and pointed in					
ANSWER:	it is sp ii	yoridized and pointed i	nto the page	•			d
ANSWEK.							u
37. Referr	ing to Figure	e 3, what is the orbital g	geometry of	the carbon aton	n at II ?		
	a.	trigonal planar					
	b.	trigonal pyramidal					
	c.	tetrahedral					
	d.	trigonal bipyramidal					
ANSWER:							b
38. Referr	ing to Figur	e 3, what is the hybridiz	zation of the	carbon atom at	t II?		
		a.	S				
		b.	sp				

c.

$$sp^2$$

d.

$$sp^3$$

ANSWER:

c

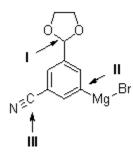
- 39. Referring to Figure 3, what is the orbital geometry of the carbon atom at **I**?
 - a. trigonal planar
 - b. trigonal pyramidal
 - c. tetrahedral
 - d. trigonal bipyramidal

ANSWER:

c

40. Which of the labelled carbons in the molecule shown below is the most electron rich?

- a.
- b.
- II


I

- c. d.
- III IV

ANSWER:

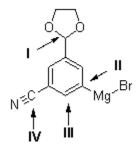
b

41. Which of the labelled carbons in the molecule shown below is the most electron rich and which is the most electron deficient?

- a. I is the most electron rich; II is the most electron deficient.
- b. II is the most electron rich; I is the most electron deficient.
- c. I is the most electron rich; III is the most electron deficient.
- d. III is the most electron rich; I is the most electron deficient.

ANSWER:

b


CHAPTER 1 - Carbon and Its Compounds

- 42. Which of the following structures is **NOT** breaking the octet rule?
 - BF₃
 - b. CCl₃⁺
 - H_3O^+ c.
 - PO_4^{3-} d.

ANSWER:

c

43. Which of the labelled carbons in the molecule shown below is the most electron deficient?

- a.
- b.
- II

I

- Ш
- d.
- IV

ANSWER:

- 44. sp^3 hybridization is the merging of an s orbital with two p orbitals.
- True
- b.
- False

ANSWER:

False

- 45. Electrons in ó bonds can be delocalized.
- True
- b.
- False

ANSWER:

- False
- 46. Electronegativity is used to determine the polarity of a bond.
- True
- b.
- False

ANSWER:

- True
- 47. A carbanion contains a carbon atom with a formal negative charge.
- True
- b.
- False

ANSWER:

True

a

Name :		Class :	Dat e:
CHAPTER 1 - Carb	oon and Its Comp	oounds	
48. Carbocations brea	ak the octet rule.		
	a.	True	
	b.	False	
ANSWER:			True
49. In a O-H bond, the	e electron density	is skewed towards the hydroger	n atom.
ŕ	a.	True	
	b.	False	
ANSWER:			False
50. A carbon atom wi	th two ð bonds an	d two ó bonds is sp ² hybridized	
	a.	True	
	b.	False	
ANSWER:			False
51. Resonance structu	res contain deloca	alized electrons.	
	a.	True	
	b.	False	
ANSWER:			True
52. Anti-bonding orbi	itals are lower in e	nergy than bonding orbitals.	
	a.	True	
	b.	False	
ANSWER:			False
53. ó* represents an a	nti-bonding mole	cular orbital.	
	a.	True	
	b.	False	
ANSWER:			True
54. According to mole	ecular orbital theo	ry, all bonds contain a bonding	and an anti-bonding orbital.
	a.	True	
	b.	False	
ANSWER:			True
55. A ó molecular orb	oital contains out-	of-phase overlap of atomic orbit	als.
	a.	True	
41.55	b.	False	
ANSWER:			False
56. To form a ó bond,	, two atomic orbita	als overlap to form a single mole	ecular orbital.
	a.	True	
	b.	False	

65. Empty p orbitals are incapable of contributing to resonance structures.

Dat

e:

Name :		Class :		Dat e:	
CHAPTER 1 - Carb	oon and Its Compou	inds			
	a.	True			
	b.	False			
ANSWER:			False		
66. The two ð bonds i	n an triple bond are	80° from each other.			
	a.	True			
	b.	False			
ANSWER:			False		
67. Only carbon atom	s can hybridize.				
	a.	True			
	b.	False			
ANSWER:			False		
68. Anti-bonding orbi	itals involve out of pl	ane overlap of atomic o	orbitals		
	a.	True			
	b.	False			
ANSWER:			True		
69. An sp ² hybridized c	carbon has an orbital ge	cometry of			
ANSWER:	-	trigonal planar			
70. An sp hybridized ca	arbon has an orbital geo	ometry of			
ANSWER:	C		linear		
71. Electrons shared an	nong atoms are said to	be .			
ANSWER:		delocalize	ed		
72. Overlap of p orbital	ls is known as a	bond.			
ANSWER:				ć	5
73. A carbocation with	three ó bonds is	hybridized.			
ANSWER:			sp) ²	
74 A carbocation with	three á hands has a	geometry	7		
ANSWER:	three o bonds has a	trigonal planar			
75. A carbon atom with two ð bonds and two <i>ANSWER</i> :		ó honds is	hybridized		
			ily orialized.	sp	
76 The combined form	of all resonance struct	ures is referred to as the_			
ANSWER:	or an resonance sunci	resonance hybrid	·		
77 An an hybridized at	com has a	angle between each	alaatran araun		
//. All sp hybridized at	on nas a	angle between each	election group.		

ANSWER:

180°

78. A Nitrogen atom with four ó bonds has a formal charge.

ANSWER:

+1

79. Assign non-zero formal charges to the following molecule.

ANSWER:

The charges are as follows:

80. Assign non-zero formal charges and the hybridization to all atoms that are not hydrogen in the following molecule.

ANSWER:

The charges and hybridizations are as follows:

81. Assign the electron pair geometry and hybridization around each non-hydrogen atom in the following molecule, shown below.

CHAPTER 1 - Carbon and Its Compounds

ANSWER: From left to right

From left to right

Nitrogen-Linear, sp

Carbon – Linear, sp

Carbon – Trigonal planar, sp²

Oxygen – Trigonal planar sp²

Carbon – tetrahedral, sp³

82. Draw the following molecule in zig-zag format: CH₃(CH₂)₃CH(CH₃)COCH₂COOH

ANSWER:

The structure is as follows

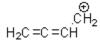
83. Identify the electron pair geometry and hybridization of every carbon atom in the following structure. Draw a resonance structure and the resonance hybrid of the following structure.

ANSWER:

From left to right:

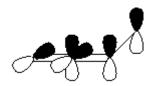
Carbon – Trigonal planar, sp²

Carbon – Trigonal planar sp²


Carbon – Trigonal planar sp²

Carbon – tetrahedral, sp³

Resonance structure = ①


Resonance hybrid =

84. How many atoms share delocalized orbitals with the positively charged carbon, shown below. Explain your answer.

ANSWER:

In order for delocalization to occur, neighbouring atoms must contain p orbitals that are aligned with each other. All four carbon atoms contain p orbitals. However, only the three right-most carbon p orbitals are in line with each other. The left-most ŏ bond is 90° out of plane with the carbocation p orbital.

