https://selldocx.com/products/test-bank-penetration-testing-communication-media-testing-1e-council

Hardware/Software Setup Required

Ubuntu Server 9.10 VMWare image (available at http://www.vmware.co.uk/vmware/) (available at http://www.vmware.com/appliances/directory/cat/0?k=Ubuntu%20Server%209.10) VMWare ((available at

http://downloads.vmware.com/d/info/desktop_downloads/vmware_player/3_0_)

Chillispot (available at http://www.chillispot.info/download.html)
FreeRadius (available at http://freeradius.org/)

Problem Description

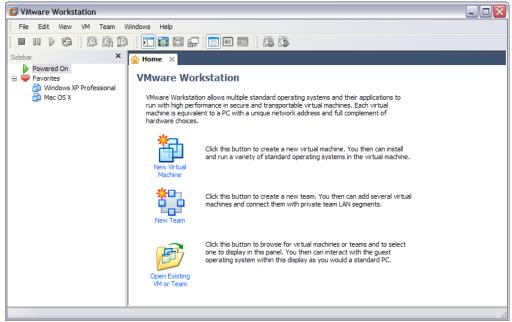
A hotspot is a place offering Internet connection via a wireless network. Hotspots can be either public (free) or private (paid). A private hotspot features a captive portal for users to authenticate in order to gain access to the hotspot.

In this lab, you will explore the steps for creating your own private hotspot using ChilliSpot and FreeRadius over Ubuntu.

Estimated completion time: 90 minutes.

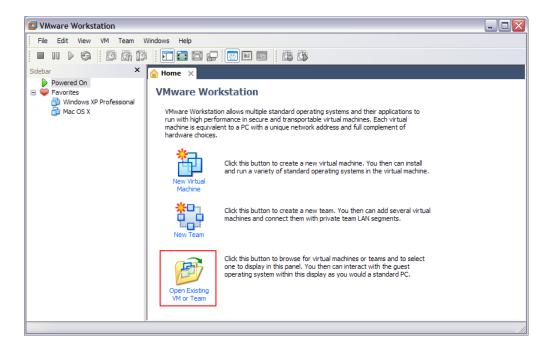
Outcome

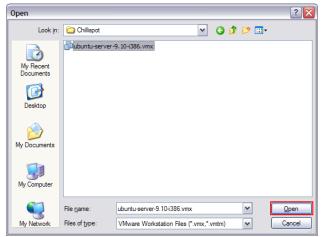
Report the steps to perform the tasks

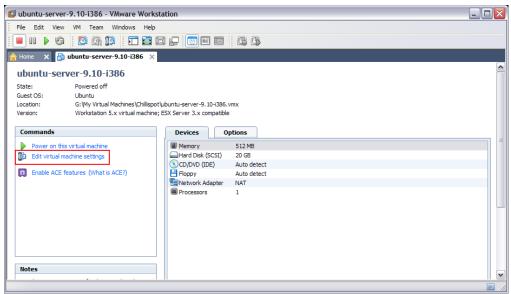

Validation/Evaluation

Be able to:

- Install and configure a LAMP server
- Install and configure ChilliSpot
- Install and configure FreeRadius with MySql
- Create an SSL site with Apache2
- Configure Internet Connection Sharing


Lab Solution

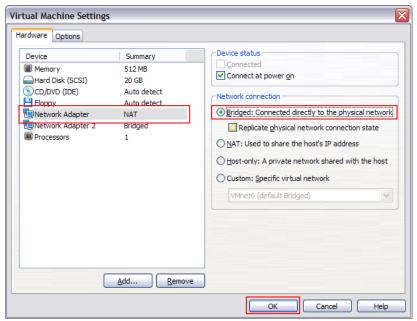

- 1. In this lab, you will use the Ubuntu Server 9.10 VMWare appliance. Ubuntu Server 9.10 VMWare appliance is a free VMWare virtual machine running Ubuntu Server 9.10.
- 2. Download the ubuntu-server-9.10-i386.zip file from http://www.thoughtpolice.co.uk/vmware/ and extract it on your computer.
- 3. Download and install VMWare on your computer. You can either use VMWare Workstation (trial version) or VMWare Player (free product). You can find both installer files at http://www.vmware.com/.
- 4. Start VMWare.

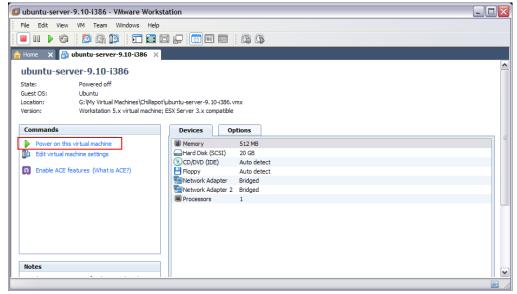

Note: We are using VMWare Workstation 6.5 for this exercise but the following steps are similar for VMWare Player.

5. Click on "Open Existing VM or Team" to open an existing virtual machine and browse to the directory where you extracted the Ubuntu Server 9.10 image. Select the Ubuntu-server-9.10-i386.vmx file and click on Open.

6. Your hotspot will be controlled on a single machine (represented here by the virtual machine). This machine requires at least two network interfaces, so click on Edit virtual machine settings to add a new network card.

7. Click on Add...


8. Select Network Adapter and click on Next >.


9. Select the Bridged option and click on Finish.

10. Additionally, change the network connection type to Bridged for the first Network Adapter and click on OK.

11. Click on Power on this virtual machine to start the Ubuntu Server 9.10 virtual machine.

12. On the next window, select "I copied it" and click OK.

13. Wait while the virtual machine starts.

```
fsck from util-linux-ng 2.16
/dev/sda5 was not cleanly unmounted, check forced.
Filesystem checks are in progress (ESC to cancel):
[ 5.116260] ACPI: I/O resource piix4_smbus [0x1040-0x1047] conflicts with ACP
I region SMB_ [0x1040-0x104b]
/dev/sda5: 164/124496 files (2.4% non-contiguous), 29909/248976 blocks
mountall: fsck /boot [404] terminated with status 1
fsck from util-linux-ng 2.16
/dev/mapper/ubuntu-root: clean, 45351/1237888 files, 251240/4948992 blocks
-
```

14. Type *notroot* as the username and *thoughtpolice* as the password.

```
To access official Ubuntu documentation, please visit:
http://help.ubuntu.com/
  System information as of Thu Feb 25 11:55:02 EST 2010
  System load: 0.25
Usage of /: 3.6% of 18.58GB
                                     Memory usage: 4%
                                                           Processes:
                                                                               64
                                     Swap usage: 0%
                                                           Users logged in: 0
  Graph this data and manage this system at https://landscape.canonical.com/
  packages can be updated. updates are security updates.
The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.
notroot@ubuntu:~$
```

15. Now, type *sudo su* and press Enter to gain root privileges.

```
notroot@ubuntu:~$ sudo su
[sudo] password for notroot:
root@ubuntu:∕home∕notroot# _
```

16. Type apt-get update and press Enter to update the available packages for Ubuntu Server 9.10.

```
Get:1 http://security.ubuntu.com karmic-security Release.gpg [189B]

Ign http://security.ubuntu.com karmic-security/main Translation-en_US

Get:2 http://us.archive.ubuntu.com karmic Release.gpg [189B]

Ign http://us.archive.ubuntu.com karmic Release.gpg [189B]

Ign http://us.archive.ubuntu.com karmic/main Translation-en_US

Ign http://security.ubuntu.com karmic-security/restricted Translation-en_US

Ign http://security.ubuntu.com karmic-security/multiverse Translation-en_US

Ign http://security.ubuntu.com karmic-security/multiverse [44.1kB]

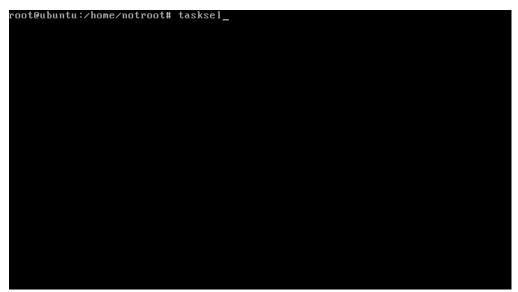
Ign http://us.archive.ubuntu.com karmic/restricted Translation-en_US

Ign http://us.archive.ubuntu.com karmic/restricted Translation-en_US

Ign http://us.archive.ubuntu.com karmic/multiverse Translation-en_US

Get:4 http://us.archive.ubuntu.com karmic-updates Release.gpg [189B]

Ign http://us.archive.ubuntu.com karmic-updates/main Translation-en_US


Ign http://us.archive.ubuntu.com karmic-updates/restricted Translation-en_US

Ign http://us.archive.ubuntu.com karmic-updates/restricted Translation-en_US

Ign http://us.archive.ubuntu.com karmic-updates/multiverse Translation-en_US


Ign http://us.archive.ubuntu.com karmic-updates/multiv
```

17. Next, type *tasksel* and press Enter to make your installation a LAMP (Linux-Apache-Mysql-PHP) server.



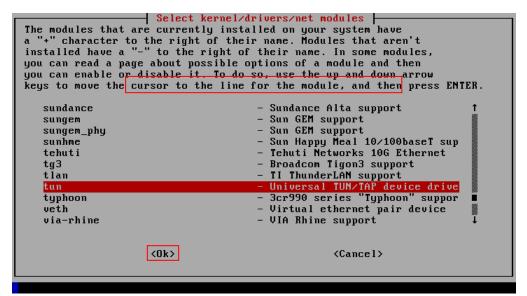

18. Select LAMP server and press OK.

Package configuration

19. Wait while the packages are being downloaded and installed on your computer.

21. Next, you need to add TUN/TAP support to your kernel. Type *apt-get install modconf* and press Enter to install modconf.

```
root@ubuntu:/home/notroot# apt-get install modconf
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
    modconf
O upgraded, 1 newly installed, O to remove and 62 not upgraded.
Need to get 1,460kB of archives.
After this operation, 4,768kB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com karmic/universe modconf 0.3.9ubuntu1 [1,460kB ]


Fetched 1,460kB in 6s (226kB/s)
Selecting previously deselected package modconf.
(Reading database ... 41310 files and directories currently installed.)
Unpacking modconf (from .../modconf_0.3.9ubuntu1_all.deb) ...
Processing triggers for man-db ...
Setting up modconf (0.3.9ubuntu1) ...
root@ubuntu:/home/notroot# _
```

22. Type *modconf* and press Enter.

23. Scroll down to kernel/drivers/net and press Ok.

24. Select tun and press Ok.

Press Yes to install this module in the kernel.

Press Ok when prompted.

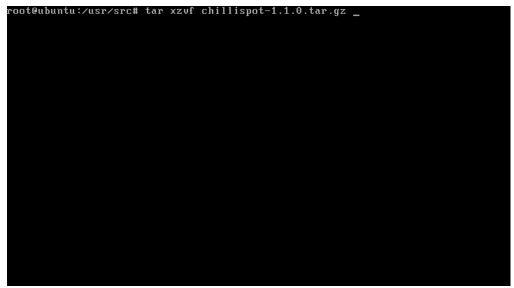

```
Installing module tun. If the device isn't there, or isn't configured correctly, this could cause your system to pause for up to a minute.

Installation succeeded.

Please press ENTER when you are ready to continue.

—
```

25. Exit modconf.



27. Now, you need to download and compile ChilliSpot. First, type cd /usr/src/ and press Enter to change your location.

```
root@ubuntu:/home/notroot# cd /usr/src/
root@ubuntu:/usr/src# _
```

28. Next, type *wget* <u>http://www.chillispot.info/download/chillispot-1.1.0.tar.gz</u> and press Enter to download ChilliSpot's source code.

29. Type tar xzvf chillispot-1.1.0.tar.gz and press Enter to extract the source code.


```
30. Type cd chillispot-1.1.0 and press Enter to change your location.

root@ubuntu:/usr/src# cd chillispot-1.1.0

root@ubuntu:/usr/src/chillispot-1.1.0#
```

31. Next, type apt-get build-essential and press Enter to install gcc and other required packages.

```
root@ubuntu:/usr/src/chillispot-1.1.0# apt-get install build-essential
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
   binutils cpp-4.4 dpkg-dev fakeroot g++ g++-4.4 gcc gcc-4.4 gcc-4.4-base
   libc-bin libc-dev-bin libc6 libc6-dev libc6-i686 libgcc1 libgomp1 libstdc++6
   libstdc++6-4.4-dev linux-libc-dev
Suggested packages:
   binutils-doc gcc-4.4-locales debian-keyring debian-maintainers g++-multilib
   g++-4.4-multilib gcc-4.4-doc libstdc++6-4.4-dbg gcc-multilib manpages-dev
   autoconf automake1.9 libtool flex bison gdb gcc-doc gcc-4.4-multilib
   libmudflap0-4.4-dev libgcc1-dbg libgomp1-dbg libmudflap0-dbg libcloog-pp10
   libppl-c2 libppl7 glibc-doc libstdc++6-4.4-doc
The following NEW packages will be installed:
   binutils build-essential dpkg-dev fakeroot g++ g++-4.4 gcc gcc-4.4
   libc-dev-bin libc6-dev libgomp1 libstdc++6-4.4-dev linux-libc-dev
The following packages will be upgraded:
   cpp-4.4 gcc-4.4-base libc-bin libc6 libc6-i686 libgcc1 libstdc++6
7 upgraded, 13 newly installed, 0 to remove and 55 not upgraded.
Need to get 26.9MB of archives.
After this operation, 61.6MB of additional disk space will be used.
Do you want to continue [Y/n]? _
```

Press Enter when prompted.

```
Setting up binutils (2.20-0ubuntu2) ...

Setting up libc-dev-bin (2.10.1-0ubuntu16) ...

Setting up linux-libc-dev (2.6.31-19.56) ...

Setting up libc6-dev (2.10.1-0ubuntu16) ...

Setting up libc6-dev (2.10.1-0ubuntu16) ...

Setting up libgomp1 (4.4.1-4ubuntu9) ...

Setting up gcc-4.4 (4.4.1-4ubuntu9) ...

Setting up gcc (4:4.4.1-1ubuntu2) ...

Setting up dpkg-dev (1.15.4ubuntu2) ...

Setting up fakeroot (1.12.4ubuntu1) ...

update-alternatives: using /usr/bin/fakeroot-sysv to provide /usr/bin/fakeroot (fakeroot) in auto mode.

Setting up libstdc++6-4.4-dev (4.4.1-4ubuntu9) ...

Setting up g++-4.4 (4.4.1-4ubuntu9) ...

Setting up gy++ (4:4.4.1-1ubuntu2) ...

update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode.

Setting up build-essential (11.4) ...

Processing triggers for libc-bin ...

ldconfig deferred processing now taking place

root@ubuntu:/usr/src/chillispot-1.1.0# _
```

32. Before compiling ChilliSpot, type *nano -w src/tun.c* and look for all instances of the string "(__FreeBSD__) defined (" and add "||" between ")" and "defined". The resulting string should look like "(__FreeBSD__) || defined (". Save the file with Ctrl+O.

```
GNU nano 2.0.9
                                 File: src/tun.c
  req.n.nlmsg_seq = 0;
 req.n.nlmsg_flags != NLM_F_ACK;
  status = sendmsg(fd, &msg, 0); /* TODO Error check */
  tun_sifflags(this, IFF_UP | IFF_RUNNING); /* TODO */
 close(fd);
 this->addrs++;
  return 0;
#elif defined (__Free<u>B</u>SD__) defined (__OpenBSD__) <mark>|| defined (__NetBSD__) || de$</mark>
  int fd;
 struct ifaliasreq
                           area;
  /* TODO: Is this needed on FreeBSD? */
  if (!this->addrs) /* Use ioctl for first addr to make ping work */
    return tun_setaddr(this, addr, dstaddr, netmask); /* TODO dstaddr */
 memset(&areq, 0, sizeof(areq));
GGGet Help TO WriteOut TR Read File TY Prev Page TR Cut Text TC Cur Pos
XExit Ty Justify Tw Where Is Ty Next Page TU UnCut TextT To Spell
 GNU nano 2.0.9
                                 File: src/tun.c
                                                                              Modified
  tun_sifflags(this, IFF_UP | IFF_RUNNING); /* TODO */
```

```
Tile: src/tun.c Modified

tun_sifflags(this, IFF_UP; IFF_RUNNING); /* TODO */
close(fd);
this->addrs++;
return 0;

#elif defined (__FreeBSD__) !! defined (__OpenBSD__) !! defined (__NetBSD__) !!$

int fd;
struct ifaliasreq areq;

/* TODO: Is this needed on FreeBSD? */
if (!this->addrs) /* Use ioctl for first addr to make ping work */
return tun_setaddr(this, addr, dstaddr, netmask); /* TODO dstaddr */

memset(&areq, 0, sizeof(areq));

/* Set up interface name */
strncpy(areq.ifra_name, this->devname, IFNAMSIZ);
areq.ifra_name[IFNAMSIZ-11 = 0; /* Make sure to terminate */

GG Get Help TO WriteOut TR Read File TY Prev Page TR Cut Text TC Cur Pos
TX Exit TJ Justify TW Where Is TO Next Page TU UnCut Text TT To Spell
```

33. Now, type ./configure and press Enter to start compiling ChilliSpot.

```
root@ubuntu:/usr/src/chillispot-1.1.0# ./configure _
```

34. Next, type *make* and press Enter.

```
-g -OZ -MT iphash.o -MD -MP -MF ".deps/iphash.Tpo" -c -o iphash
   r/local/sbin"'
  o iphash.c; \
                then mv -f ".deps/iphash.Tpo" ".deps/iphash.Po"; else rm -f ".deps/iphas
h.Tpo"; exit 1; fi
if gcc -DHAVE_CONFIG_H -I. -I. -I.. -D_GNU_SOURCE -fno-builtin -DSBINDIR='"/u
sr/local/sbin"' -g -O2 -MT lookup.o -MD -MP -MF ".deps/lookup.Tpo" -c -o lookup
 .o lookup.c; 🚿
                then mv -f ".deps/lookup.Tpo" ".deps/lookup.Po"; else rm -f ".deps/looku
p.Tpo"; exit 1; fi
/bin/bash ../libtool --tag=CC --mode=link gcc -D_GNU_SOURCE -fno-builtin -DSBIND
IR='"/usr/local/sbin"' -g -O2 -o chilli chilli.o tun.o cmdline.o ippool.o ra
 dius.o md5.o redir.o dhcp.o syserr.o iphash.o lookup.o
 mkdir .libs
gcc -D_GNU_SOURCE -fno-builtin -DSBINDIR=\"/usr/local/sbin\" -g -O2 -o chilli ch
illi.o tun.o cmdline.o ippool.o radius.o md5.o redir.o dhcp.o syserr.o iphash.o
lookup.o
make[2]: Leaving directory `/usr/src/chillispot-1.1.0/src'
Making all in doc
make[2]: Entering directory `/usr/src/chillispot-1.1.0/doc'
make[2]: Nothing to be done for `all'.
make[2]: Leaving directory `/usr/src/chillispot-1.1.0/doc'
make[2]: Entering directory `/usr/src/chillispot-1.1.0'
make[2]: Leaving directory `/usr/src/chillispot-1.1.0'
make[1]: Leaving directory `/usr/src/chillispot-1.1.0'
make[1]: Leaving directory `/usr/src/chillispot-1.1.0'
root@ubuntu:/usr/src/chillispot-1.1.0# __
```

35. Finally, type *make install* and press Enter.

```
root@ubuntu:/usr/src/chillispot-1.1.0# make install_
```

```
Making install in src
make[1]: Entering directory 'vusr/src/chillispot-1.1.0/src'
make[2]: Entering directory 'vusr/src/chillispot-1.1.0/src'
test -z "vusr/local/sbin" ii mkdir -p -- "vusr/local/sbin"
   /bin/bash ../libtool --mode=install /usr/bin/install -c 'chilli' 'vusr/local/s
bin/chilli'
/usr/bin/install -c chilli /usr/local/sbin/chilli
make[2]: Nothing to be done for 'install-data-am'.
make[2]: Leaving directory 'vusr/src/chillispot-1.1.0/src'
make[1]: Leaving directory 'vusr/src/chillispot-1.1.0/src'
Making install in doc
make[1]: Entering directory 'vusr/src/chillispot-1.1.0/doc'
make[2]: Nothing to be done for 'install-exec-am'.
test -z "/usr/local/man/man8" '| mkdir -p -- "/usr/local/man/man8"
/usr/bin/install -c -m 644 './chilli.8' 'vusr/local/man/man8"
/usr/bin/install -c -m 644 './chilli.8' 'vusr/local/man/man8/chilli.8'
make[2]: Leaving directory 'vusr/src/chillispot-1.1.0/doc'
make[1]: Leaving directory 'vusr/src/chillispot-1.1.0/doc'
make[2]: Entering directory 'vusr/src/chillispot-1.1.0/
make[2]: Nothing to be done for 'install-exec-am'.
make[2]: Nothing to be done for 'install-exec-am'.
make[2]: Leaving directory 'vusr/src/chillispot-1.1.0'
make[2]: Leaving directory 'vusr/src/chilli
```

36. Type nano -w /etc/chilli.conf and press Enter to edit ChilliSpot's configuration file and add the following content.

```
radiusserver1 127.0.0.1
radiusserver2 127.0.0.1
radiussecret radiusPassword
dns1 8.8.8.8
dhcpif eth1
uamallowed 192.168.182.1,8.8.8.8
uamserver https://192.168.182.1/cgi-bin/hotspotlogin.cgi
uamhomepage http://192.168.182.1
uamsecret uamPassword
```

```
root@ubuntu:/usr/src/chillispot-1.1.0# nano -w /etc/chilli.conf_
```

```
GNU nano 2.0.9

File: /etc/chilli.conf

Modified

radiusserver1 127.0.0.1

radiusserver2 127.0.0.1

radiussecret radiusPassword

dns1 8.8.8.8

dhcpif eth1

uamallowed 192.168.182.1, 8.8.8.8

uamserver https://192.168.182.1/cgi-bin/hotspotlogin.cgi

uamhomepage http://192.168.182.1

uamsecret uamPassword_

G Get Help TO WriteOut TR Read File TY Prev Page TR Cut Text TC Cur Pos

X Exit TJ Justify Where Is TO Next Page TU UnCut Text To Spell
```

Note: You can also use the /usr/src/chillispot-1.1.0/doc/chilli.conf file as a template and adjust the lines specified above.

37. Next, you will install and configure FreeRadius to handle the authentication process. FreeRadius will keep information about authorized users on a MySql database. Type *apt-get install freeradius freeradius-mysql* and press Enter to install FreeRadius and configure it to work with MySql.

```
root@ubuntu:/usr/src/chillispot-1.1.0# apt-get install freeradius freeradius-mys
ql_
```

Press Enter when prompted and wait while the packages are being downloaded and installed on your system.

```
on your system.

root@ubuntu:/usr/src/chillispot-1.1.0# apt-get install freeradius freeradius-mys gl

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:
    freeradius-common freeradius-utils libfreeradius2 libltd17 libper15.10

Suggested packages:
    freeradius-ldap freeradius-krb5 freeradius-postgresql

The following NEW packages will be installed:
    freeradius freeradius-common freeradius-mysql freeradius-utils
    libfreeradius2 libltd17 libper15.10

0 upgraded, 7 newly installed, 0 to remove and 55 not upgraded.

Need to get 2,498kB of archives.

After this operation, 6,455kB of additional disk space will be used.

Do you want to continue [Y/n]? _
```

```
Unpacking freeradius-utils (from .../freeradius-utils_2.1.0+dfsg-Oubuntu7_i386.deb) ...

Processing triggers for man-db ...

Setting up libfreeradius2 (2.1.0+dfsg-Oubuntu7) ...

Setting up libltd17 (2.2.6a-4) ...

Setting up libper15.10 (5.10.0-24ubuntu4) ...

Setting up freeradius-common (2.1.0+dfsg-Oubuntu7) ...

Adding user freerad to group shadow

Setting up freeradius (2.1.0+dfsg-Oubuntu7) ...

stripping trailing /

stripping trailing /

* Starting FreeRADIUS daemon freeradius [ OK ]

Setting up freeradius-mysql (2.1.0+dfsg-Oubuntu7) ...

* Stopping FreeRADIUS daemon freeradius [ OK ]

Setting up freeradius-mysql (2.1.0+dfsg-Oubuntu7) ...

* Stopping FreeRADIUS daemon freeradius [ OK ]

Setting up freeradius-utils (2.1.0+dfsg-Oubuntu7) ...

Processing triggers for libc-bin ...

ldconfig deferred processing now taking place

root@ubuntu:/usr/src/chillispot-1.1.0# _
```

38. Type nano -w /etc/freeradius/clients.conf and press Enter to edit this file. root@ubuntu:/usr/src/chillispot-1.1.0# nano -w /etc/freeradius/clients.conf

```
root@ubuntu:/usr/src/chillispot-1.1.0# nano -w /etc/freeradius/clients.conf _
```

39. Look for "secret = testing123" under the "client localhost" section and change it to "secret = radiusPassword". *Note: This secret value should match the radiussecret value of the chilli.conf file set up before.*

```
# lower case letters
# numbers
# And is at LEAST 8 characters long, preferably 16 characters in
# length. The secret MUST be random, and should not be words,
# phrase, or anything else that is recognizable.
# The default secret below is only for testing, and should
# not be used in any real environment.
# secret = testing123

# # Old-style clients do not send a Message-Authenticator
# in an Access-Request. RFC 5080 suggests that all clients
# SHOULD include it in an Access-Request. The configuration
# item below allows the server to require it. If a client
# is required to include a Message-Authenticator and it does
# not, then the packet will be silently discarded.
# **Cut Text **C Cur Pos
**X Exit **J Justify **W Where Is **V Next Page **U UnCut Text **T To Spell
```

```
# lower case letters
# numbers
# And is at LEAST 8 characters long, preferably 16 characters in
# length. The secret MUST be random, and should not be words,
# phrase, or anything else that is recognizable.
# The default secret below is only for testing, and should
# not be used in any real environment.
# secret = radiusPassword
# # Old-style clients do not send a Message-Authenticator
# in an Access-Request. RFC 5080 suggests that all clients
# SHOULD include it in an Access-Request. The configuration
# item below allows the server to require it. If a client
# is required to include a Message-Authenticator and it does
# not, then the packet will be silently discarded.
# G Get Help TO WriteOut TR Read File TY Prev Page TR Cut Text TC Cur Pos
TX Exit TJ Justify TW Where Is TO Next Page TU UnCut Text TO Spell
```

Save the file with Ctrl+O and exit nano with Ctrl+X.

40. Type *nano -w /etc/freeradius/sql.conf* and press Enter. Then, edit the login and password parameters using root as the login value and the MySql root password you specified before as the password value. Save the file and exit nano.

```
root@ubuntu:/usr/src/chillispot-1.1.0# nano -w /etc/freeradius/sql.conf_
```

Original values:

New values:

Note: Take note of the value of the radius_db parameter. Later, you will create a database with the same name on MySql.

41. Type *nano -w /etc/freeradius/radiusd.conf* and press Enter. Then, uncomment the line \$INCLUDE sql.conf by removing the leading "#". Save the file and exit nano.

```
# Extensible Authentication Protocol

# For all EAP related authentications.

# Now in another file, because it is very large.

# $INCLUDE eap.conf

# Include another file that has the SQL-related configuration.

# This is another file only because it tends to be big.

# $INCLUDE sql.conf

# Rather than maintaining seperate (GDBM) databases of

# accounting info for each counter, this module uses the data

# stored in the raddacct table by the sql modules. This

# module NEVER does any database INSERTs or UPDATES. It is

# totally dependent on the SQL module to process Accounting

G Get Help TO WriteOut TR Read File TY Prev Page TR Cut Text TC Cur Pos

X Exit J Justify Where Is TO Next Page TO Uncut Text To Spell
```

```
# Extensible Authentication Protocol

# For all EAP related authentications.

# Now in another file, because it is very large.

# SINCLUDE eap.conf

# Include another file that has the SQL-related configuration.

# This is another file only because it tends to be big.

# SINCLUDE sql.conf

# # This module is an SQL enabled version of the counter module.

# # Rather than maintaining seperate (GDBM) databases of

# accounting info for each counter, this module uses the data

# stored in the raddacct table by the sql modules. This

# module NEVER does any database INSERTs or UPPATES. It is

# totally dependent on the SQL module to process Accounting

**G Get Help **O WriteOut **IR** Read File **IR** Prev Page **IR** Cut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **U UnCut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **U UnCut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **U UnCut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **U UnCut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **U UnCut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **U UnCut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **U UnCut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **V Uncut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **V Uncut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **V Uncut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **V Uncut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **V Uncut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **V Uncut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **V Uncut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **V Uncut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is **V Next Page **V Uncut Text **IC** Cur Pos

**X Exit **J Justify **W Where Is
```

42. Type *nano -w /etc/freeradius/sites-available/default* and press Enter. Then, uncomment the sql option for the authorize, accounting, session, and post-auth sections. Save the file and exit nano.

```
root@ubuntu:/usr/src/chillispot-1.1.0# nano -w /etc/freeradius/sites-available/d
efault _
```

Enable the sql option for the authorize section:

```
unix
            Read the 'users' file
         files
         # Look in an SQL database. The schema of the database
# is meant to mirror the "users" file.
         # See "Authorization Queries" in sql.conf
         sql
             If you are using /etc/smbpasswd, and are also doing
         # mschap authentication, the un-comment this line, and # configure the 'etc_smbpasswd' module, above.
         etc_smbpasswd
Enable the sql option for the session sections:
 GNU nano 2.0.9
                       File: /etc/freeradius/sites-available/default
# Session database, used for checking Simultaneous-Use. Either the radutmp
# or rlm_sql module can handle this.
<del># The rlm_sql module is *much* faster</del>
session {
         radutmp
            See "Simultaneous Use Checking Queries" in sql.conf
         sql
   Post-Authentication
   Once we KNOW that the user has been authenticated, there are
   additional steps we can take.
post-auth {
^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos
^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text^T To Spell
```

File: /etc/freeradius/sites-available/default

Modified

GNU nano 2.0.9

43. Next, you need to configure MySql to work with FreeRadius. Type *mysql -u root -p* and press Enter to launch MySql. Use your MySql root password to log in.

```
root@ubuntu:/usr/src/chillispot-1.1.0# mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 35
Server version: 5.1.37-1ubuntu5.1 (Ubuntu)
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> _
```

```
44. Type CREATE DATABASE radius; and press Enter to create the database.

root@ubuntu:/usr/src/chillispot-1.1.0# mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 35
       Server version: 5.1.37-1ubuntu5.1 (Ubuntu)
       Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
       mysql> CREATE DATABASE radius;
Query OK, 1 row affected (0.00 sec)
       mysql> _
```

45. Type *quit* and press Enter to exit MySql.

```
root@ubuntu:/usr/src/chillispot-1.1.0# mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 35
Server version: 5.1.37-1ubuntu5.1 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE radius;
Query OK, 1 row affected (0.00 sec)

mysql> quit
Bye
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

46. Type *mysql -u root -p radius < /etc/freeradius/sql/mysql/schema.sql* to import the MySQL schema from /etc/freeradius/sql/mysql/schema.sql. Use your MySql root password.

```
root@ubuntu:/usr/src/chillispot-1.1.0# mysql -u root -p radius < /etc/freeradius
/sql/mysql/schema.sql
Enter password:
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

47. Next, type *mysql -u root -p radius* and press Enter to launch MySql again and work with the radius database. Use your MySql root password to log in.

```
root@ubuntu:/usr/src/chillispot-1.1.0# mysql -u root -p radius
Enter password:
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 37
Server version: 5.1.37-1ubuntu5.1 (Ubuntu)
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> _
```

48. Type INSERT INTO radcheck(id, UserName, Attribute, op, Value) VALUES (NULL, 'test', 'User-Password', ':=', 'test'); and press Enter to add a testing user to the radcheck table.

```
Then, type exit to exit MySql.

root@ubuntu:/home/notroot# mysql -u root -p radius
Enter password:

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 67
Server version: 5.1.37-1ubuntu5.1 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> INSERT INTO radcheck(id, UserName, Attribute, op, Value)

-> VALUES (NULL, 'test', 'User-Password', ':=', 'test');
Query OK, 1 row affected (0.00 sec)

mysql> _
```

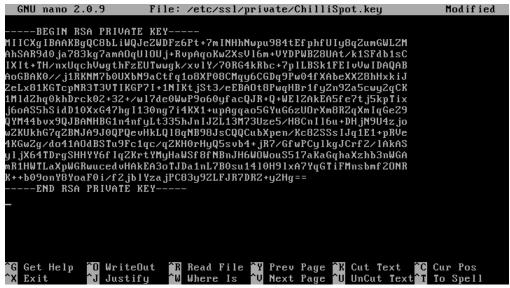
Note: Later, you can repeat this step to add authentication information for real users. It will also be a good idea to delete the information for the test user.

49. Type *mysql -u root -p radius* < /*etc/freeradius/sql/mysql/nas.sql* and press Enter.

```
root@ubuntu:/usr/src/chillispot-1.1.0# mysql -u root -p radius < /etc/freeradius
/sql/mysql/nas.sql
Enter password:
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

50. Next, you need to configure Apache and SSL. First, type *make-ssl-cert* /usr/share/ssl-cert/ssleay.cnf/etc/ssl/private/ChilliSpot.crt and press Enter to create the self-signed certificate for your site

```
signed certificate for your site.
root@ubuntu:/usr/src/chillispot-1.1.0# make-ssl-cert /usr/share/ssl-cert/ssleay.
cnf /etc/ssl/private/ChilliSpot.crt_
```


Enter ChilliSpot as the host name and press Ok.

51. You need to split the certificate into two files. Type *cp /etc/ssl/private/ChilliSpot.crt /etc/ssl/private/ChilliSpot.pem* and press Enter. Then, type *cp /etc/ssl/private/ChilliSpot.crt /etc/ssl/private/ChilliSpot.key* and press Enter.

```
root@ubuntu:/usr/src/chillispot-1.1.0# cp /etc/ssl/private/ChilliSpot.crt /etc/s
sl/private/ChilliSpot.pem
root@ubuntu:/usr/src/chillispot-1.1.0# cp /etc/ssl/private/ChilliSpot.crt /etc/s
sl/private/ChilliSpot.key
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

52. Open the .key file with nano and leave only the part beginning with ----BEGIN RSA PRIVATE KEY---- and ending with ----END RSA PRIVATE KEY----.

53. Similarly, open the .pem file with nano and leave only the part beginning with ---
BEGIN CERTIFICATE---- and ending with ----END CERTIFICATE----.

54. Type chmod 600 /etc/ssl/private/ChilliSpot.key and press Enter.

```
root@ubuntu:/usr/src/chillispot-1.1.0# chmod 600 /etc/ssl/private/ChilliSpot.key
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

55. Next, type *a2enmod ssl* and press Enter to enable Apache's SSL module.

```
root@ubuntu:/usr/src/chillispot-1.1.0# aZenmod ssl
Enabling module ssl.
See /usr/share/doc/apache2.2-common/README.Debian.gz on how to configure SSL and create self-signed certificates.
Run '/etc/init.d/apache2 restart' to activate new configuration!
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

56. Create the directory for your Web site by typing mkdir /var/www/ChilliSpot.

```
root@ubuntu:/usr/src/chillispot-1.1.0# mkdir /var/www/ChilliSpot
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

57. Next, type *cp /etc/apache2/sites-available/default-ssl /etc/apache2/sites-available/ChilliSpot* and press Enter. Then, type *nano –w /etc/apache2/sites-available/ChilliSpot* and press Enter to edit the configuration file for the SSL site.

```
root@ubuntu:/usr/src/chillispot-1.1.0# cp /etc/apache2/sites-available/default-s sl /etc/apache2/sites-available/ChilliSpot root@ubuntu:/usr/src/chillispot-1.1.0# nano -w /etc/apache2/sites-available/ChilliSpot _
```

58. Adjust the configuration file so it looks like this:

```
<IfModule mod ssl.c>
<VirtualHost \frac{-}{1}92.168.182.1:443>
        ServerAdmin webmaster@hostmauritius.com
        ServerName 192.168.182.1:443
        DocumentRoot /var/www/ChilliSpot
        <Directory />
                 Options FollowSymLinks
                 AllowOverride None
        </Directory>
        <Directory /var/www/ChilliSpot/>
                 Options Indexes FollowSymLinks MultiViews
                 AllowOverride None
                 Order allow, deny
                 \verb"allow" from all"
        </Directory>
        ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin">
                 AllowOverride None
                 Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
```

```
Order allow, deny
        Allow from all
</Directory>
ErrorLog /var/log/apache2/error.log
# Possible values include: debug, info, notice, warn, error, crit,
# alert, emerg.
LogLevel warn
CustomLog /var/log/apache2/ssl access.log combined
Alias /doc/ "/usr/share/doc/'
<Directory "/usr/share/doc/">
       Options Indexes MultiViews FollowSymLinks
        AllowOverride None
        Order deny, allow
        Deny from all
        Allow from 127.0.0.0/255.0.0.0 ::1/128
</Directory>
   SSL Engine Switch:
   Enable/Disable SSL for this virtual host.
SSLEngine on
    A self-signed (snakeoil) certificate can be created by installing
   the ssl-cert package. See
   /usr/share/doc/apache2.2-common/README.Debian.gz for more info.
    If both key and certificate are stored in the same file, only the
    SSLCertificateFile directive is needed.
                    /etc/ssl/private/ChilliSpot.pem
SSLCertificateFile
SSLCertificateKeyFile /etc/ssl/private/ChilliSpot.key
    Server Certificate Chain:
    Point SSLCertificateChainFile at a file containing the
    concatenation of PEM encoded CA certificates which form the
    certificate chain for the server certificate. Alternatively
    the referenced file can be the same as SSLCertificateFile
   when the CA certificates are directly appended to the server
   certificate for convinience.
#SSLCertificateChainFile /etc/apache2/ssl.crt/server-ca.crt
   Certificate Authority (CA):
   Set the CA certificate verification path where to find CA
   certificates for client authentication or alternatively one
    huge file containing all of them (file must be PEM encoded)
   Note: Inside SSLCACertificatePath you need hash symlinks
          to point to the certificate files. Use the provided
          Makefile to update the hash symlinks after changes.
#SSLCACertificatePath /etc/ssl/certs/
#SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt
   Certificate Revocation Lists (CRL):
    Set the CA revocation path where to find CA CRLs for client
   authentication or alternatively one huge file containing all
    of them (file must be PEM encoded)
    Note: Inside SSLCARevocationPath you need hash symlinks
          to point to the certificate files. Use the provided
          Makefile to update the hash symlinks after changes.
#SSLCARevocationPath /etc/apache2/ssl.crl/
#SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl
   Client Authentication (Type):
   Client certificate verification type and depth. Types are
    none, optional, require and optional no ca. Depth is a
    number which specifies how deeply to verify the certificate
    issuer chain before deciding the certificate is not valid.
#SSLVerifyClient require
#SSLVerifyDepth 10
   Access Control:
   With SSLRequire you can do per-directory access control based
    on arbitrary complex boolean expressions containing server
    variable checks and other lookup directives. The syntax is a
    mixture between C and Perl. See the mod ssl documentation
   for more details.
#<Location />
#SSLRequire (
                 %{SSL CIPHER} !~ m/^(EXP|NULL)/ \
             and \{SSL\_CLIENT\_S\_DN\_O\} eq "Snake Oil, Ltd." \setminus
             and {SSL\_CLIENT\_S\_DN\_OU} in {"Staff", "CA", "Dev"} \ and {TIME\_WDAY} >= 1 and {TIME\_WDAY} <= 5 \
             and %{TIME HOUR} >= 8 and %{TIME HOUR} <= 20
```

```
or \{REMOTE ADDR\} =  m/^192 .76 .162 .[0-9] +  $
        #</Location>
            SSL Engine Options:
            Set various options for the SSL engine.
            o FakeBasicAuth:
              Translate the client X.509 into a Basic Authorisation. This means that
              the standard Auth/DBMAuth methods can be used for access control. The
              user name is the `one line' version of the client's X.509 certificate.
              Note that no password is obtained from the user. Every entry in the user
              file needs this password: `xxj31ZMTZzkVA'.
            o ExportCertData:
              This exports two additional environment variables: SSL CLIENT CERT and
              SSL SERVER CERT. These contain the PEM-encoded certificates of the
              server (always existing) and the client (only existing when client
              authentication is used). This can be used to import the certificates
              into CGI scripts.
           o StdEnvVars:
              This exports the standard SSL/TLS related `SSL *' environment variables.
              Per default this exportation is switched off for performance reasons,
              because the extraction step is an expensive operation and is usually
              useless for serving static content. So one usually enables the
              exportation for CGI and SSI requests only.
           o StrictRequire:
              This denies access when "SSLRequireSSL" or "SSLRequire" applied even
              under a "Satisfy any" situation, i.e. when it applies access is denied
              and no other module can change it.
            o OptRenegotiate:
              This enables optimized SSL connection renegotiation handling when SSL
              directives are used in per-directory context.
        #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire
        <FilesMatch "\.(cgi|shtml|phtml|php)$">
               SSLOptions +StdEnvVars
        </FilesMatch>
        <Directory /usr/lib/cgi-bin>
               SSLOptions +StdEnvVars
        </Directory>
            SSL Protocol Adjustments:
            The safe and default but still SSL/TLS standard compliant shutdown
            approach is that mod ssl sends the close notify alert but doesn't wait for
            the close notify alert from client. When you need a different shutdown
            approach you can use one of the following variables:
            o ssl-unclean-shutdown:
              This forces an unclean shutdown when the connection is closed, i.e. no
              SSL close notify alert is send or allowed to received. This violates
              the SSL/TLS standard but is needed for some brain-dead browsers. Use
              this when you receive I/O errors because of the standard approach where
             mod ssl sends the close notify alert.
            o ssl-accurate-shutdown:
              This forces an accurate shutdown when the connection is closed, i.e. a
              SSL close notify alert is send and mod ssl waits for the close notify
              alert of the client. This is 100\% SSL/\overline{\text{TLS}} standard compliant, but in
              practice often causes hanging connections with brain-dead browsers. Use
              this only for browsers where you know that their SSL implementation
              works correctly.
            Notice: Most problems of broken clients are also related to the HTTP
            keep-alive facility, so you usually additionally want to disable
            keep-alive for those clients, too. Use variable "nokeepalive" for this.
            Similarly, one has to force some clients to use \operatorname{HTTP}/1.0 to workaround
            their broken HTTP/1.1 implementation. Use variables "downgrade-1.0" and
            "force-response-1.0" for this.
        BrowserMatch ".*MSIE.*" \
                nokeepalive ssl-unclean-shutdown \
                downgrade-1.0 force-response-1.0
</VirtualHost>
```

```
File: /etc/apache2/sites-available/ChilliSpot
                                                                                                Modified
     <Directory />
                         Options FollowSymLinks
AllowOverride None
                </Directory>
               AllowOverride None
                         Order allow, deny allow from all
                </Directory>
               ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

<Directory "/usr/lib/cgi-bin">

AllowOverride None

Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
     59. Now, type a2ensite ChilliSpot and press Enter to enable your new SSL site.

root@ubuntu:/usr/src/chillispot-1.1.0# a2ensite ChilliSpot
Enabling site ChilliSpot.
Run '/etc/init.d/apache2 reload' to activate new configuration!

root@ubuntu:/usr/src/chillispot-1.1.0# _
```

60. Next, type /etc/init.d/apache2 reload and press Enter to apply your new configuration to Apache.

```
root@ubuntu:/usr/src/chillispot-1.1.0# /etc/init.d/apache2 reload
* Reloading web server config apache2
root@ubuntu:/usr/src/chillispot-1.1.0# _
                                                                                                                                                           E OK 1
```

```
61. Type /etc/init.d/apache2 restart and press Enter to restart Apache with the new configuration.

root@ubuntu:/usr/src/chillispot-1.1.0# /etc/init.d/apache2 restart

* Restarting web server apache2
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

62. Now, type nano -w /var/www/index.html and press Enter. Then, replace the file's content with the following line: Click here to login. Save the file and exit nano.

```
root@ubuntu:/usr/src/chillispot-1.1.0# nano -w /var/www/index.html _
```

```
GNU nano 2.0.9

File: /var/www/index.html

<a href="http://192.168.182.1:3990/prelogin">Click here to login</a>

a href="http://192.168.182.1:3990/prelogin">Click here to login</a>

[ Wrote 1 line ]

G Get Help TO WriteOut TR Read File TY Prev Page TK Cut Text TC Cur Pos TX Exit TJ Justify Two Where Is TO Next Page TU UnCut Text To Spell
```

63. Type *cp doc/hotspotlogin.cgi /usr/lib/cgi-bin/* and press Enter to copy the CGI with the login procedure.

```
root@ubuntu:/usr/src/chillispot-1.1.0# cp doc/hotspotlogin.cgi /usr/lib/cgi-bin/
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

64. Open the CGI file you just copied with nano and look for the parameter uamsecret. Set its value with the same value as the uamsecret parameter on the chilli.conf file. Save the file and exit nano.

```
# Redirects from ChilliSpot daemon:

# Redirection when not yet or already authenticated
# notyet: ChilliSpot daemon redirects to login page.
# already: ChilliSpot daemon redirects to success status page.
# Response to login:
# already: Attempt to login when already logged in.
# failed: Login failed
# success: Login succeded
# logoff: Response to a logout

# Shared secret used to encrypt challenge with. Prevents dictionary attacks.
# You should change this to your own shared secret.
# Suamsecret = "ht2eb8ej6s4et3rg1ulp";
# Uncomment the following line if you want to use ordinary user-password
# for radius authentication. Must be used together with $uamsecret.

# Get Help **O WriteOut *** Read File ***Y Prev Page *** Cut Text **** Cur Pos *** Exit *** Justify *** Where Is **** V Next Page **** Uncut Text*** To Spell
```

```
# Redirects from ChilliSpot daemon:

# Redirection when not yet or already authenticated
# notyet: ChilliSpot daemon redirects to login page.
# already: ChilliSpot daemon redirects to success status page.
# Response to login:
# already: Attempt to login when already logged in.
# failed: Login failed
# success: Login succeded
# logoff: Response to a logout

# Shared secret used to encrypt challenge with. Prevents dictionary attacks.
# You should change this to your own shared secret.
# Suamsecret = "uamPassword";
# Uncomment the following line if you want to use ordinary user-password
# for radius authentication. Must be used together with $uamsecret.

## Get Help **O WriteOut *** Read File *** Y Prev Page *** Cut Text *** C Cur Pos *** Exit *** Justify *** Where Is *** V Next Page *** UnCut Text *** To Spell
```

65. Finally, you need to configure Internet Connection Sharing between your two network cards. Type *nano -w /etc/network/interfaces* and press Enter. Configure your eth0 interface with static information so it is on the same network as your working access point.

In our example, the AP is on 192.168.1.1.

```
GNU nano 2.0.9
                                       File: /etc/network/interfaces
                                                                                                      Modified
       This file describes the network interfaces available on your system
       and how to activate them. For more information, see interfaces(5).
       The loopback network interface
     iface lo inet loopback
     # The primary network interface
     auto eth0
     iface ethO inet static
     address 192.168.1.21
netmask 255.255.255.0
gateway 192.168.1.1_
     ^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos
^X Exit _^J Justify ^W Where Is <mark>^V N</mark>ext Page <mark>^U</mark> UnCut Text<mark>^T</mark> To Spell
66. Now, create a backup copy of your resolv.conf file. Type cp /etc/resolv.conf
    /etc/resolv.conf.bak and press Enter.
root@ubuntu:/usr/src/chillispot-1.1.0# cp /etc/resolv.conf /etc/resolv.conf.bak
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

67. Edit your /etc/resolv.conf file so it looks like the following:

68. Type nano -w nat.sh and press Enter. Then, add the following lines: iptables -A FORWARD -i eth0 -o eth1 -s 192.168.182.0/24 -m conntrack --ctstate NEW -j ACCEPT

iptables -A FORWARD -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT iptables -A POSTROUTING -t nat -j MASQUERADE --source 192.168.182.0/24 echo 1 > /proc/sys/net/ipv4/ip forward

```
GNU nano 2.0.9 File: /usr/src/chillispot-1.1.0/nat.sh

iptables -A FORWARD -i eth0 -o eth1 -s 192.168.182.0/24 -m conntrack --ctstate $
iptables -A FORWARD -m conntrack --ctstate ESTABLISHED, RELATED -j ACCEPT
iptables -A PUSTROUTING -t nat -j MASQUERADE --source 192.168.182.0/24
echo 1 > /proc/sys/net/ipv4/ip_forward

[ Read 4 lines ]

G Get Help O WriteOut R Read File Y Prev Page R Cut Text C Cur Pos
X Exit J Justify Where Is V Next Page U UnCut Text To Spell
```

69. Giving running permissions to your new file. Type chmod +x nat.sh and press Enter.

```
root@ubuntu:/usr/src/chillispot-1.1.0# chmod +x nat.sh
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

```
70. Type ./nat.sh and press Enter to run your script.
root@ubuntu:/usr/src/chillispot-1.1.0# ./nat.sh
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

Note: You will need to run this script every time you reboot your system.

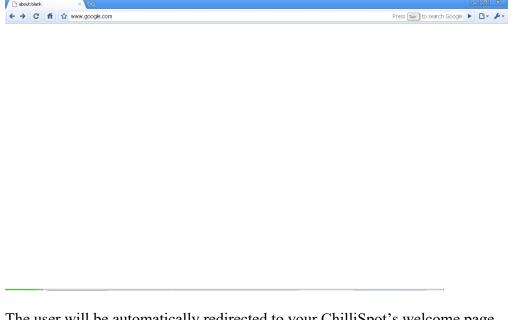
71. Edit /etc/sysctl.conf and add these lines: net.ipv4.conf.default.forwarding=1 net.ipv4.conf.all.forwarding=1

```
GNU nano 2.0.9
                                                                                                                         Modified
                                                File: /etc/sysctl.conf
  Do not send ICMP redirects (we are not a router)
#net.ipv4.conf.all.send_redirects = 0
# Do not accept IP source route packets (we are not a router)
#net.ipv4.conf.all.accept_source_route = 0
#net.ipv6.conf.all.accept_source_route = 0
  Log Martian Packets
#net.ipv4.conf.all.log_martians = 1
## The contents of /proc/<pid>/maps and smaps files are only visible to # readers that are allowed to ptrace() the process # kernel.maps_protect = 1 net.ipv4.conf.default.forwarding=1 net.ipv4.conf.all.forwarding=1_
^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^R Cut Text ^C Cur Pos
^X Exit ^J Justify ^W Where Is ^U Next Page ^U UnCut Text^T To Spell
```

72. Run ChilliSpot on a different terminal by pressing Alt+F2. Then type chilli --debug --fg and

```
press Enter. This will start ChilliSpot on debug mode so you can see any error messages.

root@ubuntu:/home/notroot# chilli --debug --fg
ChilliSpot version 1.1.0 started.
chilliSpot version 1.1.0. Copyright 2002-2005 Mondru AB. Licensed und
er GPL. See http://www.chillispot.org for credits.
Waiting for client request...
```


73. Press Alt+F1 to change back to your original terminal window.

```
root@ubuntu:/usr/src/chillispot-1.1.0# _
```

```
74. Type /etc/init.d/freeradius restart and press Enter to restart FreeRadius.
root@ubuntu:/home/notroot# /etc/init.d/freeradius restart
* Stopping FreeRADIUS daemon freeradius
* Starting FreeRADIUS daemon freeradius
root@ubuntu:/home/notroot# _
```

75. Now, all clients that will want to connect to your AP will have to authenticate first before joining your wireless network.

A new user wants to visit a site.

The user will be automatically redirected to your ChilliSpot's welcome page.

The user will have to login using his/her credentials. Here, we are logging in with "test" as the username and password.

The user can now browse the Internet normally.

76. Close all windows.