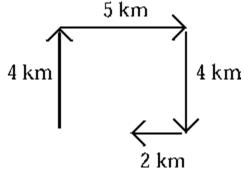
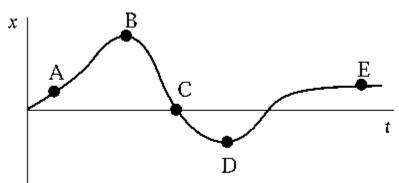

https://selldocx.com/products /test-bank-physics-for-scientists-and-engineers-6e-tipler-28 Chapter 2: Motion in One Dimension

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Numerical A particle moves from $x_1 = 30$ cm to $x_2 = -40$ cm. The displacement of this particle is A) 30 cm B) 40 cm C) 70 cm D) -70 cm E) -40 cm Ans: D


Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Numerical A particle moves from $x_1 = -50$ cm to $x_2 = 30$ cm. The displacement of this particle is A) -50 cm B) 30 cm C) 80 cm D) -30 cm E) -80 cm Ans: C

Section: 2-1 Topic: Displacement, Velocity, and Speed Type: Numerical

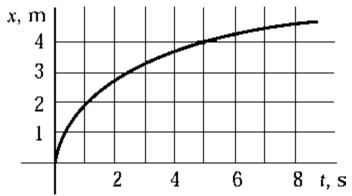
Four successive displacements of 3 km, 4 km, 5 km, and 4 km are at right angles to each other as shown in the diagram. The magnitude of the resultant displacement is A) 2 km B) 16 km C) 3 km D) 5 km E) None of these is correct. Ans: A


Section: 2-1 Topic: Displacement, Velocity, and Speed Type: Numerical

Four successive displacements of 4 km, 5 km, 4 km, and 2 km are at right angles to each other as shown in the diagram. The magnitude of the resultant displacement is A) 4 km B) 15 km C) 3 km D) 5 km E) None of these is correct. Ans: C

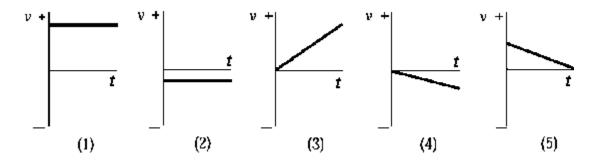
A part particl	ticle moves from $x_0 = 30$ cm to $x = 1$ le during this time interval is cm/s. B) -2 cm/s. C) 14 cm	Velocity, and Speed Type: Numerical = -40 cm in 5 s. The average velocity of the /s. D) -14 cm/s. E) -140 cm/s.
You dat 80 k	drive for 30 min at 100 km/h and t km/h. Your average speed for the 3 km/h. B) 83 km/h. C) 88 k	Velocity, and Speed Type: Numerical hen stop for 15 min. You then drive for 45 min entire trip is m/h. D) 90 km/h. E) 97 km/h.
You daverage	drive for 30 min for 30 km East ange speed for the entire trip is 0 km/h. B) 50 km/h. C) 60 km/h.	Velocity, and Speed Type: Numerical d then another 30 min for 40 km North. Your m/h. D) 70 km/h. E) 80 km/h.
You daverage	drive for 30 min for 30 km East ange velocity for the entire trip is 0 km/h. B) 50 km/h. C) 60 km/h.	Velocity, and Speed Type: Numerical d then another 30 min for 40 km North. Your m/h. D) 70 km/h. E) 80 km/h.
The di A) is B) is C) is D) ca	isplacement of an object for a rous always greater than zero. s always less than zero. s zero. an be greater than or less than but an have any value.	
The di it trave A) gr B) le	isplacement of an object during and tels during that same time interval reater than or equal to ess than or equal to equal to	Velocity, and Speed Type: Conceptual my time interval is always the distance D) greater than E) much greater than

Section: 2-1 Topic: Displacement, Velocity, and Speed Type: Conceptual



An object, located at the origin when t = 0, moves along the x axis as shown in the diagram. At which point is the object farthest from its starting point?

A) A B) B C) C D) D E) E


Ans: B

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual

The graph shows how the position of a particle depends on time. Which choice is closest to the average speed of the particle in the time interval between 0 and 6 s? A) 0.40 m/s B) 0.67 m/s C) 0.75 m/s D) 1.50 m/s E) 2.22 m/s Ans: B

Use the following to answer questions 11–13:

Chapter 2: Motion in One Dimension

Which graph of v versus t best describes the motion of a particle whose velocity is

Type: Conceptual

Type: Conceptual

Topic: Displacement, Velocity, and Speed

Topic: Displacement, Velocity, and Speed

E) 5

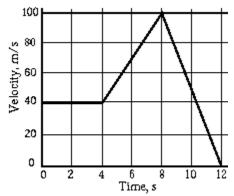
Section: 2–1

Section: 2–1

Ans: B

constant and negative?

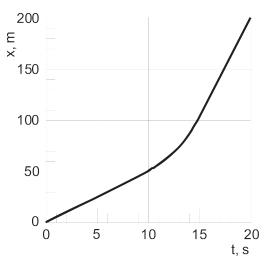
A) 1 B) 2 C) 3 D) 4


In which graph of <i>v</i> versus <i>t</i> does the particle end up closest to its s A) 1 B) 2 C) 3 D) 4 E) 5 Ans: D	tarting point?		
Section: 2–1 Topic: Displacement, Velocity, and Speed Type In which graph of <i>v</i> versus <i>t</i> does the particle end up farthest from A) 1 B) 2 C) 3 D) 4 E) 5 Ans: A			
Section: 2–1 Topic: Displacement, Velocity, and Speed Type If the speed of particle A is twice that of particle B, the distance particle interval of time as compared with particle A is A) twice as great. B) half as great. C) the same. Ans: B	rticle B travels in a		
Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Numerical Assume that the Deschutes River has straight and parallel banks and that the current is 0.75 m/s. Drifting down the river, you fall out of your boat and immediately grab a piling of the Warm Springs Bridge. You hold on for 40 s and then swim after the boat with a speed relative to the water of 0.95 m/s. The distance of the boat downstream from the bridge when you catch it is A) 67 m. B) 90 m. C) 78 m. D) 54 m. E) 120 m. Ans: D			
Section: 2–1 Topic: Displacement, Velocity, and Speed Type You are traveling in your car at 82 km/h (23 m/s) when an emerger is 4 m long, how many car lengths do you travel during the 0.7 s of the time interval between seeing the emergency and hitting the braid A) 2 B) 4 C) 6 D) 8 E) 10 Ans: B	ncy arises. If your car f reaction time (i.e.,		

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Numerical A river 1.00 mile wide flows with a constant speed of 1.00 mi/h. A woman leaves from a point on the river bank. The woman rows a boat 1.00 mi directly upstream and returns to the starting point. Her speed in still water is 2.00 mi/h. The travel time for the woman is

A) 2.00 h. B) 1.15 h. C) 1.00 h. D) 1.33 h. E) 0.67 h. Ans: D

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Numerical A river 1.00 mile wide flows with a constant speed of 1.00 mi/h. A man can row a boat at 2.00 mi/h. He crosses the river in a direction that puts him directly across the river from the starting point, and then he returns in a direction that puts him back at the starting point in the shortest time possible. The travel time for the man is A) 2.00 h. B) 1.15 h. C) 1.00 h. D) 1.33 h. E) 0.67 h. Ans: B


Section: 2-1 Topic: Displacement, Velocity, and Speed Type: Numerical

The graph shows the velocity of a particle as a function of time. In the 12 s shown, the particle travels

A) 0 m. B) 1200 m. C) 640 m. D) 440 m. E) 200 m. Ans: C

The distance traveled by a car in the x-direction is shown. When the car changes speed for t = 10 s to 15 s, it does so uniformly. Use the graph below to answer the next 3 questions.

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Numerical The speed of the car at 5 s is

A) 5 m/s B) 7.5 m/s C) 10 m/s D) 12.5 m/s E) 15 m/s Ans: A

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Numerical The speed of the car at 17.5 s is

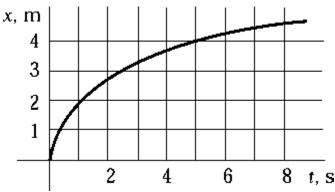
A) 5 m/s B) 10 m/s C) 15 m/s D) 20 m/s E) 25 m/s Ans: D

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual The speed of the car at 5 s is speed at 20 s.

- A) less than the
- B) equal to the
- C) greater than the
- D) unable to tell
- E) depends on what happens when it is accelerating between 10 and 15 s. Ans: A

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual If the position of an object is plotted vertically on a graph and the time is plotted horizontally, the instantaneous velocity at a particular time is

- A) the height of the curve at that time.
- B) the total length of the curve.
- C) the slope of the tangent to the curve at that time.
- D) the area under the curve from zero to that time.
- E) impossible to determine from this type of plot.


Ans: C

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual If an object is moving at uniform speed in a straight line, its instantaneous velocity halfway through any time interval is

- A) greater than its average velocity.
- D) half of its average velocity.
- B) less than its average velocity.
- E) twice its average velocity.
- C) the same as its average velocity.

Ans: C

Section: 2-1 Topic: Displacement, Velocity, and Speed Type: Conceptual

The graph shows how the position of a particle depends on time. Which choice is closest to the instantaneous speed of the particle at t = 3 s?

- A) 0.40 m/s
- B) 0.67 m/s
- C) 0.75 m/s
- D) 1.50 m/s
- E) 2.22 m/s

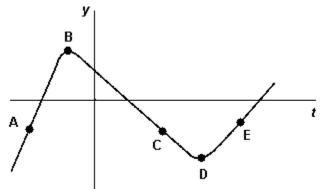
Ans: A

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual On a graph that shows position on the vertical axis and time on the horizontal axis, a straight line with a positive slope represents

- A) a constant positive acceleration.
- D) a constant positive velocity.
- B) a constant negative acceleration.
- E) a constant negative velocity.

C) zero velocity.

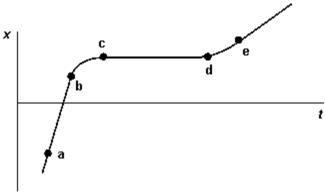
Ans: D


Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual On a graph that shows position on the vertical axis and time on the horizontal axis, a straight line with a negative slope represents

- A) a constant positive acceleration.
- D) a constant positive velocity.
- B) a constant negative acceleration.
- E) a constant negative velocity.

C) zero velocity.

Ans: E


Section: 2-1 Topic: Displacement, Velocity, and Speed Type: Conceptual

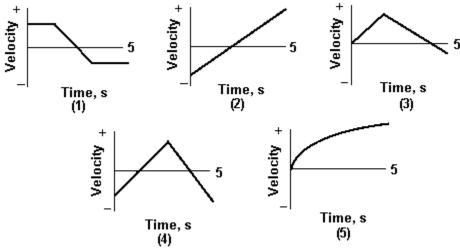
The graph shows the displacement of a particle along the y axis as a function of time. The points at which the velocity is the same are

A) A and C. B) A and E. C) B and D. D) A, C, and E. E) B, C, and D. Ans: C

Section: 2-1 Topic: Displacement, Velocity, and Speed Type: Conceptual

The graph represents the displacement of a particle along the *x* axis as a function of time. The interval in which the velocity of this particle is negative is

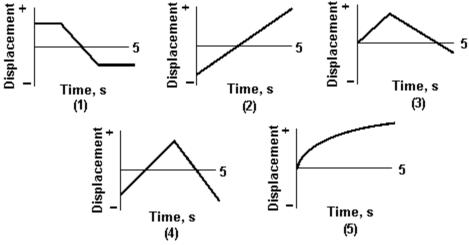
A) a-b B) b-c C) d-e D) c-d E) none of these is correct. Ans: E


Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual For this problem, refer to the figure in problem 31. Which point has the highest instantaneous velocity?

A) a B) b C) c D) d E) e Ans: A

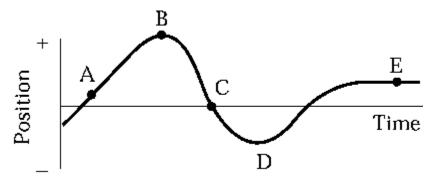
Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual For this problem, refer to the figure in problem 31. Which interval has the highest magnitude in acceleration?

A) a-b B) b-c C) c-d D) d-e E) they have equal acceleration Ans: B


Section: 2-1 Topic: Displacement, Velocity, and Speed Type: Conceptual

In which graph is the particle the farthest from the origin at t = 5 s?

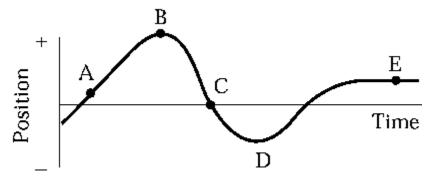
A) 1 B) 2 C) 3 D) 4 E) 5 Ans: E


Section: 2-1 Topic: Displacement, Velocity, and Speed Type: Conceptual

In which graph is the particle the closest to the origin at t = 5 s?

A) 1 B) 2 C) 3 D) 4 E) 5 Ans: C

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual



An object moves along the x axis as shown in the diagram. At which point or points is the magnitude of its velocity a minimum?

- A) A and E
- B) B, D, and E
- C) C only
- Ans: B

- D) E only
- E) None of these is correct.

Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Conceptual

An object moves along the x axis as shown in the diagram. At which point or points is the object instantaneously at rest?

A) A and E

D) E only

B) B, D, and E

E) None of these is correct.

C) C only

Ans: B

Status: New to 5th edition Section: 2–1

Topic: Displacement, Velocity, and Speed Type: Numerical

A Ford truck enters a highway and travels at a uniform speed of 50 mph. Half an hour later a Jaguar enters the highway at the same junction and heads in the same direction at 55 mph. How long after the Ford entered the highway does the Jaguar catch up with the truck?

- A) 5.0 hrs
- B) 6.0 hrs
- C) 1.0 hrs
- D) 1.6 hrs
- E) 5.5 hrs

Ans: E

Chapter 2: Motion in One Dimension

Status: New to 5th edition Section: 2–1 Topic: Displacement, Velocity, and Speed Type: Numerical An airplane flies 600 miles with a tail wind in 2.0 hrs. If it takes 2.5 hrs to cover the same distance against the headwind, then what is the speed of the plane in still air? A) 270 mph B) 300 mph C) 240 mph D) 330 mph E) 250 mph Ans: A Section: 2–1 Status: New to 5th edition Topic: Displacement, Velocity, and Speed Type: Numerical It takes the Mars rover 4.5 minutes to send information via a radio signal traveling at the speed of light back to Mission Control on Earth. How far away is the rover? A) $8.1 \times 10^{10} \text{ km}$ D) $1.35 \times 10^9 \text{ km}$ B) $1.35 \times 10^9 \text{ m}$ E) $1.62 \times 10^{11} \,\mathrm{m}$ C) 8.10×10^{10} m Ans: C Topic: Acceleration Type: Numerical Section: 2–2 A car accelerates uniformly from rest to a speed of 20 m/s at the end of 1 min; it then accelerates uniformly to a speed of 40 m/s at the end of the next minute. During this 2-min period, the average speed of the car is A) 7.5 m/s B) 30 m/s C) 15 m/s D) 20 m/s E) 40 m/s Ans: D Section: 2–2 Topic: Acceleration Type: Numerical An object is moving in a straight line. At t = 0, its speed is 5.0 m/s. From t = 0 to t = 04.0 s, its acceleration is 2.5 m/s². From t = 4.0 s to t = 11.0 s, its speed is constant. The average speed over the entire time interval is A) 9.5 m/sB) 15 m/s C) 13 m/s D) 21 m/s E) 8.2 m/sAns: C Topic: Acceleration Section: 2–2 Type: Numerical A particle that is moving along a straight line decelerates uniformly from 40 cm/s to 20 cm/s in 5.0 s and then has a constant acceleration of 20 cm/s² during the next 4.0 s. The average speed over the whole time interval is A) 57 cm/s B) 140 cm/s C) 86 cm/s D) 43 cm/s E) 97 cm/s Ans: D Section: 2–2 Topic: Acceleration Type: Numerical

moves at a constant speed of 40 cm/s for an additional 3 s. The average speed over this total time interval is

A) 35 cm/s

B) 27 cm/s

C) 0.45 cm/s

D) 37 cm/s

E) 73 cm/s

Ans: D

A particle accelerates uniformly from a speed of 30 cm/s to 40 cm/s in 5 s and thereafter

Topic: Acceleration Section: 2–2 Type: Conceptual

For uniformly accelerated motion, which of the following quantities must be zero?

A) the initial velocity

- D) the rate of change of the velocity
- B) the initial displacement
- E) the rate of change of the displacement
- C) the rate of change of the acceleration

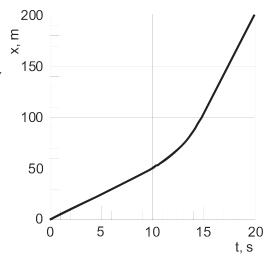
Ans: C

Topic: Acceleration Type: Numerical Section: 2–2

A particle decelerates uniformly from a speed of 30 cm/s to rest in a time interval of 5.0 s. It then has a uniform acceleration of 10 cm/s² for another 5.0 s. The particle moves in the same direction along a straight line. The average speed over the whole time interval is

- A) 20 cm/s
- B) 35 cm/s
 - C) 38 cm/s
- D) 100 cm/s
- E) 12 cm/s

Ans: A


Section: 2–2 Topic: Acceleration Type: Numerical

A Triumph sports car starts at rest and accelerates uniformly to a speed of 27.0 m/s in 11.8 s. Calculate the distance the car travels during this time interval.

- A) 160 m
- B) 320 m C) 1.90 km
- D) 640 m

Ans: A

The distance traveled by a car in the x-direction is shown. When the car changes speed for t = 10 s to 15 s, it does so uniformly. Use the graph below to answer the next 2 questions.

Topic: Displacement, Velocity, and Speed Type: Numerical Section: 2–1 The acceleration of the car between 10 s and 15 s is

- A) 1 m/s^2
- B) 2 m/s^2
- C) 3 m/s^2 D) 4 m/s^2 E) 5 m/s^2

Ans: C

Topic: Displacement, Velocity, and Speed Type: Conceptual The acceleration of the car at 5 s is acceleration at 20 s.

- A) less than the
- B) equal to the
- C) greater than the
- D) unable to tell

E) depends on what happens when it is accelerating between 10 and 15 s Ans: B

Section: 2–2 Topic: Acceleration Type: Conceptual

On a graph that shows position on the vertical axis and time on the horizontal axis, a parabolic curve that opens upward represents

- A) a constant positive acceleration.
- B) a constant negative acceleration.
- C) no acceleration.
- D) a positive followed by a negative acceleration.
- E) a negative followed by a positive acceleration.

Ans: A

Section: 2–2 Topic: Acceleration Type: Conceptual

On a graph that shows position on the vertical axis and time on the horizontal axis, a parabolic curve that opens downward represents

- A) a constant positive acceleration.
- B) a constant negative acceleration.
- C) no acceleration.
- D) a positive followed by a negative acceleration.
- E) a negative followed by a positive acceleration.

Ans: B

Section: 2–2 Topic: Acceleration Type: Conceptual

A vehicle is traveling in the +x direction to x = 100 m. It then reverses direction. At the instant when it changes direction, the acceleration of the vehicle is

- A) positive.
- B) negative.
- C) zero.
- D) positive then negative.
- E) negative then positive.

Ans: B

Section: 2–2 Topic: Acceleration Type: Conceptual

A vehicle is traveling in the -x direction to x = 100 m. It then reverses direction. At the instant when it changes direction, the acceleration of the vehicle is

- A) positive.
- B) negative.
- C) zero.
- D) positive then negative.
- E) negative then positive.

Ans: A

Section: 2-2 Topic: Acceleration Type: Conceptual

On a graph that shows velocity on the vertical axis and time on the horizontal axis, zero acceleration is represented by

- A) a straight line with a positive slope.
- D) either a, b, or c.
- B) a straight line with a negative slope.
- E) None of these is correct.
- C) a straight line with zero slope.

Ans: C

Section: 2–2 Topic: Acceleration Type: Conceptual

On a graph that shows velocity on the vertical axis and time on the horizontal axis, constant acceleration is represented by

- A) a straight line with a positive slope.
- D) either a, b, or c.
- B) a straight line with a negative slope.
- E) None of these is correct.
- C) a straight line with zero slope.

Ans: D

Section: 2–2 Topic: Acceleration Type: Conceptual

On a graph that shows velocity on the vertical axis and time on the horizontal axis, the area under the curve represents

A) Average acceleration.

D) average speed.

B) Average velocity.

E) no useful physical quantity.

C) displacement.

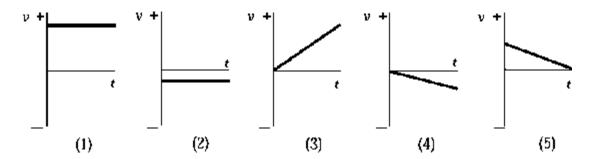
Ans: C

Section: 2–2 Topic: Acceleration Type: Conceptual

On a graph that shows position on the vertical axis and time on the horizontal axis, the area under the curve represents

A) average acceleration.

D) average speed.


B) average velocity.

E) nothing of physical significance.

C) displacement.

Ans: E

Use the following to answer questions 47–49:

Topic: Acceleration Type: Conceptual Section: 2–2

Which graph of v versus t best describes the motion of a particle with positive velocity and negative acceleration?

A) 1 B) 2 C) 3 D) 4 E) 5

Ans: E

Section: 2–2 Topic: Acceleration Type: Conceptual

Which graph of v versus t best describes the motion of a particle with negative velocity and negative acceleration?

A) 1 B) 2 C) 3 E) 5 D) 4

Ans: D

Section: 2–2 Topic: Acceleration Type: Conceptual

In which graph of v versus t is the magnitude of the particle's acceleration the greatest?

A) 1 B) 2 C) 3 D) 4 E) 5

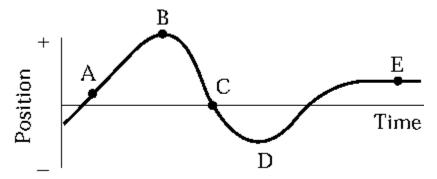
Ans: C

Topic: Acceleration Type: Conceptual Section: 2–2

A car and a truck, starting from rest, have the same acceleration, but the truck accelerates for twice the length of time. Compared with the car, the truck will travel

A) twice as far.

D) four times as far.


B) three times as far.

E) one-half as far.

C) 1.4 times as far.

Ans: D

Section: 2–2 Topic: Acceleration Type: Conceptual

An object moves along the horizontal axis as shown on the diagram. At which point or points is its acceleration zero?

A) A and E B) B, D, and E

C) C only D) E only E) B and D

Ans: A

Section: 2–2 Status: New to 5th edition Topic: Acceleration Type: Numerical A Lamborghini sports car can accelerate from zero to 60 mph in 4 seconds. It can decelerate from 60 mph to rest in 120 ft. What is the ratio of average acceleration over average deceleration? (1 mile = 5280 ft)

A) 1.74×10^{-5} B) 1.47 C) 0.682 D) 0.0114 E) 0.688 Ans: C

Section: 2–2 Status: New to 5th edition Topic: Acceleration Type: Numerical If we assume that a spaceship could accelerate from rest at a constant rate of 9.81 m/s², then how long would it take to reach 1% of the speed of light? (Assume the speed of light = 3.0×10^8 m/s)

A) 1.8 days B) 3.5 days C) 3.1×10^4 s D) 3.1×10^6 s E) 7.1 days Ans: B

Section: 2–2 Status: New to 5th edition Topic: Acceleration Type: Numerical If we assume that a spaceship could accelerate from rest up to 1% of the speed of light at a constant rate of 9.81 m/s^2 , how many times the radius of our Solar System (i.e., the distance from the Sun to Pluto = $5.9 \times 10^9 \text{ km}$) would the spaceship have traveled?

A) 78 B) 7.8×10^{-2} C) 2.6×10^{-10} D) 2.6×10^{-7} E) 7.8×10^{-1} Ans: B

Section: 2-2 Status: New to 5th edition Topic: Acceleration Type: Numerical A common statistic in car tests is the standing (starting from rest) quarter-mile performance. A modern sports car can achieve a terminal speed (speed at the end of the quarter-mile) of 120 mph (193 km/h). How does the average acceleration compare to g? (0.25 mile = 402 m)

A) 0.36 g B) 2.8 g C) 0.067 g D) 15.0 g E) 0.73 g Ans: A

Section: 2–2 Status: New to 5th edition Topic: Acceleration Type: Numerical A racecar starts from rest and accelerates at a constant rate and reaches a speed of 160 km/h (100 mph) in 6.0 seconds. It continues at this speed for another 5 seconds. What is the car's average speed during the first 11 seconds?

A) 34.3 m/s B) 29.3 m/s C) 22.2 m/s D) 32.3 m/s E) 44.4 m/s Ans: D

Section: 2–2 Status: New to 5th edition Topic: Acceleration Type: Numerical A car is traveling at 120 km/h (75 mph). When applied the braking system can stop the car with a deceleration rate of 9.0 m/s². The typical reaction time for an alert driver is 0.5 s versus 2 s for a sleepy driver. Assuming a typical car length of 5 m, calculate the number of additional car lengths it takes the sleepy driver to stop compared to the alert driver.

A) 13 B) 3.0 C) 10 D) 16 E) 26 Ans: C

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual An object is dropped from rest near the surface of Earth. If the time interval during which it falls is cut in half, the distance it falls will

A) double.

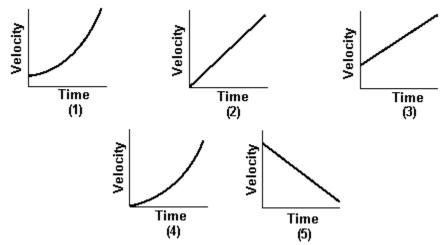
D) decrease by a factor of four.

B) decrease by one-half.

- E) not change.
- C) increase by a factor of four.

Ans: D

- Topic: Motion with Constant Acceleration Type: Conceptual Section: 2–3 An object is dropped from rest near the surface of Earth. If the time interval during which it falls is doubled, the distance it falls will
- A) double.


D) decrease by a factor of four.

B) decrease by one-half.

- E) not change.
- C) increase by a factor of four.

Ans: C

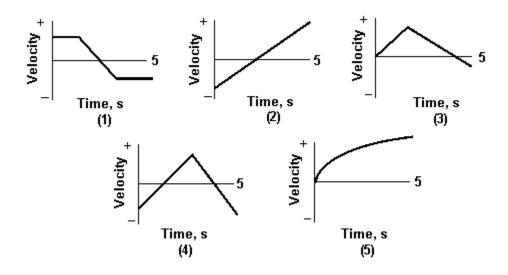
Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual

A car accelerates uniformly from a velocity of 10 km/h to 30 km/h in one minute. Which graph best describes the motion of the car?

A) 1 Ans: C

- B) 2 C) 3
- D) 4

Section: 2–3 Topic: Motion with Constant Acceleration Type: Numerical A projectile is fired vertically upward with a speed of 62 m/s. In the absence of air


- resistance, the maximum height the projectile attains is A) 25 km
- B) 98 m C) 200 m D) 19 km

Ans: C

Section: 2–3 Topic: Motion with Constant Acceleration Type: Numerical A ball is dropped from the top of a building. In the absence of air resistance, the ball will hit the ground with a speed of 49 m/s. The height of the building is

A) 25 m B) 5 m C) 240 m D) 120 m E) 10 m Ans: D

Use the following to answer questions 63–65:

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual In which graph does the particle have no acceleration at t = 5 s?

B) 2 C) 3 D) 4 E) 5 A) 1

Ans: A

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual In which graph does the particle have a constant acceleration for the entire 5 s?

A) 1 B) 2 C) 3 D) 4 E) 5 Ans: B

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual In which graph does the particle never have a constant acceleration?

A) 1 B) 2 D) 4 C) 3 E) 5

Ans: E

Topic: Motion with Constant Acceleration Type: Conceptual Section: 2–3 An object is at x = -3 m and has a velocity of 4 m/s. It is observed to be slowing down. Its acceleration is

- A) positive.
- B) negative.
- C) zero.
- D) negative until the object stops and then positive.
- E) impossible to determine based on the information provided.

Ans: B

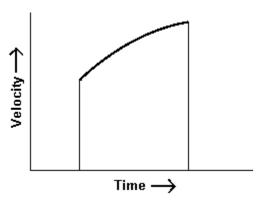
Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual An object is at x = -3 m and has a velocity of -4 m/s. It is observed to be slowing down. Its acceleration is

- A) positive.
- B) negative.
- C) zero.
- D) negative until the object stops and then positive.
- E) impossible to determine based on the information provided.

Ans: A

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual A graph of the motion of an object is plotted with the velocity on the vertical axis and the time on the horizontal axis. The graph is a straight line. Which of these quantities CANNOT be determined from this graph?

- A) the displacement from time t = 0
- B) the initial velocity at t = 0
- C) the acceleration of the object
- D) the average velocity of the object
- E) All four of the quantities can be determined from the graph.

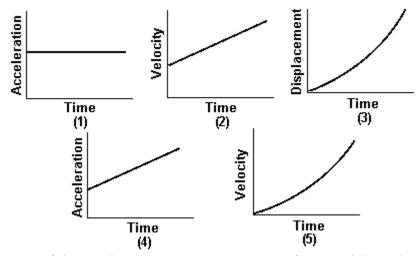

Ans: E

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual An object falling near the surface of Earth has a constant acceleration of 9.8 m/s². This means that the

- A) object falls 9.8 m during the first second of its motion.
- B) object falls 9.8 m during each second of its motion.
- C) speed of the object increases by 9.8 m/s during each second of its motion.
- D) acceleration of the object increases by 9.8 m/s² during each second of its motion.
- E) force of gravity on the object must be 9.8 SI units.

Ans: C

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual



The graph is a plot of velocity versus time for a moving object during a particular time interval. Which of the following statements is correct?

- A) The acceleration of the object is zero.
- B) The acceleration of the object is constant.
- C) The acceleration of the object is positive and increasing in magnitude.
- D) The acceleration of the object is negative and decreasing in magnitude.
- E) The acceleration of the object is positive and decreasing in magnitude.

Ans: E

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual

Two of the graphs shown are INCORRECT for a particle undergoing one-dimensional motion with constant acceleration. They are

A) 1 and 2

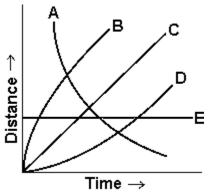
- B) 2 and 3
- C) 3 and 4
- D) 4 and 5
- E) 1 and 5

Ans: D

Section: 2–3 Topic: Motion with Constant Acceleration Type: Numerical A ball is thrown upward from an 80-ft tower with an initial vertical speed of 40 ft/s. If air resistance is ignored, the ball's speed when it reaches the ground will be A) 67 ft/s B) $1.3 \times 10^2 \text{ ft/s}$ C) $1.2 \times 10^2 \text{ ft/s}$ D) 49 ft/s E) 82 ft/s

A) 67 ft/s Ans: E Section: 2–3 Topic: Motion with Constant Acceleration Type: Numerical A balloon is ascending at a rate of 16 ft/s at a height of 32 ft above the ground when a package is dropped. The time taken, in the absence of air resistance, for the package to reach the ground is

A) 1.0 s B) 1.5 s C) 2.0 s D) 2.5 s E) 3.0 s


Ans: C

Section: 2–3 Topic: Motion with Constant Acceleration Type: Numerical An object is thrown upward with a velocity of 32 ft/s from a stationary balloon which is 48 ft above the ground. If air resistance is ignored, the total time until the object impacts the ground is

A) 1.0 s B) 2.0 s C) 3.0 s D) 4.0 s E) 6.0 s

Ans: C

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual

Which of the curves best describes a body moving with a constant non-zero acceleration?

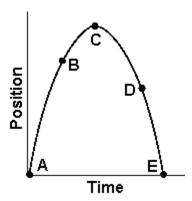
A) A B) B C) C D) D E) E

Ans: D

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual A particle initially at rest undergoes rectilinear (i.e., straight line) motion with an acceleration that is constant in magnitude and direction. The velocity of the particle

- A) is constant in magnitude and direction. D) can change in magnitude and direction.
- B) is constant in direction only. E) is described by none of these.
- C) is constant in magnitude only.

Ans: B


Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual Only one of the following statements is correct. The correct statement is:

- A) Average velocity is not a vector quantity.
- B) The average velocity can always be expressed as one-half the sum of the initial and final velocities.
- C) An accelerating body always changes its direction of motion.

- D) The instantaneous velocity is equal to the time rate of change of the displacement.
- E) A body undergoing constant acceleration changes its velocity by larger increments in succeeding equal time intervals.

Ans: D

Section: 2–3 Topic: Motion with Constant Acceleration Type: Conceptual

A ball has been thrown vertically upward. The graph shows the ball's position as a function of time. Which one of the following statements best describes the motion of the ball?

- A) The velocity of the ball is the same at points A, B, C, D, and E.
- B) The acceleration of the ball is 9.8 m/s² at points A, B, D, and E and zero at point C.
- C) The acceleration of the ball is -9.8 m/s² at points A, B, D, and E and zero at point C.
- D) The ball is the same distance above the ground at points B and D.
- E) The velocity of the ball changes continuously during its flight.

Ans: E

Section: 2–3 Status: New to 5th edition

Topic: Motion with Constant Acceleration Type: Conceptual

A hammer and feather are dropped from the same height above the lunar surface. Which object hits the ground first?

- A) the hammer
- B) neither because they both float in space
- C) the feather
- D) both at the same time
- E) none of the above

Ans: D

Section: 2–3 Status: New to 5th edition

Topic: Motion with Constant Acceleration Type: Numerical

A baseball is thrown vertically up to a height of 30 m on Earth. If the same ball is thrown up on the moon with the same initial speed how much further will it travel up? (Assume $g_{\text{moon}} = g_{\text{earth}}/6$)

A) 5.0 m B) 25 m C) 12 m D) 180 m E) 150 m

Ans: E

Section: 2–3 Status: New to 5th edition

Topic: Motion with Constant Acceleration Type: Numerical

Two baseballs are thrown vertically up from the ground at the same speed, one on Earth, and one on Mars. The baseball on Earth reaches a maximum height of 25 m. Which ball hits the ground first and by what time difference? ($g_{\text{Mars}} = 0.38 g_{\text{Earth}}$)

A) Mars by 7.4 s

D) Mars by 3.7 s

B) Earth by 7.4 s

E) Earth by 2.7 s

C) Earth by 3.7 s

Ans: B

Section: 2–3 Status: New to 5th edition

Topic: Motion with Constant Acceleration Type: Numerical

A sandbag is released from a rising air balloon and hits the ground 7 seconds later. From what height was the sandbag dropped from if at the moment of release the balloon was traveling upward at 3 m/s.

A) 219 m B) 240 m C) 459 m D) 261 m E) 55 m

Ans: A

Section: 2-4 Topic: Integration Type: Numerical

The relationship between the velocity of a body moving along the x axis and time is given by $v = 3t^2 - 2t$, where the units are SI units. The total distance the body travels between the times t = 2 s and t = 4 s is

A) 12 m B) 60 m C) 48 m D) 34 m E) 44 m Ans: E

Section: 2–4 Topic: Integration Type: Numerical

The relationship between the velocity of a body moving along the x axis and time is given by $v = 2t^3 + 2t$, where the units are SI units. The total distance the body travels between the times t = 2 s and t = 4 s is

A) 132 m B) 144 m C) 136 m D) 120 m E) 156 m Ans: A

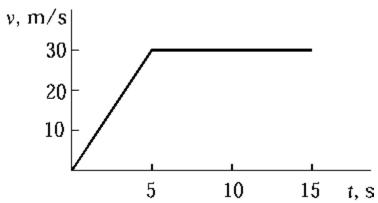
Section: 2–4 Topic: Integration Type: Conceptual

The change in velocity for a given time interval can be interpreted as

- A) the area under the *v*-versus-*t* curve for that interval.
- B) the area under the x-versus-t curve for that interval.
- C) the area under the *a*-versus-*t* curve for that interval.
- D) the slope of the *a*-versus-*t* curve.
- E) None of these is correct.

Ans: C

Section: 2–4 Topic: Integration Type: Conceptual


The change in displacement for a given time interval can be interpreted as

- A) the area under the *x*-versus-*t* curve for that interval.
- B) the area under the *a*-versus-*t* curve for that interval.

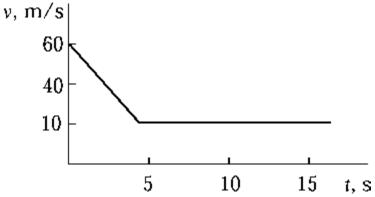
- C) the slope of the *v*-versus-*t* curve.
- D) the area under the *v*-versus-*t* curve for that interval.
- E) the slope of the *a*-versus-*t* curve.

Ans: D

Section: 2–4 Topic: Integration Type: Numerical

The graph shows the instantaneous velocity of a car during 15 s of its motion. The distance traveled by this car during this 15-s interval is

A) 30 m


B) 450 m C) 300 m

D) 75 m

E) 375 m

Ans: E

Topic: Integration Section: 2–4 Type: Numerical

The graph shows the instantaneous velocity of a car during 15 s of its motion. The distance traveled by this car during this 15-s interval is

A) 80 mm

B) 1.2 km

C) 600 m

D) 400 m

E) 200 m

Ans: D

Section: 2–4 Topic: Integration Type: Numerical

The velocity of a particle is given by v(t) = 3t. The average velocity for the particle between t = 2 and 4 s is

A) 4 m/s

D) 12 m/s

B) 6 m/s

E) 18 m/s

C) 9 m/s

Ans: C

Section: 2-4 Topic: Integration Type: Conceptual

The velocity of a particle is given by $v(t) = At^2$ where A is a constant and the units for v are in m/s. The average velocity for the particle between t_1 and t_2 is

A) $A(t_2^2-t_1^2)$

D) $\frac{A(t_2^3 - t_1^3)}{3(t_2 - t_1)}$

- B) $A(t_2^3 t_1^3)$
- C) $\frac{A(t_2^2 t_1^2)}{3(t_2 t_1)}$

Ans: D

Section: 2-4 Topic: Integration Type: Conceptual

The acceleration of a vehicle is given by a(t) = At where A is a constant. Its velocity as a function of time is $(v_0 \text{ is a constant})$

A)
$$v(t) = \frac{A}{2}t^2 + v_o$$

D) $v(t) = \frac{A}{3}t^3 + v_o$

B) $v(t) = At^2 + v_o$

E) None of these is correct.

E) None of these is correct.

C) $v(t) = At + v_o$

Ans: A

Section: 2–4 Topic: Integration Type: Conceptual

The acceleration of a vehicle is given by a(t) = At where A is a constant. Its displacement as a function of time is $(v_0 \text{ and } x_0 \text{ are constants})$

$$A)^{T} x(t) = At^2 + v_o t + x_o$$

D)
$$x(t) = \frac{A}{3}t^3 + v_o t + x_o$$

B)
$$x(t) = \frac{A}{3}t^2 + v_o t + x_o$$

E)
$$x(t) = \frac{A}{6}t^3 + v_o t + x_o$$

C)
$$x(t) = At^3 + v_0t + x_0$$

Ans: E