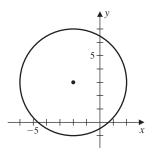
Contents

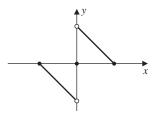
Chapter 1 Form A:Test	1
Chapter 1 Form B:Test	6
Chapter 1 Form C:Test	11
Chapter 1 Form D:Test	16
Chapter 1 Form E:Test	21
Chapter 1 Form F:Test	27
Chapter 1 Form G:Test	33
Chapter 1 Form H:Test	38
Chapter 1 Form I:Test	43
Chapter 2 Form A:Test	48
Chapter 2 Form B:Test	55
Chapter 2 Form C:Test	61
Chapter 2 Form D:Test	67
Chapter 2 Form E:Test	73
Chapter 2 Form F:Test	80
Chapter 2 Form G:Test	86
Chapter 2 Form H:Test	93
Chapter 2 Form I:Test	100
Chapter 3 Form A:Test	108
Chapter 3 Form B:Test	113
Chapter 3 Form C:Test	118

Page ii	Faires-DeFranza	PreCalculus 5th Edition Test Bank	Contents
Chapter 3 Form D:Test			124
Chapter 3 Form E:Test			130
Chapter 3 Form F:Test			135
Chapter 3 Form G:Test			141
Chapter 3 Form H:Test			146
Chapter 3 Form I:Test			151
Chapter 4 Form A:Test			155
Chapter 4 Form B:Test			159
Chapter 4 Form C:Test			163
Chapter 4 Form D:Test			168
Chapter 4 Form E:Test			173
Chapter 4 Form F:Test			178
Chapter 4 Form G:Test			183
Chapter 4 Form H:Test			187
Chapter 4 Form I:Test			191
Chapter 5 Form A:Test			195
Chapter 5 Form B:Test			199
Chapter 5 Form C:Test			203
Chapter 5 Form D:Test			206
Chapter 5 Form E:Test			209
Chapter 5 Form F:Test			213
Chapter 5 Form G:Test			217
Chapter 5 Form H:Test			221
Chapter 5 Form I:Test			225
Chapter 6 Form A:Test			229
Chapter 6 Form B:Test			234
Chapter 6 Form C:Test			240

Faires-DeFranza	PreCalculus 5th Edition Test Bank	Chapter 1 xxx	Page iii
Chapter 6 Form	D:Test		247
Chapter 6 Form	E:Test		254
Chapter 6 Form	F:Test		260
Chapter 6 Form	G:Test		266
Chapter 6 Form	H:Test		273
Chapter 6 Form	I:Test		280
Final Exam Form	m A:Test		285
Final Exam Form	m B:Test		296
Final Exam Form	m C:Test		305


Chapter 1 Form A: Test

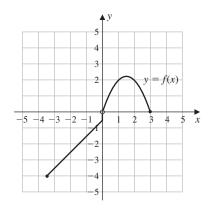
- 1. Use interval notation to list the values of x that satisfy the inequality $x^2 3x + 2 \le 0$.
- 2. Find all values of x that solve the equation |6x 3| = 9.
- 3. Solve the inequality $|x-3| \ge 2$ and write the solution using interval notation.
- 4. Consider the points $P_1(2,4)$ and $P_2(-1,3)$
 - (a) Find the distance between P_1 and P_2 .
 - (b) Find the midpoint of the line segment joining P_1 and P_2 .
- 5. Indicate on the xy-plane the points (x, y) for which the statement


$$|x-1| < 3$$
 and $|y+1| < 2$

holds.

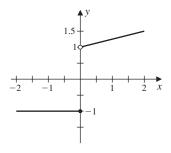
6. Find the equation of the circle shown in the figure.

- 7. Consider the circle with equation $x^2 + 2x + y^2 4y = -4$.
 - (a) Find the center of the circle.
 - (b) Find the radius of the circle.
- 8. Specify any axis or origin symmetry of the graph.



- 9. Consider the equation $y = x^3 + 8$.
 - (a) Determine any axis intercepts of the equation.
 - (b) Describe any axis or origin symmetry of the equation.
- 10. Find the distance between the points of intersection of the graphs $y = x^2 + 2$ and y = 6.

- 11. Suppose $f(x) = 4x^2 + 1$. Find the following values.
 - (a) f(2)


- (b) $f(\sqrt{3})$

- (c) $f(2+\sqrt{3})$ (e) f(2x) (g) f(x+h) (d) $f(2)+f(\sqrt{3})$ (f) f(1-x) (h) f(x+h)-f(x)
- 12. The graph of the function f is given in the figure.

- (a) Determine the value of f(-2).
- (d) Determine the value of f(3).
- (b) Determine the value of f(0).
- (e) Determine the domain of the function f.
- (c) Determine the value of f(2).
- (f) Determine the range of the function f.

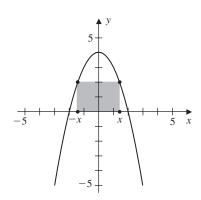
13. Consider the following graph.

- (a) Use the graph to determine the domain of the function.
- (b) Use the graph to determine the range of the function.
- 14. Find the domain of each function.

(a)
$$f(x) = 3x + 1$$

(c)
$$f(x) = \sqrt{3x+1}$$

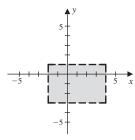
(b)
$$f(x) = \frac{1}{3x+1}$$


(d)
$$f(x) = \frac{1}{\sqrt{3x+1}}$$

- 15. Suppose that f(x) = 2x 4.
 - (a) Find f(x+h).

- (b) Find f(x+h) f(x).
- (c) Find $\frac{f(x+h)-f(x)}{h}$ when $h \neq 0$.
- (d) Find the value that $\frac{f(x+h)-f(x)}{h}$ approaches as $h \to 0$.
- 16. Express the area A of an equilateral triangle as a function of x if the side length is 3x.
- 17. Find the equation of the line that passes through the point (2,3) and has slope -2.
- 18. Find the slope-intercept form of the equation of the line that passes (0,0) through and is parallel to y = 2x + 1.
- 19. Find the slope-intercept equation of the line that has x-intercept -2 and y-intercept -3.
- 20. A new computer workstation costs \$10,000. Its useful lifetime is 4 years, at which time it will be worth an estimated \$2000. The company calculates its depreciation using the linear decline method that is an option in the tax laws. Find the linear equation that expresses the value V of the equipment as a function of time t, for $0 \le t \le 4$.
- 21. Consider the parabola with equation $y = x^2 4x + 3$.
 - (a) Determine the vertex of the parabola.
 - (b) Sketch the graph of the parabola.
- 22. Suppose that $f(x) = -x^2 + 6x 8$.
 - (a) Express the quadratic in standard form.
- (c) Find the maximum value of the function.

(b) Find any axis intercepts.


- (d) Find the minimum value of the function.
- 23. Find the domain of the function described by $f(x) = \sqrt{x^2 3}$.
- 24. A rectangle is inscribed beneath the parabola with equation $y = 4 x^2$. Express the area of the rectangle as a function of x.

- 25. Consider the parabola with equation $y = (x 3)^2$.
 - (a) Determine the vertex of the parabola.
 - (b) Sketch the graph of the parabola.

Chapter 1 Form A: Answers

- 1. [1, 2]
- 2. x = -1, x = 2
- 3. $(-\infty,1] \cup [5,\infty)$
- 4. $d = \sqrt{10}$, midpoint= $\left(\frac{1}{2}, \frac{7}{2}\right)$
- 5.

- 6. $(x+2)^2 + (y-3)^2 = 16$
- 7. center: (-1,2); radius: 1
- 8. origin
- 9. (a) (-1,0) and (0,1)
 - (b) none
- 10. 4
- 11. (a) 17

(d) 30

(g) $4x^2 + 8xh + 4h^2 + 1$

(b) 13

- (e) $16x^2 + 1$
- (h) $8xh + 4h^2$

- (c) $29 + 16\sqrt{3}$
- (f) $5 8x + 4x^2$

12. (a) -2.5

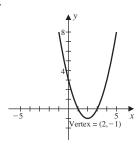
(c) 2

(e) [-3.5, 3]

(b) -0.5

(d) 0

(f) $[-4,0) \cup (0,2.25]$

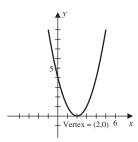

- 13. domain: $(-\infty, \infty)$; range: $(1, \infty) \cup \{-1\}$
- 14. (a) $(-\infty, \infty)$

- (c) $\left[-\frac{1}{3}, \infty\right)$
- (b) $\left(-\infty, -\frac{1}{3}\right) \cup \left(-\frac{1}{3}, \infty\right)$
- (d) $\left(-\frac{1}{3},\infty\right)$
- 15. (a) 2x + 2h 4 (b) 2h
- (c) 2
- (d) 2

- 16. $A = \frac{9\sqrt{3}}{4}x$
- 17. y = -x + 5
- 18. y = 2x
- 19. $y = -\frac{3}{2}x 3$

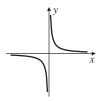
20.
$$V = 10,000 - 2,000t$$

21.



22. $f(x) = -(x-3)^2 + 1$; intercepts: x = 4, x = 2, y = -8; maximum: 1 at x = 3; minimum: none 23. $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$

23.
$$(-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$$

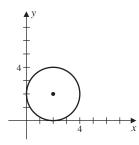

24.
$$A(x) = 8x - 2x^3$$

25.

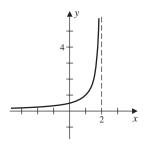
Chapter 1 Form B: Test

- 1. Express the surface area S of a cube as a function of its volume.
- 2. Use interval notation to list the values of x that satisfy the inequality $(x-1)(x+2)(x-2) \ge 0$.
- 3. Find a function whose graph is a parabola with vertex (1,3) and that passes through the point (-2,5).
- 4. Find the slope-intercept form of the equation of the line that passes through the point (1,1) and is parallel to the line $y = \frac{1}{2}x + 2$.
- 5. Specify any axis or origin symmetry of the graph that is shown.

- 6. Determine any axis intercepts and describe any axis or origin symmetry for the graph of $y = 2 2x^2$.
- 7. A new computer workstation costs \$10,000. Its useful lifetime is 4 years, at which time it will be worth an estimated \$2000. The company calculates its depreciation using the linear decline method that is an option in the tax laws. Find the linear equation that expresses the value V of the equipment as a function of time t, for $0 \le t \le 4$.
- 8. Indicate on the xy-plane those points (x, y) for which the statement -2 < x < 2 and 1 < y < 3 holds.
- 9. Consider the parabola with equation $y = x^2 4x + 3$
 - (a) Determine the vertex of the parabola.
 - (b) Sketch the graph of the parabola.
- 10. Find the domain of each function.


(a)
$$f(x) = \frac{x}{x^2 - 1}$$

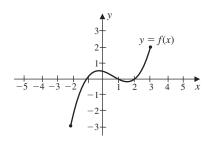
(b)
$$f(x) = \frac{x+1}{x^2-1}$$


(c)
$$f(x) = \sqrt{\frac{x^2}{x^2 - 1}}$$

11. Find the slope-intercept equation of the line that has x-intercept -2 and y-intercept -3.

12. Find the equation of the circle shown in the figure.

- 13. Find the distance between the points of intersection of the graphs $y = x^2 + 5$ and y = 6.
- 14. Let $f(x) = -x^2 + 6x 8$.
 - (a) Express the quadratic in standard form.
 - (b) Find any axis intercepts.
 - (c) Find the maximum of the function.
 - (d) Find the minimum of the function.
- 15. Find the domain of the function $f(x) = \sqrt{x-2} + 2$.
- 16. Solve the inequality $|x+2| \leq 1$ and write the solution using interval notation.
- 17. Use the graph to determine the domain and range of the function.



- 18. Consider f(x) = 7x + 4.
 - (a) Find f(x+h).
 - (b) Find f(x+h) f(x).
 - (c) Find $\frac{f(x+h)-f(x)}{h}$ where $h \neq 0$.
 - (d) Find what $\frac{f(x+h)-f(x)}{h}$ approaches as $h\to 0$.
- 19. Complete the square on the x and y terms to find (a) the center and (b) the radius of the circle with equation $x^2 + 4x + y^2 + 6y + 9 = 0$.

21. If $f(x) = 4x^2 + 1$, find exact solutions for the following values.

- (a) f(2)
- (b) $f(\sqrt{3})$
- (c) $f(2+\sqrt{3})$
- (d) $f(2) + f(\sqrt{3})$
- (e) f(2x)
- (f) f(1-x)
- (g) f(x+h)
- (h) f(x+h) f(x)

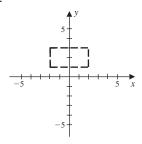
22. The graph of the function of f is given in the figure.

- (a) Determine the value f(-2).
- (b) Determine the value f(0).
- (c) Determine the value f(2).
- (d) Determine the value f(3).
- (e) Determine the domain of the function.
- (f) Determine the range of the function.
- 23. Consider the points (3,1) and (-1,-2).
 - (a) Find the distance between the points.
 - (b) Find the midpoint of the line segments joining the points.
- 24. Find equation of the line that pass through the point (-1, -6) and have the slope -2.
- 25. Consider the parabola with equation $y = (x-1)^2 + 1$.
 - (a) Determine the vertex of the parabola.
 - (b) Sketch the graph of the parabola.

Chapter 1 Form B: Answers

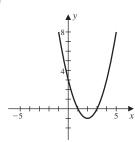
1.
$$S = 6V^{\frac{2}{3}}$$

2.
$$[-2,1] \cup [2,\infty)$$


3.
$$y = \frac{2}{9}(x-1)^2 + 3$$

4.
$$y = \frac{1}{2}x + \frac{1}{2}$$

6. intercepts:
$$(1,0),(-1,0),(0,2)$$
; symmetry: y-axis


7.
$$V = 10,000 - 2,000t$$

8.

9. (a)
$$(2,-1)$$

(b)

10. (a)
$$(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$$

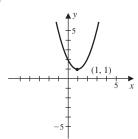
(b)
$$(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$$

(c)
$$(-\infty, -1) \cup (1, \infty)$$

11.
$$y = -\frac{3}{2}x - 3$$

12.
$$(x-2)^2 + (y-2)^2 = 4$$

13
$$d = 2$$


14.
$$f(x) = -(x-3)^2 + 1$$
; intercepts: $x = 4$, $x = 2$, $y = -8$; maximum: 1 at $x = 3$; minimum: none

15.
$$[2, \infty)$$

16.
$$[-3, -1]$$

17. (a) domain:
$$(-\infty, 2)$$
 (b) range: $(0, \infty)$

- 18. (a) 7x + 7h + 4
 - (b) 7h
 - (c) 7
 - (d) 7
- 19. center:(-2, -3); radius: 2
- 20. x = -1 or x = -2
- 21. (a) f(2) = 17
 - (b) $f(\sqrt{3}) = 13$
 - (c) $f(2+\sqrt{3}) = 29 + 16\sqrt{3}$
 - (d) $f(2) + f(\sqrt{3}) = 30$
 - (e) $f(2x) = 16x^2 + 1$
 - (f) $f(1-x) = 5 8x + 4x^2$
 - (g) $f(x+h) = 4x^2 + 8xh + 4h^2 + 1$
 - (h) $f(x+h) f(x) = 8xh + 4h^2$
- 22. (a) f(-2) = -3
 - (b) $f(0) = \frac{1}{2}$
 - (c) f(2) = 0
 - (d) f(3) = 2
 - (e) domain: [-2, 3]
 - (f) range: [-3, 2]
- 23. d = 5; midpoint: $(1, -\frac{1}{2})$
- 24. y = -2x 8
- 25. (a) (1,1)
 - (b)

Chapter 1 Form C: Test

1. Express the interval $[-2, \infty)$ using inequalities.

(A) -2 < x

(B) $x \le -2$ (C) $-2 \le x$ (D) -3 < x (E) x < -2

2. Express the inequality $-1 \le x < 2$ using interval notation.

(A) [-1,2)

(B) $(-\infty, 1) \cup [2, \infty)$ **(C)** (-1, 2]

(D) $(-\infty, 1] \cup (2, \infty)$

(E) (-1,2)

3. Find the distance between the points 3 and 7, and the midpoint of the line segment connecting them.

(A) d=4, midpoint: 2

(B) d = 10, midpoint: 2

(C) d=4, midpoint: 5

(D) d = 10, midpoint: 2

(E) d = 5, midpoint: 5

4. Use interval notation to list the values of x that satisfy the inequality $2x-2 \ge 8$.

(A) $(-\infty, 5]$

(B) $[3, \infty)$

(C) $(-\infty, 3]$

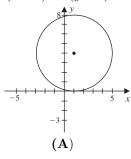
(D) $[5,\infty)$

(E) $(5,\infty)$

5. Use interval notation to list the values of x that satisfy the inequality $x^2 - 2x - 3 > 0$.

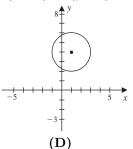
(B) (-3,1)

(C) [-1,3] (D) $(-\infty,-1] \cup [3,\infty)$ (E) $(-\infty,-1) \cup (3,\infty)$


6. Find the distance between the points (-1,5) and (7,9), and the midpoint of the line segment joining the points.

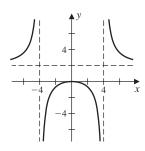
(A) $4\sqrt{5}$, (6, 14)

(B) $4\sqrt{5}$, (3,7) **(C)** $16\sqrt{5}$, (3,7) **(D)** $4\sqrt{5}$, (2,8) **(E)** $16\sqrt{5}$, (2,8)


7. Find the standard form of the equation of the circle with center (1, -4) and radius 4, and sketch the graph.

 $(x-1)^2 + (y-4)^2 = 16 (x-1)^2 + (y+4)^2 = 16 (x-1)^2 + (y+4)^2 = 4 (x-1)^2 + (y-4)^2 = 4$

(B)


(C)

8. Find the equation of the circle shown in the figure.

(A) $x^2 + (y-2)^2 = 2$ (B) $x^2 + y^2 = 4$ (C) $(x-2)^2 + (y-2)^2 = 2$ (D) $(x+2)^2 + (y+2)^2 = 4$ (E) $(x-2)^2 + (y-2)^2 = 4$

- 9. Complete the square on the x and y terms in $x^2 2x + y^2 + 4y 4 = 0$ to find the center and radius of the circle.
 - (A) the center is (1, -2) and the radius is 3
- **(B)** the center is (-1,2) and the radius is 9
- (C) the center is (1, -2) and the radius is 9
- (D) the center is (-1,2) and the radius is 3
- (E) the center is (1,2) and the radius is 3
- 10. Use the graph to determine the range of the function.

- (A) $(-\infty, -4) \cup (4, \infty)$ (B) $(-\infty, 0) \cup (1, \infty)$ (C) $(-\infty, -4] \cup [4, \infty)$ (D) $(-\infty, 0) \cup (2, \infty)$

- **(E)** $(-\infty, 0] \cup (2, \infty)$
- 11. Find the range of $f(x) = x^2 2x + 1$.
- **(B)** $[0, \infty)$ **(C)** $(-\infty, 0]$
- **(D)** $(1, \infty)$ **(E)** $(0, \infty)$

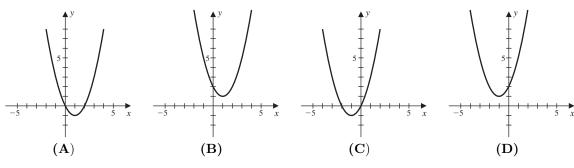
12. Find the value

$$\frac{f(x+h) - f(x)}{h}$$

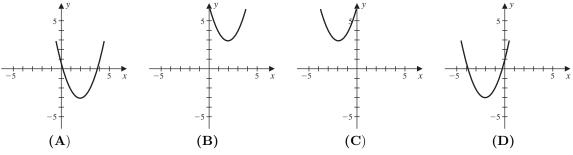
approaches as $h \to 0$ when $f(x) = 4x^2 + 3x + 1$.

- **(A)** 8x + 3
- **(B)** 12x + 3 **(C)** 14x + 5
- **(D)** 4x + 3
- **(E)** 8x + 5
- 13. The height h of a right circular cylinder is five times the radius r. Express the volume as a function of r.
 - **(A)** $5\pi r^2$
- **(B)** $5\pi r^4$ **(C)** $10\pi r^4$ **(D)** $5\pi r^3$
- (E) $4\pi r^3$
- 14. Express the area of an equilateral triangle as a function of the length, 4x, of a side.
- (A) $8\sqrt{3}x^2$ (B) $8\sqrt{3}x^2$ (C) $4\sqrt{3}x^3$ (D) $4x^2$ (E) $4\sqrt{3}x^2$
- 15. Find an equation of the line that passes through the point (3,7) and has slope -2.

 - (A) y = -2x (B) y = -2x 13 (C) y = -2x + 13 (D) y = -2x + 1 (E) y = -2x 1


- 16. Find the slope-intercept equation of the line that passes through (-2,4) with slope 3.
 - (A) y = -3x + 2 (B) y = 3x + 10 (C) y = 3x 10 (D) y = 3x + 2 (E) y = 3x + 2

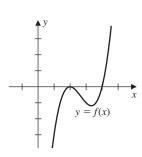
- 17. Find the slope-intercept equation of the line that passes through (4,3) and is parallel to 2x 3y = 2.

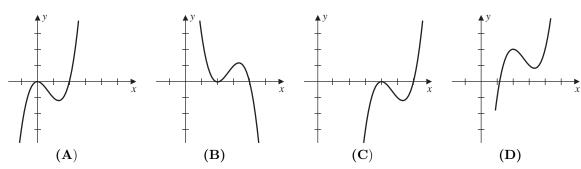

- (A) $y = \frac{2}{3}x \frac{11}{3}$ (B) $y = \frac{2}{3}x + \frac{1}{3}$ (C) $y = \frac{3}{2}x + \frac{1}{3}$ (D) $y = \frac{2}{3}x + \frac{17}{6}$ (E) $y = -\frac{2}{3}x + \frac{1}{3}$

- 18. A new computer workstation costs \$12,000. Its useful lifetime is 6 years, at which time it will be worth an estimated \$3000. The company calculates its depreciation using the linear decline method that is an option in the tax laws. Find the linear equation that expresses the value of the equipment as a function of time t, for $0 \le t \le 6$.
 - **(A)** 12,000 3000t
- **(B)** 9000 1500t
- (C) 12,000 1500t
- **(D)** 9000 3000t

- **(E)** 12,000 1550t
- 19. Sketch the graph of the quadratic equation $y = (x+1)^2 1$.

20. Sketch the graph of the quadratic equation $y = x^2 + 4x + 1$.


- 21. Find the domain of $f(x) = \sqrt{x^2 12}$.
 - (A) $x \in (-\infty, -2\sqrt{3}) \cup (2\sqrt{3}, \infty)$ (B) $x \in (-2\sqrt{3}, \infty)$ (C) $x \in (-\infty, -2\sqrt{3}]$ (E) $x \in (-\infty, -2\sqrt{3}] \cup [2\sqrt{3}, \infty)$ **(D)** $x \in (2\sqrt{3}, \infty)$
- 22. For a small manufacturing firm, the unit cost C(x) in dollars of producing x units per day is given by


$$C(x) = x^2 - 120x + 4000.$$

How many items should be produced per day to minimize the unit cost, and what is the minimum unit cost?

- (A) Firm should produce 90 items per day; minimum unit cost is \$300.
- (B) Firm should produce 60 items per day; minimum unit cost is \$400.
- (C) Firm should produce 50 items per day; minimum unit cost is \$500.
- (D) Firm should produce 60 items per day; minimum unit cost is \$300.
- (E) Firm should produce 90 items per day; minimum unit cost is \$400.

23. Use the graph of the function shown in the accompanying figure to sketch the graph of y = f(x + 2).

- 24. Find an equation of the circle whose center lies in the fourth quadrant, has radius 4, and is tangent to both the x-axis and the y-axis.
- (A) $(x-4)^2 + (y+4)^2 = 16$ (B) $(x+4)^2 + (y+4)^2 = 16$ (C) $(x+4)^2 + (y-4)^2 = 16$ (D) $(x-4)^2 + (y-4)^2 = 16$ (E) $x^2 + (y+4)^2 = 16$

- 25. Determine any axis intercepts and describe and axis or origin symmetry of $y = 2 2x^2$.
 - (A) (-1,0),(1,0),(2,2); y-axis symmetry
- **(B)** (-1,0),(1,0),(0,2); y-axis symmetry
- (C) (-1,0),(1,0),(0,2); x-axis symmetry
- **(D)** (0,-1),(1,0),(0,2); y-axis symmetry
- **(E)** (-1,0),(0,1),(0,2); origin symmetry

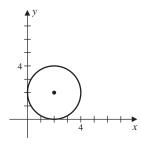
Chapter 1 Form C: Answers

1. C 6. B 11. B 16. B 21. E 2. A 7. B 12. A 22. B 17. B 3. C 8. E 13. D 18. C 23. A 14. E 4. D 9. A 19. C 24. A 5. E 10. E 15. C 20. D 25. B

Chapter 1 Form D: Test

1. Use interval notation to list the values of x that satisfy the inequality -3x + 4 < 5.

 $(\mathbf{A}) \left(-\infty, -\frac{1}{3} \right) \qquad (\mathbf{B}) \left[-\frac{1}{3}, \infty \right) \qquad (\mathbf{C}) \left[-\infty, -\frac{1}{3} \right) \qquad (\mathbf{D}) \left(-\frac{1}{3}, \infty \right) \qquad (\mathbf{E}) \ (-3, \infty)$


2. Find the range of $f(x) = x^2 - 2x + 2$.

(A) $(1, \infty)$ (B) $(-\infty, -1]$ (C) $[1, \infty)$ (D) $[-1, \infty)$ (E) $(-\infty, 1]$

3. Express the interval $(-\infty, -1]$ using inequalities.

(A) $x \le -1$ (B) -1 < x (C) $-1 \le x$ (D) $x \le -2$ (E) x < -1

4. Find the equation of the circle shown in the figure.

(A) $(x-2)^2 + (y-2)^2 = 2$ (B) $(x+2)^2 + (y+2)^2 = 4$ (C) $(x-2)^2 + (y-2)^2 = 4$ (D) $(x+2)^2 + (y-2)^2 = 4$ (E) $(x+2)^2 + (y+2)^2 = 2$

5. Find an equation of the circle whose center lies in the third quadrant, that has radius 5 and that is tangent to both the x-axis and the y-axis.

(A) $(x-5)^2 + (y-5)^2 = 25$ (B) $(x+5)^2 + (y+5)^2 = 5$ (C) $(x+5)^2 + (y+5)^2 = 25$

(D) $(x-5)^2 + (y+5)^2 = 25$ **(E)** $(x+5)^2 - (y-5)^2 = 25$

6. Use interval notation to list the values of x that satisfy $x^2 - 2x - 3 > 0$.

(A) [-1,3]

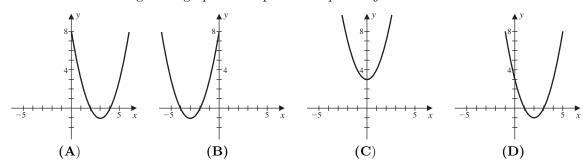
(B) $(-\infty, -1] \cup [3, \infty)$ **(C)** (-1, 3) **(D)** (-3, 1) **(E)** $(-\infty, -1) \cup (3, \infty)$

7. Find the distance d between the points -5 and 9, and the midpoint of the line segment connecting them.

(A) d = 12, midpoint : 6

(B) d = 14, midpoint : 2

(C) d = 15, midpoint : 2


(D) d = 12, midpoint : 1

(E) d = 15, midpoint : 1

8. Express the inequality $-1 \le x \le 2$ using interval notation.

(A) $(-\infty, -1) \cup (2, \infty)$ (B) [-1, 2] (C) (-1, 2) (D) $(-\infty, -1] \cup [2, \infty)$ (E) [-1, 2]

9. Which of the following is the graph of the quadratic equation $y = x^2 - 4x + 3$.

- 10. Find the slope intercept equation of the line that passes through (-1, -3) and has slope -2.

Faires-DeFranza

- (A) y = -2x + 5 (B) y = -2x 2 (C) y = -3x 5 (D) y = -2x 5 (E) y = 3x + 5

- 11. Find the slope intercept equation of the line that passes through (4,3) and is parallel to 2x 3y = 2.

(A)
$$y = \frac{2}{3}x + \frac{1}{3}$$

(B)
$$y = -\frac{2}{3}x + \frac{1}{3}$$

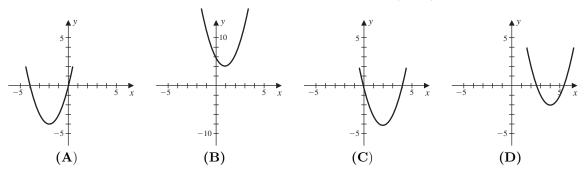
(A)
$$y = \frac{2}{3}x + \frac{1}{3}$$
 (B) $y = -\frac{2}{3}x + \frac{1}{3}$ (C) $y = -\frac{3}{2}x + \frac{1}{3}$ (D) $y = \frac{2}{3}x - \frac{17}{3}$ (E) $y = -\frac{2}{3}x - \frac{1}{3}$

(D)
$$y = \frac{2}{3}x - \frac{17}{3}$$

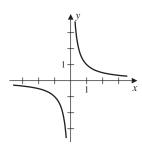
- 12. Find the equation of the line that pass through the point (-6, -5) and has slope 4.
 - **(A)** y = -4x + 19

- **(B)** y = 4x + 24 **(C)** y = 4x + 19 **(D)** y = 4x 19 **(E)** y = -4x 19
- 13. Determine any axis intercepts and describe any axis or origin symmetry of the equation $y=2-2x^2$.
 - (A) (-1,0),(1,0),(0,2); symmetry: x-axis
- **(B)** (-2,0),(2,0),(0,1); symmetry: y-axis
- (C) (-2,0),(2,0),(0,2); symmetry: y-axis
- (**D**) (0,-1),(0,1),(2,0); symmetry: x-axis
- (E) (-1,0),(1,0),(0,2); symmetry: y-axis
- 14. Complete the square on the x and y terms to find the center and radius of the circle with equation $x^2 + 4x + y^2 + 6y + 9 = 0$
 - (A) the center is (2,3) and the radius is 4
- (B) the center is (-2, -3) and the radius is 2
- (C) the center is (2,3) and the radius is 2
- (D) the center is (-4, -6) and the radius is 9
- (E) the center is (-2, -3) and the radius is 4
- 15. Find the domain of $f(x) = \sqrt{\frac{x^2}{x^2 1}}$.

 - (A) $x \in 0 \cup (-\infty, -1) \cup (1, \infty)$ (B) $x \in (-\infty, -1) \cup (1, \infty)$ (C) $x \in 0 \cup (-\infty, -1] \cup [1, \infty)$

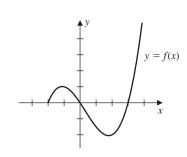

- **(D)** $x \in (-\infty, -1] \cup [1, \infty)$ **(E)** $x \in (1, \infty)$
- 16. The height of a right circular cylinder is four times the radius r, express the volume as a function of r.
 - (A) $4\pi r^3$
- **(B)** $8\pi r^3$
- (C) $4\pi r^2$
- (D) $2\pi r^3$
- (E) $4\pi r^4$
- 17. Express the area of an equilateral triangle as a function of the length 5x of a side.
 - (A) $\frac{25x^2\sqrt{5}}{4}$ (B) $\frac{15x^2\sqrt{3}}{4}$ (C) $\frac{25x^3\sqrt{3}}{4}$ (D) $\frac{25x^2\sqrt{3}}{4}$ (E) $\frac{25x^2}{4}$

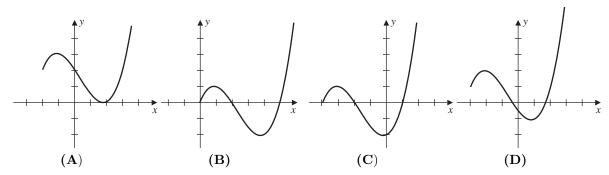
- 18. A new computer workstation costs \$8000. Its useful lifetime is 5 years, at which time it will be worth an estimated \$2000. The company calculates its depreciation using the linear decline method that is an option in the tax laws. Find the linear equation that expresses the value of the equipment as a function of time t, for $0 \le t \le 5$.
 - **(A)** 2000 1200t
- **(B)** 8000 2000t
- (C) 8000 1200t
- **(D)** 10,000 1200t


(E) 10,000 - 2000t

- 19. Find the distance between the points (2,4) and (-1,3), and the midpoint of the line segment joining the points.

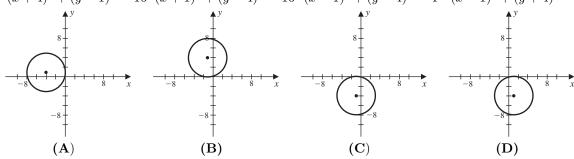
 - (A) $d = \sqrt{2}$; midpoint : $\left(\frac{1}{2}, \frac{7}{2}\right)$ (B) $d = \sqrt{10}$; midpoint : $\left(\frac{3}{2}, \frac{1}{2}\right)$
 - (C) $d = \sqrt{10}$; midpoint : $\left(\frac{1}{2}, -\frac{1}{2}\right)$ (D) $d = \sqrt{10}$; midpoint : $\left(\frac{1}{2}, \frac{7}{2}\right)$
 - **(E)** $d = \sqrt{2}$; midpoint : $\left(\frac{3}{2}, \frac{1}{2}\right)$
- 20. Which of the following is the graph of the quadratic equation $y = (x+2)^2 4$.


21. Use the graph of the function to determine the range of the function.



(A)
$$(-\infty, \infty)$$
 (B) $(-\infty, 0)$ (C) $(-\infty, -1) \cup (1, \infty)$ (D) $(0, \infty)$ (E) $(-\infty, 0) \cup (0, \infty)$
22. If $f(x) = 4x^2 + 3x + 1$, find
$$\frac{f(x+h) - f(x)}{h} \text{ as } h \to 0.$$

- (A) 8x + 3 (B) 4x + 7 (C) 8x + 4 (D) 4x + 3 (E) 8x + 7


23. Use the graph of the function shown in the accompanying figure to sketch the graph of y = f(x + 2).

24. Find the standard form of the equation of the circle with center (1, -4) and radius 4, and sketch its graph.

 $(x+4)^2 + (y-1)^2 = 16 (x+1)^2 + (y-4)^2 = 16 (x-1)^2 + (y-4)^2 = 4 (x-1)^2 + (y+4)^2 = 16$

25. For a small manufacturing firm, the unit cost C(x) in dollars of producing x units per day is given by

$$C(x) = x^2 - 120x + 4000.$$

How many items should be produced per day to minimize the unit cost? What is the minimum unit cost?

- (A) Produce 60 items per day, minimum unit cost is \$300.
- (B) Produce 70 items per day, minimum unit cost is \$400.
- (C) Produce 60 items per day, minimum unit cost is \$400.
- (D) Produce 80 items per day, minimum unit cost is \$300.
- (E) Produce 70 items per day, minimum unit cost is \$500.

Page	20
. usc	

PreCalculus 5th Edition Test Bank

Chapter 1 Test D

Chapter 1 Form D: Answers

1. D

6. E

11. A

16. A

21. E

2. C

7. B

12. C

17. D

22. A

A
 C

8. B9. C

13. E

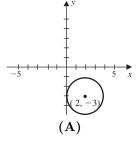
18. C

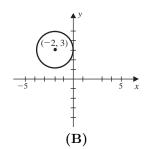
23. B24. C

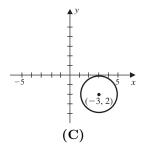
5. C

10. D

14. B15. A

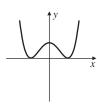

19. D 20. A


25. C


Chapter 1 Form E: Test

- 1. Express the interval $(-\infty, 3)$ using inequalities.
 - **(A)** $x \le 3$
- **(B)** $x \le 2$
- (C) 3 < x
- **(D)** x < 3
- 2. Express the inequality $-1 \le x \le 2$ using interval notation.
- (A) $(-\infty, -1] \cup [2, \infty)$ (B) [-1, 2] (C) $(-\infty, -1) \cup (2, \infty)$ (D) (-1, 2)
- 3. Find the distance between the points 1 and 8, and the midpoint of the line segment connecting them.
- (A) d = 7; midpoint : $\frac{9}{2}$ (B) d = 8; midpoint : 4 (C) d = 7; midpoint : $\frac{7}{2}$ (D) d = 9; midpoint : $\frac{9}{2}$ (E) d = 9; midpoint : 4

- 4. Find all values of x that solve the equation |2x + 3| = 1.
- 5. Solve the inequality $|x-6| \le 1$ and write the solution using interval notation.
- 6. Indicate on the xy-plane those points (x,y) for which $|x+2| \le 1$ and |y-2| < 3.
- 7. Consider $f(x) = -x^2 + 6x 8$.
 - (a) Express the quadratic in standard form.
 - (b) Find any axis intercepts.
 - (c) Find the maximum of the function.
 - (d) Find the minimum of the function.
- 8. Find the standard form of the equation of the circle with center (-2,3) and radius 2, and sketch the graph.



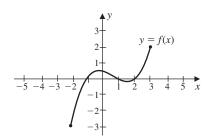
- 9. Find an equation of the circle whose center lies in the third quadrant, has radius 5, and is tangent to both the x-axis and the y-axis.
- (A) $(x-5)^2 + (y-5)^2 = 25$ (B) $(x+5)^2 + (y+5)^2 = 5$ (C) $(x+5)^2 + (y+5)^2 = 25$ (D) $(x-5)^2 + (y+5)^2 = 25$ (E) $(x+5)^2 (y-5)^2 = 25$

10. Specify any axis or origin symmetry of the graph that is shown

- 11. Find the distance between the points of intersection of the graphs $y = x^2 + 5$ and y = 6.
- 12. Find exact solutions for the following if $f(x) = 4x^2 + 1$.
 - (a) f(2)

(e) f(2x)

(b) $f(\sqrt{3})$

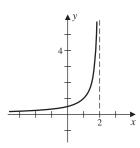

(f) f(1-x)

(c) $f(2+\sqrt{3})$

(g) f(x+h)

(d) $f(2) + f(\sqrt{3})$

- (h) f(x+h) f(x)
- 13. The graph of the function f is given in the figure.

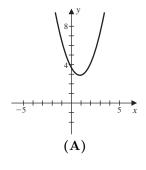


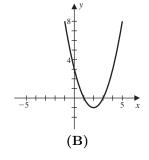
(a) Determine f(-2).

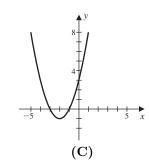
(c) Determine f(2).

(b) Determine f(0).

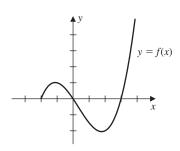
- (d) Determine f(3).
- (e) Determine the domain of f.
- (f) Determine the range of f.
- 14. Use the graph to determine the range of the function.

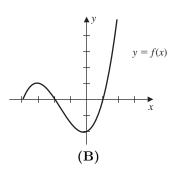

- (A) $[0,\infty)$ (B) $-\infty,\infty$ (C) $(-\infty,0)$
- **(D)** $(-\infty, 0]$

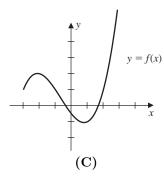

- 15. Find the range of $f(x) = x^2 2x + 2$.
 - **(A)** $(1, \infty)$
- **(B)** $(-\infty, -1]$ **(C)** $[1, \infty)$ **(D)** $[-1, \infty)$


- 16. Find the domain of each function.
 - (a) f(x) = 3x + 1
 - (b) $f(x) = \frac{1}{3x+1}$
 - (c) $f(x) = \sqrt{3x+1}$
 - (d) $f(x) = \frac{1}{\sqrt{3x+1}}$
- 17. For f(x) = 2x 4, determine the following.
 - (a) f(x+h)
 - (b) f(x+h) f(x)
 - (c) $\frac{f(x+h)-f(x)}{h}$, when $h\neq 0$
 - (d) what $\frac{f(x+h)-f(x)}{h}$ approaches as $h\to 0$
- 18. If the height of a right circular cylinder is four times the radius r, express the volume as a function of

- **(B)** $8\pi r^3$ **(C)** $4\pi r^2$ **(D)** $2\pi r^3$
- (E) $4\pi r^4$
- 19. Find the slope-intercept form of the equation of the line that passes through (0,0) and is perpendicular to y = 2x + 1.
- 20. Find the slope-intercept equation of the line that passes through (4, 3) and is parallel to 2x 3y = 2 (A) $y = \frac{2}{3}x + \frac{17}{3}$ (B) $y = 2x + \frac{1}{3}$ (C) y = 2x + 3 (D) $y = -\frac{2}{3}x + \frac{1}{3}$ (E) $y = \frac{2}{3}x + \frac{1}{3}$


- 21. Find the slope intercept equation of the line that has x-intercept -2 and y-intercept -3.
- 22. Determine the vertex and sketch the graph of the parabola with equation $y = (x-1)^2 + 1$
- 23. Sketch the graph of the quadratic equation $y = x^2 4x + 3$.

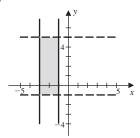




24. Use the graph of the function shown in the accompanying figure to sketch the graph of y = f(x + 2).

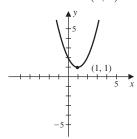
25. For a small manufacturing firm, the unit cost C(x) in dollars of producing x units per day is given by

$$C(x) = x^2 - 120x + 4000.$$


How many items should be produced per day to minimize the unit cost? What is the minimum unit cost?

- (A) Produce 60 items per day, minimum unit cost is \$300.
- (B) Produce 70 items per day, minimum unit cost is \$400.
- (C) Produce 60 items per day, minimum unit cost is \$400.
- (D) Produce 80 items per day, minimum unit cost is \$300.
- (E) Produce 70 items per day, minimum unit cost is \$500.

Page 25

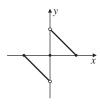

Chapter 1 Form E: Answers

- 1. D
- 2. B
- 3. A
- 4. x = -1 or x = -2
- 5. [5, 7]
- 6.

- 7. (a) $f(x) = -(x-3)^2 + 1$
 - (b) axis intercepts: (4,0),(2,0),(0,-8)
 - (c) maximum: (3,1)
 - (d) minimum: none
- 8. B
- 9. C
- 10. y-axis symmetry
- 11. d = 2
- 12. (a) f(2) = 17
 - (b) $f(\sqrt{3}) = 13$
 - (c) $f(2+\sqrt{3}) = 29 + 16\sqrt{3}$
 - (d) $f(2) + f(\sqrt{3}) = 30$
 - (e) $f(2x) = 16x^2 + 1$
 - (f) $f(1-x) = 5 8x + 4x^2$
 - (g) $f(x+h) = 4x^2 + 8xh + 4h^2 + 1$
 - (h) $f(x+h) f(x) = 8xh + 4h^2$
- 13. (a) f(-2) = -3
 - (b) $f(0) = \frac{1}{2}$
 - (c) f(2) = 0
 - (d) f(3) = 2
 - (e) domain: [-2, 3]
 - (f) range: [-3, 2]
- 14. E
- 15. C
- 16. (a) $(-\infty, \infty)$

- (b) $\left(-\infty, -\frac{1}{3}\right) \cup \left(-\frac{1}{3}, \infty\right)$
- (c) $\left[-\frac{1}{3}, \infty\right)$
- (d) $\left(-\frac{1}{3}, \infty\right)$
- 17. (a) 2x + 2h 4
 - (b) 2h
 - (c) 2
 - (d) 2
- 18. A
- 19. $y = -\frac{1}{2}x$
- 20. E
- 21. $y = -\frac{3}{2}x 3$
- 22. The vertex is (1,1).

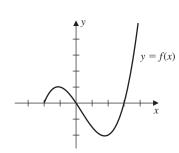
- 23. A
- 24. B
- 25. C

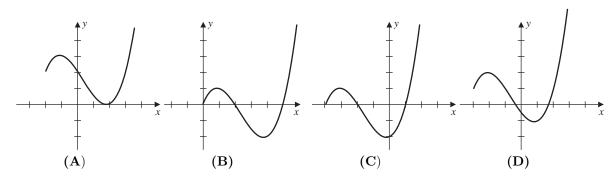

Chapter 1 Form F: Test

- 1. The height of a right circular cylinder is four times the radius r, express the volume as a function of r.

- (A) $4\pi r^3$ (B) $8\pi r^3$ (C) $4\pi r^2$ (D) $2\pi r^3$ (E) $4\pi r^4$
- 2. Find an equation of the circle whose center lies in the third quadrant, that has radius 5 and that is tangent to both the x-axis and the y-axis.

 - (A) $(x-5)^2 + (y-5)^2 = 25$ (B) $(x+5)^2 + (y+5)^2 = 5$ (C) $(x+5)^2 + (y+5)^2 = 25$ (D) $(x-5)^2 + (y+5)^2 = 25$ (E) $(x+5)^2 (y-5)^2 = 25$


- 3. Find the distance between the points 1 and 8, and the midpoint of the line segment connecting them.
 - (A) d = 7; midpoint : $\frac{9}{2}$ (B) d = 8; midpoint : 4 (C) d = 7; midpoint : $\frac{7}{2}$
- **(D)** d = 9; midpoint : $\frac{9}{2}$ **(E)** d = 9; midpoint : 4
- 4. Solve the inequality $|x-6| \le 1$ and write the solution using interval notation.
- 5. Specify any axis or origin symmetry of the graph.



- 6. Determine the vertex of the parabola with equation $y = (x-1)^2 + 1$ and sketch its graph.
- 7. Find the range of $f(x) = x^2 2x + 2$.
 - (A) $(1,\infty)$
- **(B)** $(-\infty, -1]$ **(C)** $[-1, \infty)$ **(D)** $(-\infty, 1]$ **(E)** $[1, \infty)$

- 8. Find the slope-intercept equation of the line that has x-intercept -2 and y-intercept -3.
- 9. Express the inequality $-1 \le x \le 2$ using interval notation.
- (A) $(-\infty, -1] \cup [2, \infty)$ (B) [-1, 2] (C) $(-\infty, -1) \cup (2, \infty)$ (D) (-1, 2)
- **(E)** (-1,2]
- 10. Find the slope-intercept form of the equation of the line that passes through (0,0) and is perpendicular to y = 2x + 1.

11. Use the graph of the function shown in the accompanying figure to sketch the graph of y = f(x + 2).

12. Find the domain of each function.

(a)
$$f(x) = 3x + 1$$

(c)
$$f(x) = \sqrt{3x+1}$$

(b)
$$f(x) = \frac{1}{3x+1}$$

(d)
$$f(x) = \frac{1}{\sqrt{3x+1}}$$

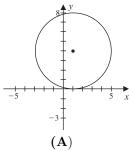
- 13. Consider the quadratic function $f(x) = -x^2 4x 4$
 - (a) Express this in standard form.
- (c) Find the maximum of the function.

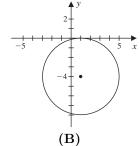
(b) Find any axis intercepts.

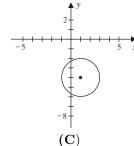
- (d) Find the minimum of the function.
- 14. Find the slope intercept equation of the line that passes through (-1, -3) with slope -2.

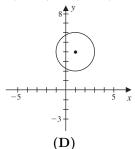
(A)
$$y = -2x + 5$$

(B)
$$y = -2x - 2$$
 (C) $y = -3x - 5$ **(D)** $y = -2x - 5$

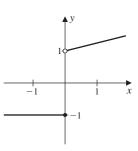

(C)
$$y = -3x - 5$$

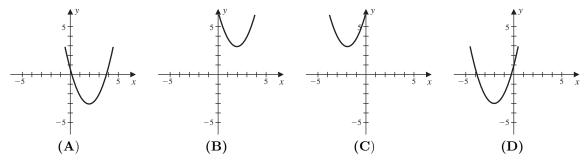

(D)
$$y = -2x - 5$$


(E)
$$y = 3x + 5$$

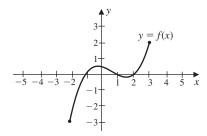

15. Find the standard form of the equation of the circle with center (1, -4) and radius 4, and sketch the

$$(x-1)^2 + (y-4)^2 = 16 (x-1)^2 + (y+4)^2 = 16 (x-1)^2 + (y+4)^2 = 4 (x-1)^2 + (y-4)^2 = 4$$





16. Use the graph to determine the range of the function.



- (A) [-1,1) (B) $(-\infty,-1] \cup (1,\infty)$ (C) $(1,\infty) \cup \{-1\}$ (D) $[-1,\infty)$

- **(E)** $(1, \infty)$
- 17. Indicate on the xy-plane those points (x, y) for which $-3 < x \le 1$ and $-1 \le y \le 2$.
- 18. Sketch the graph of the quadratic equation $y = x^2 + 4x + 1$.

19. The graph of the function f is given in the figure.

(a) Determine f(-2).

(d) Determine f(3).

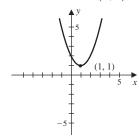
(b) Determine f(0).

(e) Determine the domain of the function.

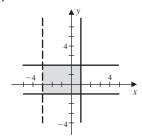
(c) Determine f(2).

- (f) Determine the range of the function.
- 20. Express the interval $(-\infty, 3)$ using inequalities.
 - **(A)** $x \le 3$
- **(B)** $x \le 2$
- (C) 3 < x
- **(D)** x < 3
- **(E)** $2 \le x$

- 21. Consider f(x) = 2x 4
 - (a) Find f(x+h).
 - (b) Find f(x+h) f(x).
 - (c) Find $\frac{f(x+h)-f(x)}{h}$, where $h \neq 0$.
 - (d) Find what $\frac{f(x+h)-f(x)}{h}$ approaches as $h \to 0$.
- 22. Find all values of x that solve the equation |2x + 3| = 1.
- 23. If $f(x) = 4x^2 + 1$, find exact solutions for the following values.
 - (a) f(2)
 - (b) $f(\sqrt{3})$
 - (c) $f(2+\sqrt{3})$
 - (d) $f(2) + f(\sqrt{3})$
 - (e) f(2x)
 - (f) f(1-x)
 - (g) f(x+h)
 - (h) f(x+h) f(x)
- 24. Find the distance between the points of intersection of the graphs $y = x^2 + 5$ and y = 6.
- 25. For a small manufacturing firm, the unit cost C(x) in dollars of producing x units per day is given by


$$C(x) = x^2 - 120x + 4000.$$

How many items should be produced per day to minimize the unit cost, and what is the minimum unit cost?


- (A) Produce 60 items per day, minimum unit cost is \$300.
- (B) Produce 70 items per day, minimum unit cost is \$400.
- (C) Produce 60 items per day, minimum unit cost is \$400.
- (D) Produce 80 items per day, minimum unit cost is \$300.
- (E) Produce 70 items per day, minimum unit cost is \$500.

Chapter 1 Form F: Answers

- 1. A
- 2. C
- 3. A
- 4. [5, 7]
- 5. origin symmetry
- 6. The vertex is (1,1)

- 7. E
- 8. $y = -\frac{3}{2}x 3$
- 9. B
- $10. \quad y = -\frac{1}{2}x$
- 11. C
- 12. (a) $(-\infty, \infty)$
 - (b) $\left(-\infty, -\frac{1}{3}\right) \cup \left(-\frac{1}{3}, \infty\right)$
 - (c) $\left[-\frac{1}{3},\infty\right]$
 - (d) $\left(-\frac{1}{3}, \infty\right)$
- 13. (a) $f(x) = -(x+2)^2$
 - (b) intercepts: (-2,0) and (0,-4)
 - (c) maximum: (-2,0)
 - (d) minimum: none
- 14. D
- 15. B
- 16. C
- 17.

- 18. D
- 19. (a) f(-2) = -3
 - (b) $f(0) = \frac{1}{2}$ (c) f(2) = 0

 - (d) f(3) = 2
 - (e) domain: [-2, 3]
 - (f) range: [-3, 2]
- 20. D
- 21. (a) 2x + 2h 4
 - (b) 2h
 - (c) 2
 - (d) 2
- 22. x = -1 or x = -2
- 23. (a) f(2) = 17
 - (b) $f(\sqrt{3}) = 13$
 - (c) $f(2+\sqrt{3}) = 29 + 16\sqrt{3}$
 - (d) $f(2) + f(\sqrt{3}) = 30$
 - (e) $f(2x) = 16x^2 + 1$
 - (f) $f(1-x) = 5 8x + 4x^2$
 - (g) $f(x+h) = 4x^2 + 8xh + 4h^2 + 1$
 - (h) $f(x+h) f(x) = 8xh + 4h^2$
- 24. d = 2
- 25. C

Chapter 1 Form G: Test

1. Express the interval [-2,4] using inequalities.

- (A) -2 < x < 4 (B) -4 < x < 2 (C) $-4 \le x \le 2$ (D) $-2 \le x \le 4$ (E) $-2 \ge x \ge 4$

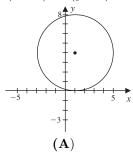
2. Express the inequality $2 < x \le 6$ using interval notation.

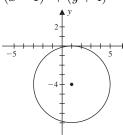
(A) (2, 6)

- **(B)** (2, 6]
- (C) [2, 6]
- (D) $(-\infty,2)\cup[6,\infty)$
- **(E)** [2,6)
- 3. Find the distance between the points 3 and 7, and find the midpoint of the line segment joining them.

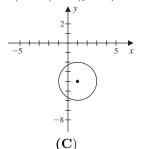
(A) d = -4, midpoint:5

(B) d=4, midpoint:5


(C) d = 10, midpoint:2

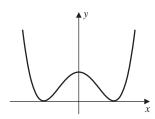

(D) d = 4, midpoint:2

(E) d = 10, midpoint:5


4. Find the standard form of the equation of the circle with center (1, -4) and radius 4, and sketch the

 $(x-1)^2 + (y-4)^2 = 16 (x-1)^2 + (y+4)^2 = 16 (x-1)^2 + (y+4)^2 = 4 (x-1)^2 + (y-4)^2 = 4$

(B)



5. Find an equation of the circle whose center lies in the third quadrant, that has radius 2, and that is tangent to both the x-axis and the y-axis.

(A) $x^2 + y^2 = 4$ (B) $(x-2)^2 + (y-2)^2 = 4$ (C) $(x+2)^2 + (y+2)^2 = 4$

(D) $(x+2)^2 + (y-2)^2 = 4$ **(E)** $(x-2)^2 + (y+2)^2 = 4$

6. Specify any axis or origin symmetry.

- 7. Determine any axis intercepts, and describe any axis or origin symmetry of $y = x^2 1$.
- 8. Find the distance between the points of intersection of the graphs $y = x^2 3$ and y = x + 3.

(A) $d = 5\sqrt{2}$

(B) d = 25 **(C)** $d = 25\sqrt{2}$

(D) d = 50

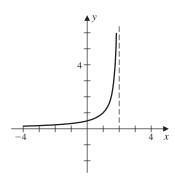
9. Use interval notation to list the values of x that satisfy the inequality -3x + 4 < 5.

(A) $(\frac{1}{3}, \infty)$ (B) $(-1, \infty)$ (C) $[-1, \infty)$ (D) $[-\frac{1}{3}, \infty)$ (E) $(-\frac{1}{3}, \infty)$

- 10. Suppose $f(x) = \sqrt{x+2}$. Find the following values.

- (a) f(-1) (c) f(4) (e) f(a) (g) f(x+h) (b) f(0) (d) f(7) (f) f(2a-1) (h) f(x+h)-f(x)
- 11. Find the slope-intercept equation of the line that passes through (-1,2) and is parallel to 3x + 2y = 3.

(A)
$$y = -\frac{3}{2}x + 3$$


(B)
$$y = -\frac{2}{3}x + \frac{7}{2}$$

(A)
$$y = -\frac{3}{2}x + 3$$
 (B) $y = -\frac{2}{3}x + \frac{7}{2}$ (C) $y = -\frac{3}{2}x - \frac{1}{2}$ (D) $y = -\frac{3}{2}x + \frac{1}{2}$

(D)
$$y = -\frac{3}{2}x + \frac{1}{2}$$

(E)
$$y = \frac{3}{2}x + \frac{7}{2}$$

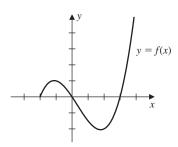
12. Determine the domain of the function.

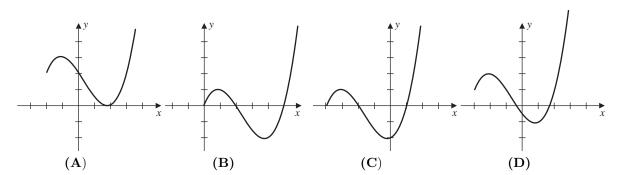
- (A) $(-\infty, 2]$
- **(B)** $(2, \infty)$ **(C)** $(-\infty, 2)$
- **(D)** $(0, \infty)$
- (E) $[0,\infty)$

- 13. Find the range of $f(x) = \sqrt{x} + 3$.
 - (A) $(3,\infty)$
- **(B)** $[3, \infty)$ **(C)** $(-\infty, 3)$
- **(D)** $(-\infty, 3]$ **(E)** $[0, \infty)$
- 14. Find the domain of each function in interval notation.

(a)
$$f(x) = \frac{x}{x^2 - 1}$$

(b)
$$f(x) = \frac{x+1}{x^2-1}$$

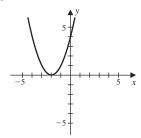

(a)
$$f(x) = \frac{x}{x^2 - 1}$$
 (b) $f(x) = \frac{x+1}{x^2 - 1}$ (c) $f(x) = \sqrt{\frac{x^2}{x^2 - 1}}$


- 15. Suppose $f(x) = 2 x x^2$. Find $\frac{f(x+h) f(x)}{h}$ where $h \neq 0$. (A) $2 x h x^2 2hx h^2$ (B) $-h 2hx h^2$ (C) -1 2x h

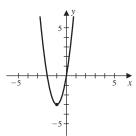
- **(D)** -1 2x **(E)** 1 2x h
- 16. Express the area of a circle as a function of its circumference.
- (A) $A(C) = \frac{C^2}{4}$ (B) $A(C) = C \cdot \frac{r}{2}$ (C) $A(C) = \frac{C^2}{4\pi}$
- **(D)** $A(C) = \frac{C^2}{4\pi^2}$ **(E)** $A(C) = \frac{C}{4\pi^2}$
- 17. A rectangle has an area of 64 m^2 . Express the perimeter of the rectangle as a function of the length s of one of the sides.
- 18. Find equation of the line that passes through the point (-1, -2) and has slope 3.

- (A) y = 3x 1 (B) y = 3x + 1 (C) y = 3x (D) y = 3x 2 (E) y = -3x + 1

- 19. Find the slope-intercept equation of the line that passes through (-3,5) and is perpendicular to the line x - 2y = 4.
- 20. Find the slope-intercept equation of the line that has slope -1 and y-intercept 2.
 - **(A)** y = x + 2
- **(B)** y = -x + 2
- (C) y = 2x 1 (D) y = -x 2
- **(E)** y = -x
- 21. Find the slope-intercept equation of the line that has x-intercept 2 and y-intercept 4.
- 22. Sketch the graph of the quadratic equation $y = (x+2)^2$.
- 23. Sketch the graph of the quadratic equation $y = 3x^2 + 6x$.
- 24. Use the graph of the function shown in the accompanying figure to sketch the graph of y = f(x+2).

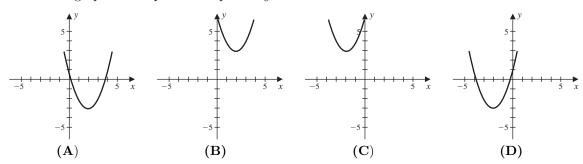


- 25. The function defined by $s(t) = 576 + 144t 16t^2$ describes the height, in feet, of a rock t seconds after it has been thrown upward at 144 feet per second from the top of a 50-story building. How long does it take the rock to hit the ground?
 - (A) 9 seconds
- (B) 4 seconds
- (C) 3 seconds
- **(D)** 16 seconds
- (E) 12 seconds


Chapter 1 Form G: Answers

- 1. D
- 2. B
- 3. B
- 4. B
- 5. C
- 6. y-axis symmetry
- 7. (-1,0),(0,-1),(1,0),y-axis symmetry
- 8. A
- 9. E
- 10. (a) 1 (b) $\sqrt{2}$ (c) $\sqrt{6}$ (d) 3

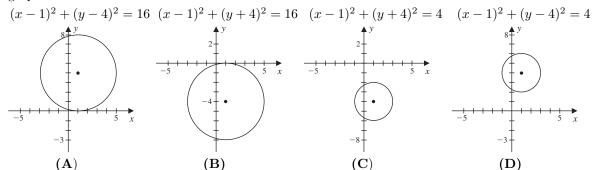
- (e) $\sqrt{a+2}$ (f) $\sqrt{2a+1}$ (g) $\sqrt{x+h+2}$ (h) $\sqrt{x+h+2} \sqrt{x+2}$
- 11. D
- 12. C
- 13. B
- 14.. (a) $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$
 - (b) $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$
 - (c) $(-\infty, -1) \cup \{0\} \cup (1, \infty)$
- 15. C
- 16. C
- 17. $P = 2s + \frac{128}{s}$
- 18. B
- 19. y = -2x 1
- 20. B
- 21. y = -2x + 4
- 22.


23.

- 24. C
- 25. E

Chapter 1 Form H: Test

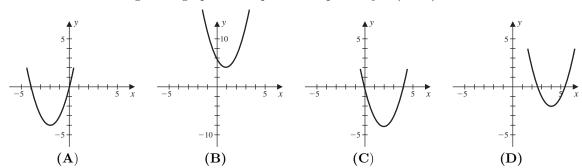
1. Sketch the graph of the quadratic equation $y = x^2 + 4x + 1$.



- 2. Find the domain of each function.
 - (a) f(x) = 3x + 1
 - (b) $f(x) = \frac{1}{3x+1}$
 - (c) $f(x) = \sqrt{3x+1}$
 - (d) $f(x) = \frac{1}{\sqrt{3x+1}}$
- 3. If $f(x) = \frac{3}{2}x + \frac{1}{4}$, find $\frac{f(x+h) f(x)}{h}$, where $h \neq 0$

- (A) $\frac{2}{3}$ (B) 0 (C) 3 (D) $\frac{1}{4}$ (E) $\frac{3}{2}$
- 4. Find the range of $f(x) = x^2 2x + 2$.

 - (A) $(1, \infty)$ (B) $(-\infty, -1]$ (C) $[1, \infty)$ (D) $[-1, \infty)$ (E) $(-\infty, 1]$


- 5. Find the standard form of the equation of the circle with center (1, -4) and radius 4, and sketch the graph.

- 6. Find the slope intercept equation of the line that passes through (-1, -3) with slope -2.

 - **(A)** y = -2x + 5 **(B)** y = -2x 2
- (C) y = -3x 5 (D) y = -2x 5 (E) y = 3x + 5
- 7. The height of a right circular cylinder is four times the radius r, express the volume as a function of r.
- **(B)** $V = 8\pi r^3$ **(C)** $V = 4\pi r^2$ **(D)** $V = 2\pi r^3$ **(E)** $V = 4\pi r^4$
- 8. Determine any axis intercepts and describe any axis or origin symmetry of $y = 2 2x^2$.

9. Which of the following is the graph of the quadratic equation $y = (x+2)^2 - 4$.

- 10. Find the slope intercept equation of the line that has x-intercept -2 and y-intercept -3.
- 11. Find the distance between the points of intersection of the graphs $y = x^2 + 2$ and y = 3
 - **(A)** d = 2
- **(B)** d = 1
- (C) d = 3
- **(D)** d = 5
- **(E)** d = 6
- 12. Find the slope-intercept equation of the line that passes through (4,3) and is parallel to 2x 3y = 2.

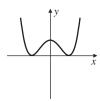
(A)
$$y = \frac{2}{3}x + \frac{17}{3}$$
 (B) $y = 2x + \frac{1}{3}$ (C) $y = 2x + 3$ (D) $y = -\frac{2}{3}x + \frac{1}{3}$ (E) $y = \frac{2}{3}x + \frac{1}{3}$

(B)
$$y = 2x + \frac{1}{3}$$

(C)
$$y = 2x + 3$$

(D)
$$y = -\frac{2}{3}x + \frac{1}{3}$$

- 13. If $f(x) = 4x^2 + 1$, find exact solutions for the following values.
 - (a) f(2)
 - (b) $f(\sqrt{3})$
 - (c) $f(2+\sqrt{3})$
 - (d) $f(2) + f(\sqrt{3})$
 - (e) f(2x)
 - (f) f(1-x)
 - (g) f(x+h)
 - (h) f(x+h) f(x)
- 14. Find the slope-intercept form of the equation of the line that passes through (0,0) and is perpendicular to y = 2x + 1.
- 15. Determine the domain of the function.


- (A) $(-\infty, 2]$ (B) $(2, \infty)$ (C) $(-\infty, 2)$
- **(D)** $(0, \infty)$
- (E) $[0,\infty)$

- 16. A rectangle has an area of 64 m². Express the perimeter of the rectangle as a function of the length s of one of the sides.
- 17. Find the slope intercept equation of the line that passes through (-1, -3) with slope -2.

(A) y = -2x + 5 **(B)** y = -2x - 2

(C) y = -3x - 5 (D) y = -2x - 5 (E) y = 3x + 5

18. Specify any axis or origin symmetry.

19. Express the interval $(-\infty, 3)$ using inequalities.

(A) $x \le 3$ (B) x < 3 (C) $x \le 2$ (D) 3 < x

(E) $2 \le x$

20. For a small manufacturing firm, the unit cost C(x) in dollars of producing x units per day is given by

$$C(x) = x^2 - 120x + 4000.$$

How many items should be produced per day to minimize the unit cost and what is the minimum unit cost?

- (A) Manufacturing firm should produce 60 items per day, minimum unit cost is \$300.
- (B) Manufacturing firm should produce 70 items per day, minimum unit cost is \$400.
- (C) Manufacturing firm should produce 60 items per day, minimum unit cost is \$400.
- (D) Manufacturing firm should produce 80 items per day, minimum unit cost is \$300.
- (E) Manufacturing firm should produce 70 items per day, minimum unit cost is \$500.
- 21. Express the inequality $-1 \le x \le 2$ using interval notation.

(A) $(-\infty, -1] \cup [2, \infty)$ (B) [-1, 2] (C) $(-\infty, -1) \cup (2, \infty)$

(D) (-1,2)

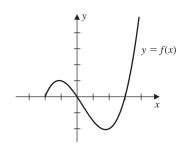
(E) (-1,2]

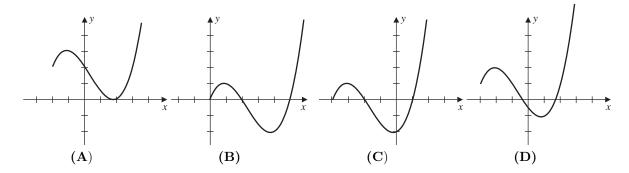
22. Find an equation of the circle whose center lies in the fourth quadrant, that has radius 4, and that is tangent to both the x-axis and the y-axis.

(A) $(x-4)^2 + (y+4)^2 = 16$ (B) $(x+4)^2 + (y+4)^2 = 16$ (C) $(x+4)^2 + (y-4)^2 = 16$

(D) $(x-4)^2 + (y-4)^2 = 16$ **(E)** $x^2 + (y+4)^2 = 16$

23. Use interval notation to list the values of x that satisfy the inequality $2x-2 \ge 8$.

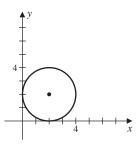

(A) $(-\infty, 5]$


(B) $[3, \infty)$ **(C)** $(-\infty, 3]$ **(D)** $(5, \infty)$ **(E)** $[5, \infty)$

24. Find the distance between the points (-1,5), (7,9) and the midpoint of the line segment joining the points.

(A) $d = 4\sqrt{5}$, midpoint:(6, 14) (B) $d = 16\sqrt{5}$, midpoint:(3, 7) (C) $d = 4\sqrt{5}$, midpoint:(2, 8) (E) $d = 16\sqrt{5}$, midpoint:(2, 8)

25. Use the graph of the function shown in the accompanying figure to sketch the graph of y = f(x + 2).

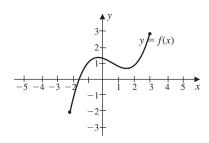

Chapter 1 Form H: Answers

- 1. D
- 2. (a) $(-\infty, \infty)$
 - (b) $\left(-\infty, -\frac{1}{3}\right) \cup \left(-\frac{1}{3}, \infty\right)$
 - (c) $\left[-\frac{1}{3}, \infty\right)$
 - (d) $\left(-\frac{1}{3},\infty\right)$
- 3. E
- 4. C
- 5. B
- 6. D
- 7. A
- 8. intercepts: (1,0),(-1,0),(0,2); symmetry: y-axis
- 9. A
- 10. $y = -\frac{3}{2}x 3$
- 11. A
- 12. E
- 13. (a) f(2) = 17
 - (b) $f(\sqrt{3}) = 13$
 - (c) $f(2+\sqrt{3}) = 29 + 16\sqrt{3}$
 - (d) $f(2) + f(\sqrt{3}) = 30$
 - (e) $f(2x) = 16x^2 + 1$
 - (f) $f(1-x) = 5 8x + 4x^2$
 - (g) $f(x+h) = 4x^2 + 8xh + 4h^2 + 1$
 - (h) $f(x+h) f(x) = 8xh + 4h^2$
- 14. $y = -\frac{1}{2}x$
- 15. C
- 16. $P = 2s + \frac{128}{s}$
- 17. D
- 18. y-axis symmetry
- 19. B
- 20. C
- 21. B
- 22. A
- 23. E
- 24. C
- 25. C

Chapter 1 Form I: Test

- 1. Use interval notation to list the values of x that satisfy the inequality $x^2 + 2x 3 \le 0$.
- 2. Use interval notation to list the values of x that satisfy the inequality $(x+1)(x-1)(x+2) \ge 0$.
- 3. Find the distance between the points 2 and 8, and the midpoint of the line segment connecting them.
 - (A) d = 6, midpoint: 2
- **(B)** d = 10, midpoint: 2
- (C) d = 6, midpoint: 5

- **(D)** d = 10, midpoint: 2
- (E) d = 5, midpoint: 5
- 4. Find the equation of the circle shown in the figure.


- (A) $(x+2)^2 + (y+2)^2 = 2$ (B) $(x-2)^2 + (y-2)^2 = 4$ (C) $(x+2)^2 + (y+2)^2 = 4$ (D) $(x-2)^2 + (y+2)^2 = 4$ (E) $(x-2)^2 + (y-2)^2 = 2$

- 5. Solve the inequality $|x-3| \leq 2$ and write the solution using interval notation.
- 6. Determine the vertex of the parabola with equation $y = (x+1)^2 + 1$ and sketch its graph.
- 7. Determine any axis intercepts, and describe any axis or origin symmetry of $y = 4 x^2$.
- 8. Determine any axis intercepts and describe any axis or origin symmetry of $y = 2x^2 2$.
- 9. Consider the equation $y = x^3 + 8$.
 - (a) Determine any axis intercepts of the equation.
 - (b) Describe any axis or origin symmetry of the equation.
- 10. Find the domain of each function.
 - (a) $f(x) = \frac{x}{4 x^2}$
 - (b) $f(x) = \frac{4-x^2}{x-2}$
 - (c) $f(x) = \sqrt{\frac{x^2}{4 x^2}}$

- 11. Find the range of $f(x) = x^2 + 2x + 1$.

- (A) $[-1, \infty)$ (B) $[0, \infty)$ (C) $(-\infty, 0]$ (D) $(-1, \infty)$ (E) $(0, \infty)$
- 12. Find the equation of the line that pass through the point (-6,5) and has slope -4.
 - (A) y = -4x + 19 (B) y = 4x + 24 (C) y = 4x + 19 (D) y = 4x 19 (E) y = -4x 19

13. The graph of the function f is given in the figure.

(a) Determine f(-2).

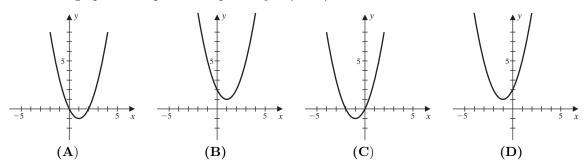
(d) Determine f(3).

(b) Determine f(0).

(e) Determine the domain of f.

(c) Determine f(2).

- (f) Determine the range of f.
- 14. Find the slope intercept equation of the line that passes through (-1,7) with slope -2.
- (A) y = -2x + 5 (B) y = -2x 2 (C) y = -3x 5 (D) y = -2x 5

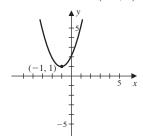

- **(E)** y = 3x + 5
- 15. Suppose $f(x) = 2 + x x^2$. Find $\frac{f(x+h) f(x)}{h}$ where $h \neq 0$.

 (A) $2 x h x^2 2hx h^2$ (B) $-h 2hx h^2$ (C) -1 2x h

- **(D)** -1-2x **(E)** 1-2x-h
- 16. A rectangle has an area of 36 m². Express the perimeter of the rectangle as a function of the length sof one of the sides.
- 17. Find the equation of the line that passes through the point (2,3) and has slope -2.
- 18. Consider f(x) = 5x 3.
 - (a) Find f(x+h).
 - (b) Find f(x+h) f(x).
 - (c) Find $\frac{f(x+h)-f(x)}{h}$ where $h \neq 0$.
 - (d) Find what $\frac{f(x+h)-f(x)}{h}$ approaches as $h\to 0$.

Page 45

19. Sketch the graph of the quadratic equation $y = (x-1)^2 - 1$.

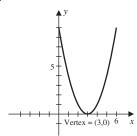

- 20. If the height of a right circular cylinder is four times the radius r, express the volume as a function of
 - (A) $4\pi r^3$
- **(B)** $8\pi r^3$
- (C) $4\pi r^2$ (D) $2\pi r^3$ (E) $4\pi r^4$

- 21. Find the slope intercept equation of the line that has x-intercept -3 and y-intercept -2.
- 22. Find all values of x that solve the equation |3x + 2| = 1.
- 23. Determine the values of x when the graph of $y = 3x^2 6x$ lies below the x-axis.
- 24. Find the distance between the points (-2,4), (6,8) and the midpoint of the line segment joining the
 - (A) $d = 4\sqrt{5}$, midpoint:(5,13) (B) $d = 16\sqrt{5}$, midpoint:(2,6) (C) $d = 4\sqrt{5}$, midpoint:(2,6) (E) $d = 16\sqrt{5}$, midpoint:(1,7)

- 25. Consider the parabola with equation $y = (x 3)^2$.
 - (a) Determine the vertex of the parabola.
 - (b) Sketch the graph of the parabola.

Chapter 1 Form I: Answers

- 1. [-3,1]
- 2. $[-2,1] \cup [1,\infty)$
- 3. C
- 4. B
- 5. [1, 5]
- 6. The vertex is (-1,1)



- 7. (-2,0),(0,4),(2,0), y-axis symmetry
- 8. intercepts: (1,0),(-1,0),(0,-2); y-axis symmetry
- 9. (a) (-2,0) and (0,8)
 - (b) none
- 10. (a) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$
 - (b) $(-\infty, 2) \cup (2, \infty)$
 - (c) (-2,2)
- 11. B
- 12. E
- 13. (a) f(-2) = -2
 - (b) $f(0) = \frac{3}{2}$
 - (c) f(2) = 1
 - (d) f(3) = 3
 - (e) domain: [-2, 3]
 - (f) range: [-2, 3]
- 14. A
- 15. E
- 16. $P = 2s + \frac{72}{s}$
- 17. y = -2x + 7
- 18. (a) 5x + 5h 3
 - (b) 5h
 - (c) 5
 - (d) 5
- 19. A
- 20. A

21.
$$y = -\frac{2}{3}x - 2$$

22.
$$x = -1$$
 or $x = \frac{1}{3}$

23.
$$x \text{ in } (0,2)$$

