
### Contents

| Chapter 1 Functions and Their Graphs            | 1   |
|-------------------------------------------------|-----|
| Chapter 2 Polynomial and Rational Functions     | 101 |
| Chapter 3 Exponential and Logarithmic Functions | 190 |
| Chapter 4 Trigonometry                          | 258 |
| Chapter 5 Analytic Trigonometry                 | 351 |
| Chapter 6 Topics in Analytic Geometry           | 423 |

#### Ch 1 Form A

Approximate the coordinates of the points.



- a. A:(4,5), B:(-5,-4), C:(5,0), D:(3,-1)
- b. A:(1,5), B:(-5,-4), C:(5,0), D:(3,-1)
- c. A:(2,5), B:(-5,-4), C:(5,0), D:(3,-1)
- d. A:(3,5), B:(-5,-4), C:(5,0), D:(3,-1)
- e. A:(-1,5), B:(-5,-4), C:(5,0), D:(3,-1)

Show that the points form the vertices of the indicated polygon.

Right triangle: (5,2),(2,4),(-2,-2)

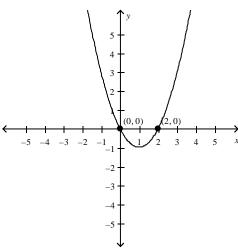
a. 
$$\left(\sqrt{11}\right)^2 + \left(\sqrt{52}\right)^2 = \left(\sqrt{65}\right)^2$$

b. 
$$\left(\sqrt{13}\right)^2 + \left(\sqrt{52}\right)^2 = \left(\sqrt{65}\right)^2$$

c. 
$$\left(\sqrt{29}\right)^2 + \left(\sqrt{52}\right)^2 = \left(\sqrt{65}\right)^2$$

c. 
$$\left(\sqrt{29}\right)^2 + \left(\sqrt{52}\right)^2 = \left(\sqrt{65}\right)^2$$
  
d.  $\left(\sqrt{20}\right)^2 + \left(\sqrt{52}\right)^2 = \left(\sqrt{65}\right)^2$   
e.  $\left(\sqrt{7}\right)^2 + \left(\sqrt{52}\right)^2 = \left(\sqrt{65}\right)^2$ 

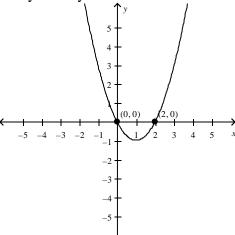
e. 
$$(\sqrt{7})^2 + (\sqrt{52})^2 = (\sqrt{65})^2$$


\_\_\_\_ 3. Identify any intercepts and test for symmetry. Then sketch the graph of the equation.

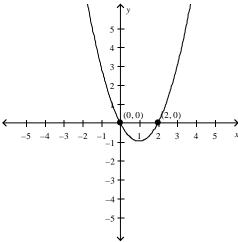
 $y = x^2 - 2x$ 

a. x-intercept: (0,0),(2,0)

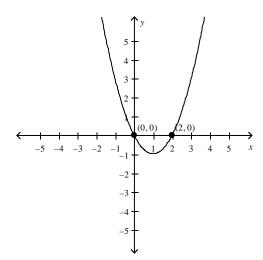
y-intercept: (0,0)


No symmetry




b. x-intercept : (0,0),(-2,0)

y-intercept: (0,1)


No symmetry



c. *x*-intercept : (2,0),(2,0) *y*-intercept : (0,1) No symmetry



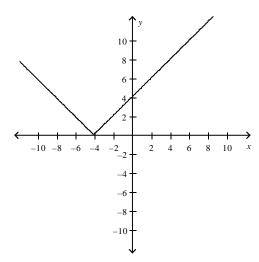
d. *x*-intercept : (0,0),(2,0) *y*-intercept : (0,1) No symmetry



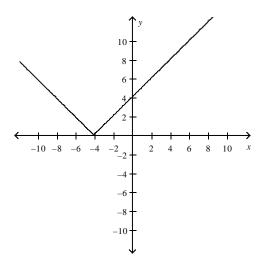
e. x-intercept : (0,0),(2,0)y-intercept : (0,-1)

No symmetry

5
4
3
-5 -4 -3 -2 -1 1 2 3



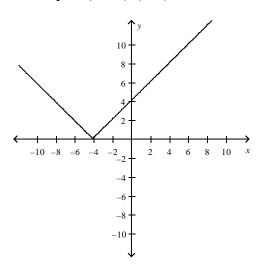

\_\_\_\_\_ 4. Use a graphing utility to graph the equation. Use a standard setting. Approximate any intercepts.


$$y = |x+4|$$

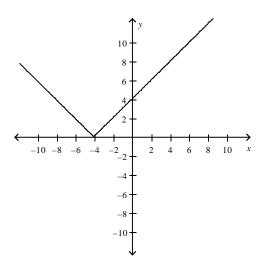
a.

Intercepts: (0,-4),(0,4)




b. Intercepts: (-4,0),(0,-4)




c. Intercepts: (4,0),(0,4)

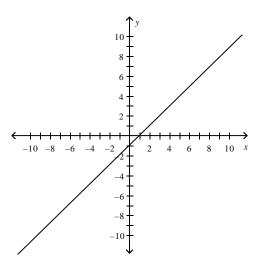


d. Intercepts: (-4,0),(0,4)



e. Intercepts: (-4,0),(4,0)

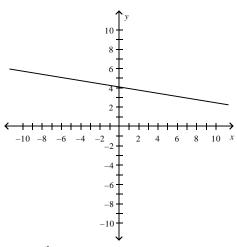



\_\_\_\_ 5. Find the x- and y-intercepts of the graph of the equation  $y^2 = -9x + 7$ .

- a. x-intercept:  $\left(-\frac{7}{9}, 0\right)$ 
  - y-intercept:  $(0, \sqrt{7})$
- b. x-intercept:  $\left(-\frac{7}{9}, 0\right)$ 
  - y-intercept:  $(0, \pm \sqrt{7})$
- c. x-intercept:  $\left(\frac{7}{9}, 0\right)$ 
  - y-intercept:  $(0, \sqrt{7})$
- d. x-intercept:  $\left(-\frac{7}{9}, 0\right)$ 
  - y-intercept:  $(0, -\sqrt{7})$
- e. x-intercept:  $\left(\frac{7}{9}, 0\right)$ 
  - y-intercept:  $(0, \pm \sqrt{7})$

\_\_\_\_ 6. Find the slope and y-intercept (if possible) of the equation of the line. Sketch the line.

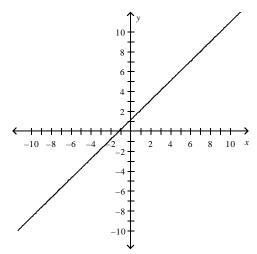
$$y = -\frac{1}{6}x + 4$$


a.



*m* is undefined.

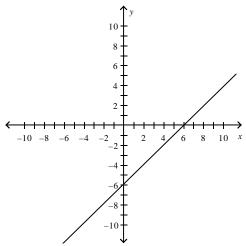
y-intercept: (0, 4)


d.



$$m=-\frac{1}{6}$$

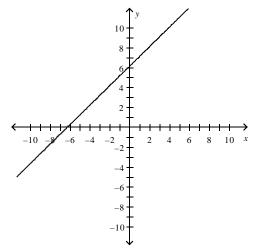
y-intercept: (0, 4)


b.



m = -1

y-intercept: (0, 6)


e.



m = 6

y-intercept: (0, 6)

c.



m = -6

y-intercept: (0, 6)

\_\_\_\_\_ 7. Use the *intercept form* to find the equation of the line with the given intercepts. The intercept form of the equation of a line with intercepts (a, 0) and (0, b) is

$$\frac{x}{a} + \frac{y}{b} = 1, a \neq 0, b \neq 0.$$

Point on line: (-8, 6)

x-intercept: (c, 0)

y-intercept: (0,c),  $c \neq 0$ 

- a. x y 2 = 0
- b. -x+y-2=0
- c. -x-y-2=0
- d. x+y-2=0
- e. x+y-6=0

\_\_\_\_ 8. Evaluate the function g(y) = 10 - 4y at g(s+11).

- a. 34 + 4s
- b. 34 4s
- c. -34 + 4s
- d. -34 4s
- e. 10-4s

\_\_\_\_ 9. Find all real values of x such that f(x) = 0.

$$f(x) = 42 - 6x$$

- a. 7
- b. 5
- c. 9
- d. 6
- e. 8

\_\_\_\_ 10. Find the difference quotient and simplify your answer.

$$f(x) = 5x - x^2$$
,  $\frac{f(7+h) - f(7)}{h}$ ,  $h \neq 0$ 

- a. -h-8,  $h \neq 0$
- b. -h-6,  $h \neq 0$
- c. -h-5,  $h \neq 0$
- d. -h-9,  $h \neq 0$
- e. -h-7,  $h \neq 0$

\_\_\_\_ 11. Find the zeros of the function algebraically.

$$f(x) = \sqrt{7x + 4}$$

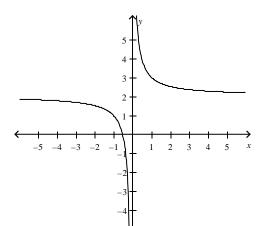
- a. 4
  - 7
- b.  $\frac{7}{4}$
- c. \_4
- d. \_4
  - 7
- e. 7

 $\underline{\phantom{a}}$  12. Find the coordinates of a second point on the graph of a function f if the given point is on the graph and the function is even and odd.

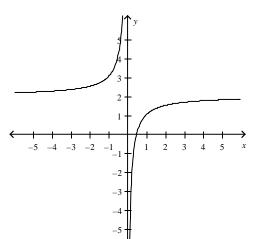
(6a, 5c)

- a. Even: (-6a, -5c)
  - Odd: (-6a, 5c)
- b. Even: (6a, -5c)
  - Odd: (-6a, -5c)
- c. Even: (-6a, -5c)
  - Odd: (-6a, -5c)
- d. Even: (-6a, 5c)
  - Odd: (6a, 5c)
- e. Even: (-6a, 5c)
  - Odd: (-6a, -5c)

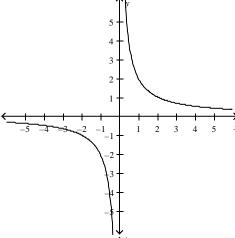
\_\_\_\_ 13. Write the linear function such that it has the indicated function values.


$$f(6) = 10, f(-3) = -17$$

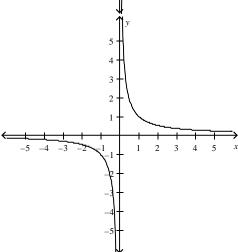
- a. f(x) = 3x 8
- b. f(x) = -3x + 3
- c. f(x) = 3x + 8
- d. f(x) = 8x + 3
- e. f(x) = -3x 3


\_\_\_\_ 14. Select the correct graph of the given function.

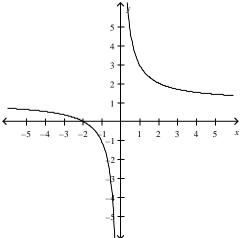
$$f(x) = 2 + \frac{1}{x}$$


a.



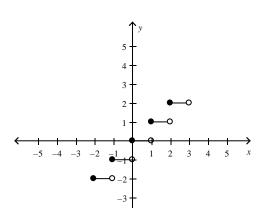

d.



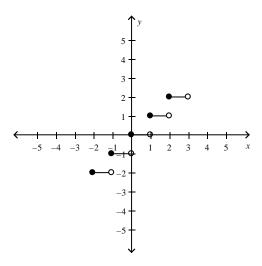

b.



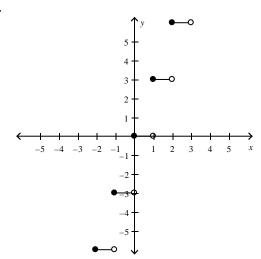
e.



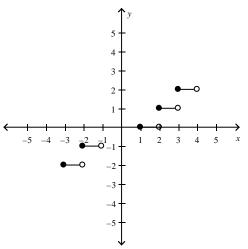

c.



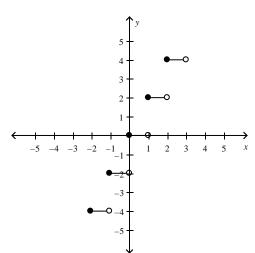

\_\_\_ 15. Select the graph of the function f(x) = 3||x||.


a.




d.




b.

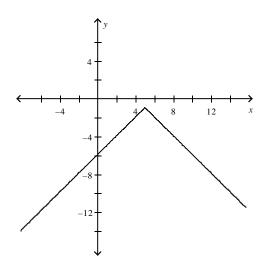


e.



c.




Evaluate the function for the indicated values.

$$\overline{f(x)} = 4 \llbracket x + 8 \rrbracket + 8$$

- (i) f(5)
- (ii) f(-52.7)
- (iii)  $f\left(\frac{2}{3}\right)$

- a. (i) 60
- (ii) 168
- (iii )44 (iii)40
- b. (i) 60
- (ii) 168
- c. (i) 61
- (ii) 172
- (iii )44 (iii)40
- d. (i) 61 e. (i) 60
- (ii) 172(ii) - 172
- (iii)40

Use the graph of f(x) = |x| to write an equation for the function whose graph is 17. shown.



- a. y = |x 5| 1
- b. y = -|x-5| + 1
- c. y = -|x+5| 1
- d. y = |x+5| + 1
- e. y = -|x 5| 1

g is related to the parent function. Identify the parent function f.

$$g(x) = \sqrt{3x}$$

- a.  $f(x) = \sqrt{3x}$
- b.  $f(x) = -\sqrt{3x}$
- c.  $f(x) = -\sqrt{x}$
- d.  $f(x) = \sqrt{x}$
- e. None of the above

\_\_\_\_ 19. Find (f/g)(x). What is the domain of f/g?

$$f(x) = x^2$$
,  $g(x) = 7x - 5$ 

- a.  $-\frac{x^2}{7x-5}$ ; all real numbers x.
- b.  $\frac{7x+5}{x^2}$ ; all real numbers x except x = 0
- c.  $\frac{x^2}{7x-5}$ ; all real numbers x except  $x = \frac{5}{7}$
- d.  $\frac{7x-5}{x^2}$ ; all real numbers x except x = 0
- e.  $\frac{x^2}{7x+5}$ ; all real numbers x except  $x = \frac{7}{5}$

\_\_\_\_ 20. Find gof and the domain of composite function.

$$f(x) = x^2 + 2$$
,  $g(x) = \sqrt{x}$ 

a.  $(x+2)^2$ 

Domain of gof: all real numbers x

b.  $(x-2)^2$ 

Domain of gof: all real numbers x

c.  $\sqrt{x^2+2}$ 

Domain of *gof*: all real numbers *x* 

d.  $\sqrt{(x-2)^2}$ 

Domain of *gof*: all real numbers *x* 

e.  $\sqrt{(x+2)^2}$ 

Domain of *gof*: all real numbers *x* 

\_\_\_\_ 21. The suggested retail price of a new hybrid car is p dollars. The dealership advertises a factory rebate of \$2000 and a 30% discount.

Write a function R in terms of p giving the cost of the hybrid car after receiving the rebate from the factory.

- a. R(p) = 2000 p
- b. R(p) = p 2000
- c. R(p) = p + 2000
- d. R(p) = p + 600
- e. R(p) = p 600

Find the inverse function of *f* informally.

$$f(x) = x^7$$

a. 
$$f^{-1}(x) = 7\sqrt{x}$$

b. 
$$f^{-1}(x) = 2\left(\sqrt[7]{x}\right)$$

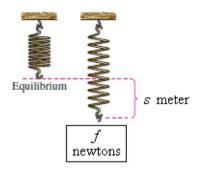
c. 
$$f^{-1}(x) = \left(\sqrt[7]{x}\right)^7$$

d. 
$$f^{-1}(x) = -\sqrt[7]{x}$$
  
e.  $f^{-1}(x) = \sqrt[7]{x}$ 

e. 
$$f^{-1}(x) = \sqrt[7]{x}$$

Find the inverse function of  $g(x) = x^7 - 4$ .

a. 
$$g^{-1}(x) = \sqrt[7]{x-4}$$


b. 
$$g^{-1}(x) = (x+4)^7$$
  
c.  $g^{-1}(x) = x^7 + 4$   
d.  $g^{-1}(x) = \sqrt[7]{x+4}$ 

c. 
$$g^{-1}(x) = x^7 + 4$$

d. 
$$g^{-1}(x) = \sqrt[7]{x+4}$$

e. 
$$g^{-1}(x) = (x-4)^7$$

A force of f = 245 newtons stretches a spring s = 0.25 meter (see figure).

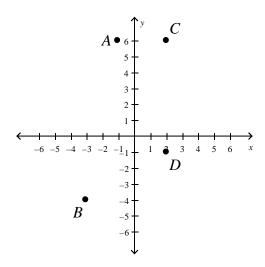


How far will a force of 60 newtons stretch the spring? What force is required to stretch the spring 0.2 meter?

- a. 0.25 m; 196 N
- b. 0.25 m; 245 N
- c. 0.06 m; 196 N
- d. 0.09 m; 285 N
- e. 0.06 m; 245 N

After determining whether the variation model below is of the form y = kx or  $y = \frac{k}{x}$ , find the value of k.

| х | 4             | 8              | 12      | 16             | 20             |
|---|---------------|----------------|---------|----------------|----------------|
| У | $\frac{1}{6}$ | $\frac{1}{12}$ | 1<br>18 | $\frac{1}{24}$ | $\frac{1}{30}$ |


- a.  $k = \frac{1}{4}$ b.  $k = \frac{3}{2}$ c.  $k = \frac{5}{4}$ d.  $k = \frac{1}{2}$ e.  $k = \frac{2}{3}$

# **Ch 1 Form A Answer Section**

| 1.  | ANS: | E | PTS: | 1 | REF: | 1.1.5   |
|-----|------|---|------|---|------|---------|
| 2.  | ANS: | В | PTS: | 1 | REF: | 1.1.43  |
| 3.  | ANS: | A | PTS: | 1 | REF: | 1.2.47  |
| 4.  | ANS: | D | PTS: | 1 | REF: | 1.2.67  |
| 5.  | ANS: | E | PTS: | 1 | REF: | 1.2.32  |
| 6.  | ANS: | D | PTS: | 1 | REF: | 1.3.19  |
| 7.  | ANS: | D | PTS: | 1 | REF: | 1.3.102 |
| 8.  | ANS: | D | PTS: | 1 | REF: | 1.4.38c |
| 9.  | ANS: | A | PTS: | 1 | REF: | 1.4.59  |
| 10. | ANS: | D | PTS: | 1 | REF: | 1.4.104 |
| 11. | ANS: | D | PTS: | 1 | REF: | 1.5.32  |
| 12. | ANS: | E | PTS: | 1 | REF: | 1.5.130 |
| 13. | ANS: | A | PTS: | 1 | REF: | 1.6.14a |
| 14. | ANS: | A | PTS: | 1 | REF: | 1.6.36  |
| 15. | ANS: | В | PTS: | 1 | REF: | 1.6.52  |
| 16. | ANS: | E | PTS: | 1 | REF: | 1.6.46  |
| 17. | ANS: | E | PTS: | 1 | REF: | 1.7.17d |
| 18. | ANS: | D | PTS: | 1 | REF: | 1.7.35a |
| 19. | ANS: | C | PTS: | 1 | REF: | 1.8.11d |
| 20. | ANS: | C | PTS: | 1 | REF: | 1.8.43b |
| 21. | ANS: | В | PTS: | 1 | REF: | 1.8.76a |
| 22. | ANS: | E | PTS: | 1 | REF: | 1.9.14  |
| 23. | ANS: | D | PTS: | 1 | REF: | 1.951a  |
| 24. | ANS: | C | PTS: | 1 | REF: | 1.10.45 |
| 25. | ANS: | E | PTS: | 1 | REF: | 1.10.33 |

#### Ch 1 Form B

Approximate the coordinates of the points.



- a. A:(1,6), B:(-3,-4), C:(2,6), D:(2,-1)
- b. A:(-1,6), B:(-3,-4), C:(2,6), D:(2,-1)
- c. A:(2,6), B:(-3,-4), C:(2,6), D:(2,-1)
- d. A:(4,6), B:(-3,-4), C:(2,6), D:(2,-1)
- e. A:(3,6), B:(-3,-4), C:(2,6), D:(2,-1)

Show that the points form the vertices of the indicated polygon. 2.

Right triangle: (5,5), (6,4), (-2,-4)

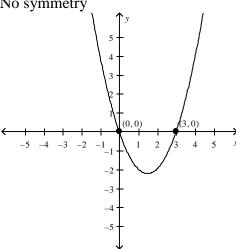
a. 
$$\left(\sqrt{2}\right)^2 + \left(\sqrt{128}\right)^2 = \left(\sqrt{130}\right)^2$$

b. 
$$(\sqrt{52})^2 + (\sqrt{128})^2 = (\sqrt{130})^2$$

c. 
$$\left(\sqrt{11}\right)^2 + \left(\sqrt{128}\right)^2 = \left(\sqrt{130}\right)^2$$

d. 
$$\left(\sqrt{50}\right)^2 + \left(\sqrt{128}\right)^2 = \left(\sqrt{130}\right)^2$$

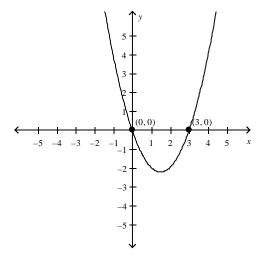
c. 
$$(\sqrt{11})^{2} + (\sqrt{128})^{2} = (\sqrt{130})^{2}$$
  
d.  $(\sqrt{50})^{2} + (\sqrt{128})^{2} = (\sqrt{130})^{2}$   
e.  $(\sqrt{7})^{2} + (\sqrt{128})^{2} = (\sqrt{130})^{2}$ 


Identify any intercepts and test for symmetry. Then sketch the graph of the equation.

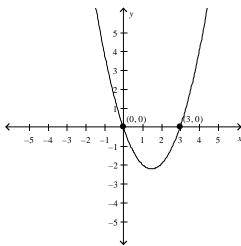
 $y = x^2 - 3x$ 

*x*-intercept : (0,0),(-3,0)

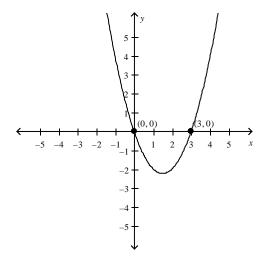
y-intercept: (0,1)


No symmetry




*x*-intercept: (0,0),(3,0)b.

y-intercept: (0, 1)


No symmetry

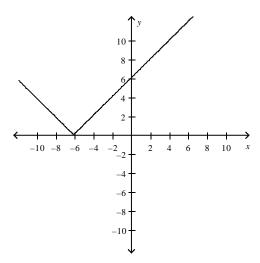


c. x-intercept: (0,0),(3,0) y-intercept: (0,0) No symmetry

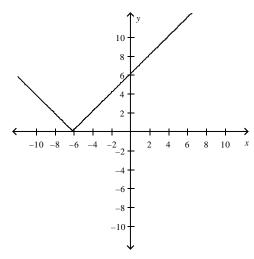


d. *x*-intercept : (3,0),(3,0) *y*-intercept : (0,1) No symmetry

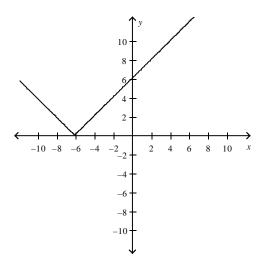



e. x-intercept : (0,0),(3,0)y-intercept : (0,-1)

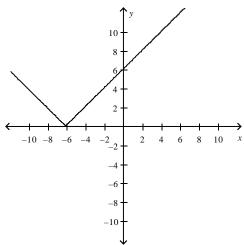
\_\_\_\_ 4. Use a graphing utility to graph the equation. Use a standard setting. Approximate any intercepts.


y = |x + 6|

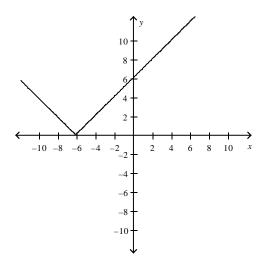
a.


Intercepts: (6,0),(0,6)




b. Intercepts: (-6,0),(6,0)




c. Intercepts: (0,-6),(0,6)

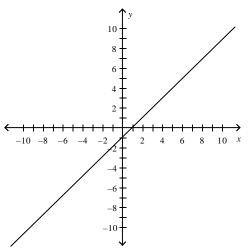


d. Intercepts: (-6,0),(0,-6)



e. Intercepts: (-6,0), (0,6)

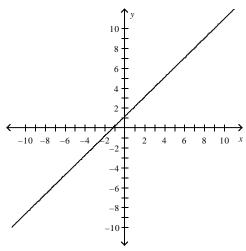



\_\_\_\_ 5. Find the x- and y-intercepts of the graph of the equation  $y^2 = 7x + 2$ .

- a. x-intercept:  $\left(\frac{2}{7}, 0\right)$ 
  - y-intercept:  $(0, \pm \sqrt{2})$
- b. *x*-intercept:  $\left(\frac{2}{7}, 0\right)$ 
  - y-intercept:  $(0, -\sqrt{2})$
- c. x-intercept:  $\left(-\frac{2}{7}, 0\right)$ 
  - y-intercept:  $(0, \sqrt{2})$
- d. x-intercept:  $\left(\frac{2}{7}, 0\right)$ 
  - y-intercept:  $(0, \sqrt{2})$
- e. x-intercept:  $\left(-\frac{2}{7}, 0\right)$ 
  - y-intercept:  $(0, \pm \sqrt{2})$

\_\_\_\_ 6. Find the slope and *y*-intercept (if possible) of the equation of the line. Sketch the line.

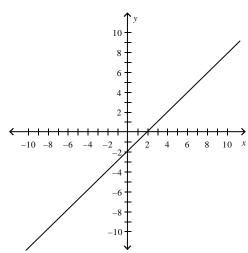
$$y = -\frac{1}{2}x + 6$$


a.



*m* is undefined.

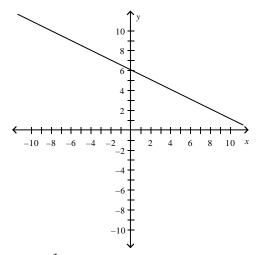
y-intercept: (0, 6)


d.



m = -1

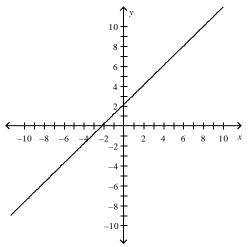
y-intercept: (0, 2)


b.



m = 2

y-intercept: (0, 2)


c.



 $m=-\frac{1}{2}$ 

y-intercept: (0, 6)

e.



m = -2

y-intercept: (0, 2)

\_\_\_\_\_ 7. Use the *intercept form* to find the equation of the line with the given intercepts. The intercept form of the equation of a line with intercepts (a, 0) and (0, b) is

$$\frac{x}{a} + \frac{y}{b} = 1, a \neq 0, b \neq 0.$$

Point on line: (-8,3)

x-intercept: (c, 0)

y-intercept: (0,c),  $c \neq 0$ 

- a. -x-y-5=0
- b. -x+y-5=0
- c. x+y-3=0
- d. x+y-5=0
- e. x-y-5=0

\_\_\_\_ 8. Evaluate the function g(y) = 7 - 5y at g(s + 14).

- a. -63 5s
- b. 63 + 5s
- c. 63 5s
- d. -63 + 5s
- e. 7-5s

\_\_\_\_ 9. Find all real values of x such that f(x) = 0.

$$f(x) = 72 - 9x$$

- a. 6
- b. 10
- c. 9
- d. 7
- e. 8

\_\_\_\_ 10. Find the difference quotient and simplify your answer.

$$f(x) = 5x - x^2$$
,  $\frac{f(9+h) - f(9)}{h}$ ,  $h \neq 0$ 

- a. -h 11,  $h \neq 0$
- b. -h 10,  $h \neq 0$
- c. -h-9,  $h \neq 0$
- d. -h 13,  $h \neq 0$
- e. -h-12,  $h \neq 0$

Find the zeros of the function algebraically. 11.

$$f(x) = \sqrt{5x + 2}$$

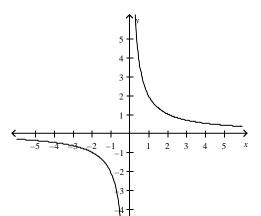
- a.  $\frac{5}{2}$
- b. -2 c. 2 -5

Find the coordinates of a second point on the graph of a function f if the given point is 12. on the graph and the function is even and odd.

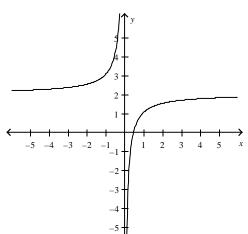
(6a, 4c)

- a. Even: (-6a, 4c)
  - Odd: (6a, 4c)
- b. Even: (-6a, -4c)
  - Odd: (-6a, 4c)
- c. Even: (-6a, 4c)
  - Odd: (-6a, -4c)
- d. Even: (6a, -4c)
  - Odd: (-6a, -4c)
- e. Even: (-6a, -4c)
  - Odd: (-6a, -4c)

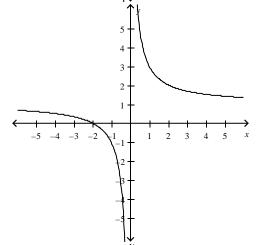
13. Write the linear function such that it has the indicated function values.


$$f(6) = 11, f(-1) = -10$$

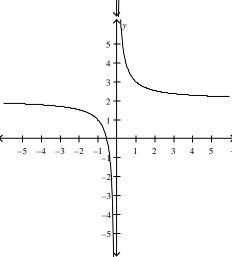
- a. f(x) = 3x 7
- b. f(x) = -3x 1
- c. f(x) = -3x + 1
- d. f(x) = 3x + 7
- e. f(x) = 7x + 3


\_\_\_\_ 14. Select the correct graph of the given function.

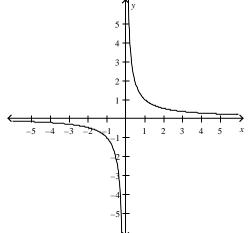
$$f(x) = 2 + \frac{1}{x}$$


a.



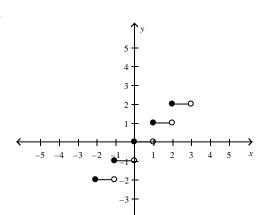

d.



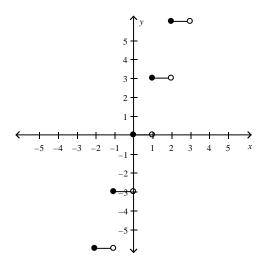

b.



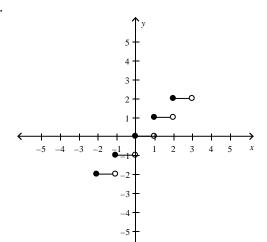
e.



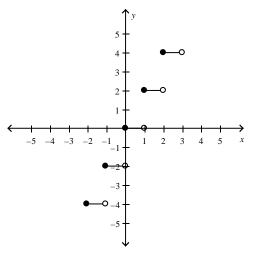

c.



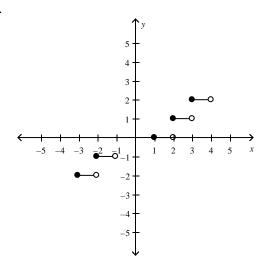

## \_\_\_\_ 15. Select the graph of the function f(x) = 3||x||.


a.




d.

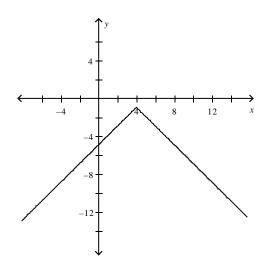



b.



e.




c.



Evaluate the function for the indicated values.

$$\overline{f(x)} = 2 \llbracket x + 6 \rrbracket + 8$$

- (i) f(-1) (ii) f(-2.3) (iii)  $f(\frac{2}{3})$
- (ii)14 a. (i) 19
- (iii)20 b. (i) 18 (ii)16 (iii)20
- c. (i) 19 (ii)14 (iii)22
- d. (i) 18 (ii)16 (iii)22
- e. (i) 18 (ii)14 (iii)20
- Use the graph of f(x) = |x| to write an equation for the function whose graph is \_\_\_\_ 17. shown.



- a. y = |x+4| + 1
- b. y = -|x-4| + 1
- c. y = -|x-4|-1
- d. y = |x 4| 1
- e. y = -|x+4| 1
- g is related to the parent function. Identify the parent function f.

$$g(x) = \sqrt{7x}$$

- a.  $f(x) = -\sqrt{x}$
- b.  $f(x) = \sqrt{x}$
- c.  $f(x) = \sqrt{7x}$
- d.  $f(x) = -\sqrt{7x}$
- e. None of the above

\_\_\_\_ 19. Find (f/g)(x). What is the domain of f/g?

$$f(x) = x^2, \quad g(x) = 5x - 7$$

- a.  $\frac{5x-7}{x^2}$ ; all real numbers x except x = 0
- b.  $-\frac{x^2}{5x-7}$ ; all real numbers x.
- c.  $\frac{5x+7}{x^2}$ ; all real numbers x except x = 0
- d.  $\frac{x^2}{5x+7}$ ; all real numbers x except  $x = \frac{5}{7}$
- e.  $\frac{x^2}{5x-7}$ ; all real numbers x except  $x = \frac{7}{5}$

\_\_\_\_ 20. Find *gof* and the domain of composite function.

$$f(x) = x^2 + 5$$
,  $g(x) = \sqrt{x}$ 

a. 
$$\sqrt{(x-5)^5}$$

Domain of *gof*: all real numbers *x* 

b. 
$$(x+5)^5$$

Domain of gof: all real numbers x

c. 
$$\sqrt{(x+5)^5}$$

Domain of *gof*: all real numbers *x* 

d. 
$$(x-5)^5$$

Domain of gof: all real numbers x

e. 
$$\sqrt{x^2+5}$$

Domain of *gof*: all real numbers *x* 

\_\_\_\_ 21. The suggested retail price of a new hybrid car is *p* dollars. The dealership advertises a factory rebate of \$3000 and a 30% discount.

Write a function R in terms of p giving the cost of the hybrid car after receiving the rebate from the factory.

a. 
$$R(p) = p - 3000$$

b. 
$$R(p) = p + 900$$

c. 
$$R(p) = p - 900$$

d. 
$$R(p) = 3000 - p$$

e. 
$$R(p) = p + 3000$$

22. Find the inverse function of *f* informally.

$$f(x) = x^3$$

a. 
$$f^{-1}(x) = -\sqrt[3]{x}$$

a. 
$$f^{-1}(x) = -\sqrt[3]{x}$$
  
b.  $f^{-1}(x) = 2\left(\sqrt[3]{x}\right)$ 

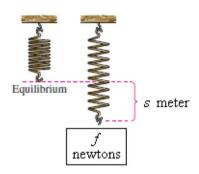
c. 
$$f^{-1}(x) = 3\sqrt{x}$$

c. 
$$f^{-1}(x) = 3\sqrt{x}$$
  
d.  $f^{-1}(x) = \left(\sqrt[3]{x}\right)^3$ 

e. 
$$f^{-1}(x) = \sqrt[3]{x}$$

Find the inverse function of  $g(x) = x^8 - 7$ .

a. 
$$g^{-1}(x) = \sqrt[8]{x-7}$$


b. 
$$g^{-1}(x) = \sqrt[8]{x+7}$$

c. 
$$g^{-1}(x) = (x-7)^8$$

d. 
$$g^{-1}(x) = (x+7)^8$$

e. 
$$g^{-1}(x) = x^8 + 7$$

24. A force of f = 250 newtons stretches a spring s = 0.2 meter (see figure).



How far will a force of 110 newtons stretch the spring? What force is required to stretch the spring 0.4 meter?

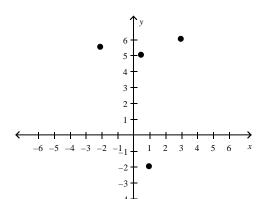
- a. 0.09 m; 285 N
- b. 0.2 m; 250 N
- c. 0.09 m; 500 N
- d. 0.2 m; 500 N
- e. 0.09 m; 250 N

After determining whether the variation model below is of the form y = kx or  $y = \frac{k}{x}$ , find the value of k.

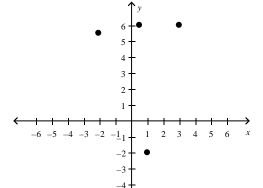
| х | 24             | 48             | 72    | 96              | 120             |
|---|----------------|----------------|-------|-----------------|-----------------|
| У | $\frac{1}{36}$ | $\frac{1}{72}$ | 1 108 | $\frac{1}{144}$ | $\frac{1}{180}$ |

- a.  $k = \frac{5}{4}$
- b.  $k = \frac{1}{12}$ c.  $k = \frac{3}{2}$ d.  $k = \frac{2}{3}$ e.  $k = \frac{1}{24}$

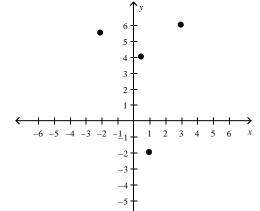
## **Ch 1 Form B Answer Section**


| 1.  | ANS: | В | PTS: | 1 | REF: | 1.1.5   |
|-----|------|---|------|---|------|---------|
| 2.  | ANS: | A | PTS: | 1 | REF: | 1.1.43  |
| 3.  | ANS: | C | PTS: | 1 | REF: | 1.2.47  |
| 4.  | ANS: | E | PTS: | 1 | REF: | 1.2.67  |
| 5.  | ANS: | E | PTS: | 1 | REF: | 1.2.32  |
| 6.  | ANS: | C | PTS: | 1 | REF: | 1.3.19  |
| 7.  | ANS: | D | PTS: | 1 | REF: | 1.3.102 |
| 8.  | ANS: | A | PTS: | 1 | REF: | 1.4.38c |
| 9.  | ANS: | E | PTS: | 1 | REF: | 1.4.59  |
| 10. | ANS: | D | PTS: | 1 | REF: | 1.4.104 |
| 11. | ANS: | C | PTS: | 1 | REF: | 1.5.32  |
| 12. | ANS: | C | PTS: | 1 | REF: | 1.5.130 |
| 13. | ANS: | A | PTS: | 1 | REF: | 1.6.14a |
| 14. | ANS: | E | PTS: | 1 | REF: | 1.6.36  |
| 15. | ANS: | D | PTS: | 1 | REF: | 1.6.52  |
| 16. | ANS: | E | PTS: | 1 | REF: | 1.6.46  |
| 17. | ANS: | C | PTS: | 1 | REF: | 1.7.17d |
| 18. | ANS: | В | PTS: | 1 | REF: | 1.7.35a |
| 19. | ANS: | E | PTS: | 1 | REF: | 1.8.11d |
| 20. | ANS: | E | PTS: | 1 | REF: | 1.8.43b |
| 21. | ANS: | A | PTS: | 1 | REF: | 1.8.76a |
| 22. | ANS: | E | PTS: | 1 | REF: | 1.9.14  |
| 23. | ANS: | В | PTS: | 1 | REF: | 1.951a  |
| 24. | ANS: | C | PTS: | 1 | REF: | 1.10.45 |
| 25. | ANS: | D | PTS: | 1 | REF: | 1.10.33 |

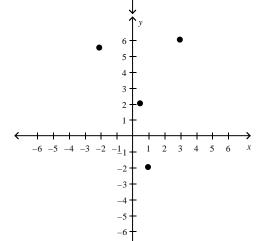
#### Ch 1 Form C


\_\_\_\_ 1. Plot the points in the Cartesian plane.

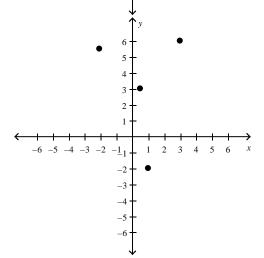
(3,6),(0.5,6),(1,-2),(-2,5.5)


a.




d.



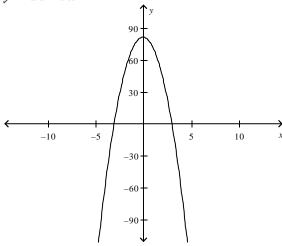

b.



e.



c.




2. Show that the points form the vertices of the indicated polygon.

Isosceles triangle: (5,9), (1,4), (6,8)

- a. Distances between the points:  $\sqrt{19}$ ,  $\sqrt{41}$ ,  $\sqrt{2}$
- b. Distances between the points:  $\sqrt{41}$ ,  $\sqrt{41}$ ,  $\sqrt{2}$
- c. Distances between the points:  $\sqrt{37}$ ,  $\sqrt{41}$ ,  $\sqrt{2}$
- d. Distances between the points:  $\sqrt{26}$ ,  $\sqrt{41}$ ,  $\sqrt{2}$
- e. Distances between the points:  $\sqrt{43}$ ,  $\sqrt{41}$ ,  $\sqrt{2}$
- \_\_\_\_ 3. Which of the following graphs are symmetric along the y-axis?
- a.  $y = x^3 x^2 + 6$
- b.  $y = x^3 x^4 + 6$
- c.  $y = x^5 x^3 + 6$
- d.  $y = x^4 x^2 + 6$
- e.  $y = x^5 + x^3 + 6$
- 4. Graphically estimate the *x* and *y*-intercepts of the graph.

$$y = 81 - 9x^2$$



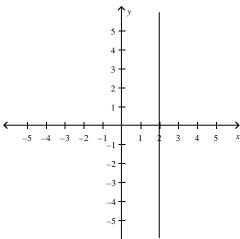
- a. x-intercept:  $(\pm 3, 0)$ 
  - y-intercept: (0,81)
- b. x-intercept: (3,0)
  - y-intercept: (0,81)
- c. x-intercept: (-3,0)
  - y-intercept: (0,81)
- d. x-intercept:  $(\pm 3, 0)$ 
  - y-intercept: (0,9)
- e. x-intercept: (0,3)
  - y-intercept: (0,81)
- 5. Write the standard form of the equation of the circle with the given characteristics.

center: (1, -7); radius: 3

a. 
$$(x+1)^2 + (y-7)^2 = 9$$

b. 
$$(x+7)^2 + (y-1)^2 = 3$$

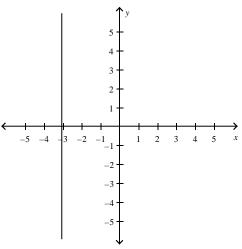
b. 
$$(x+7)^2 + (y-1)^2 = 3$$
  
c.  $(x+7)^2 + (y-1)^2 = 9$ 


d. 
$$(x-7)^2 + (y+1)^2 = 3$$

e. 
$$(x-1)^2 + (y+7)^2 = 9$$

Find the slope and *y*-intercept (if possible) of the equation of the line. Sketch the line.

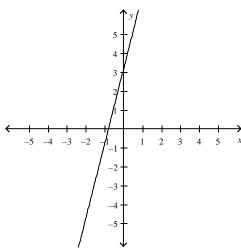
$$x + 3 = 0$$


a.



*m* is undefined.

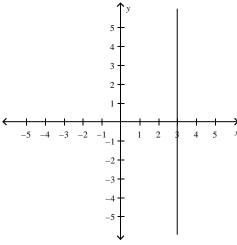
There is no y-intercept.


d.



*m* is undefined.

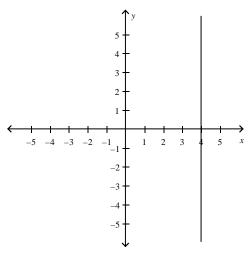
There is no y-intercept.


b.



m = -3

y-intercept: (0,4)


e.



*m* is undefined.

There is no y-intercept.

c.



m = -4

*y*-intercept: (0,3)

7. The slope of line representing daily revenues *y* in terms of time *x* in years. Use the slopes to interpret any change in daily revenues for a one-day increase in time.

The line has a slope of m = 600.

- a. Sales decreasing 600 units/day
- b. No change in sales
- c. Sales increasing 600 units/day
- d. None of the above

\_\_\_\_ 8. Evaluate the function f(x) = |x|/x at f(-20).

- a. 0
- b. -1
- c. 1
- d. -2
- e. –2

9. Find the domain of the function.

$$h(t) = \frac{3}{t}$$

- a. All real numbers t except  $t \neq 0$
- b. Negative real numbers *t*
- c. All real numbers t such that t > 0
- d. Non-negative real numbers t
- e. All real numbers t such that t < 0

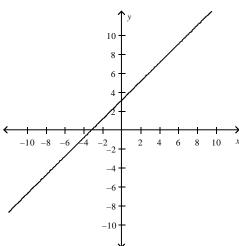
10. Does the table describe a function?

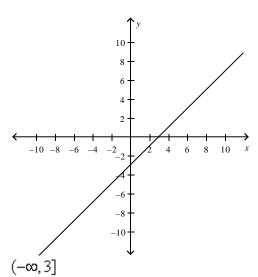
| Input value  | _4 | -2 | 0 | 2 | 4 |
|--------------|----|----|---|---|---|
| Output value | 7  | 7  | 7 | 7 | 7 |

- a. No
- b. Yes

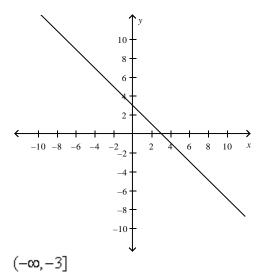
\_\_\_\_ 11. Find the average rate of change of the function from  $x_1 = 0$  to  $x_2 = 3$ .

$$f(x) = -4x + 13$$

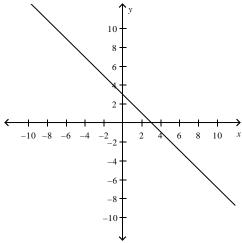

- a. The average rate of change from  $x_1 = 0$  to  $x_2 = 3$  is 13.
- b. The average rate of change from  $x_1 = 0$  to  $x_2 = 3$  is 4.
- c. The average rate of change from  $x_1 = 0$  to  $x_2 = 3$  is 19.
- d. The average rate of change from  $x_1 = 0$  to  $x_2 = 3$  is -4.
- e. The average rate of change from  $x_1 = 0$  to  $x_2 = 3$  is -13.


12. Select the graph of the given function and determine the interval(s) for which  $f(x) \ge 0$ .

d.

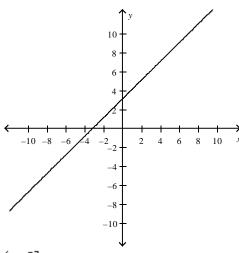

$$f(x) = 3 - x$$

a.






b.

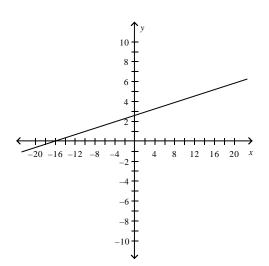



e.

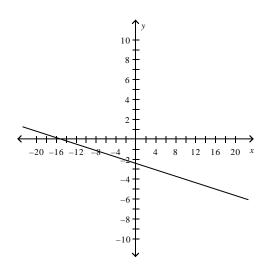


$$(-\infty, 3]$$

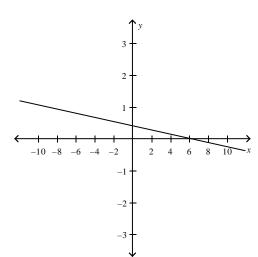
c.



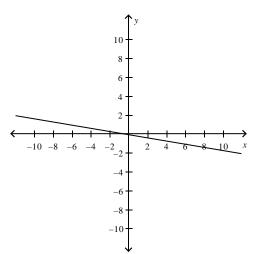

(∞, 3]


\_\_\_\_ 13. Select the correct graph of the given function.

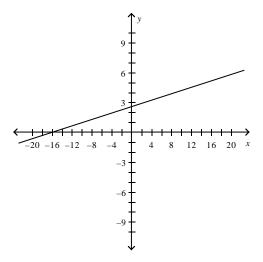
$$f(x) = -\frac{1}{6}x - \frac{5}{2}$$


a.




d.

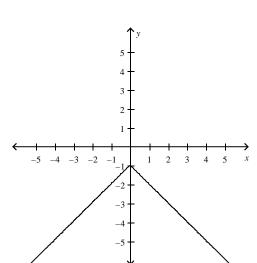



b.

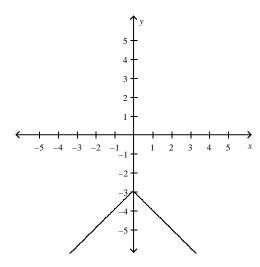


e.

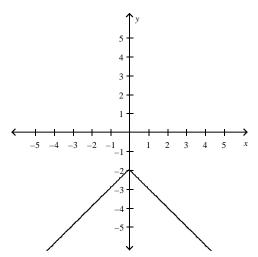



c.

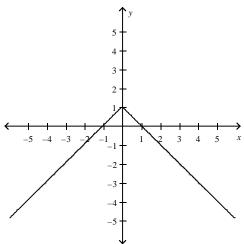



\_\_\_\_ 14. Select the correct graph of the given function.

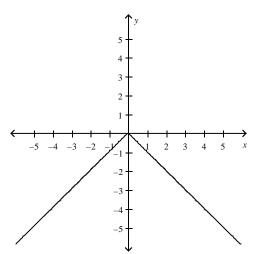
$$f(x) = 1 - |x|$$


a.




d.

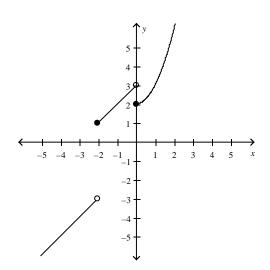



b.

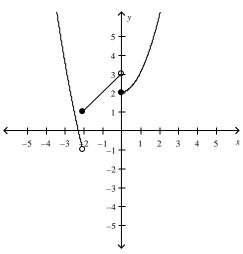


e.

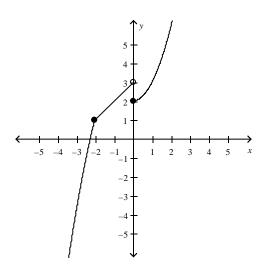



c.

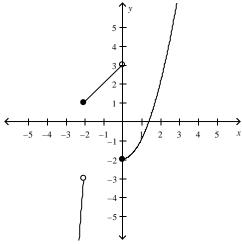



\_\_\_\_ 15. Select the graph of the function.

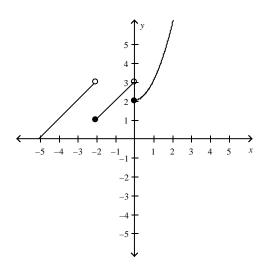
$$f(x) = 5 - x^{2} \qquad x < -2$$
$$= 3 + x \qquad -2 \le x < 0$$
$$= x^{2} + 2 \qquad x \ge 0$$


a.

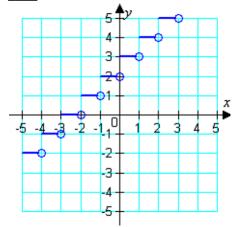



b.




d.




e.



c.

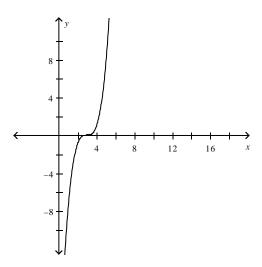


Which function does the graph represent? 16.



a. 
$$g(x) = [3x]$$

b.


$$g(x) = [x+3]$$

c. 
$$g(x) = 3 \llbracket x \rrbracket$$

d. 
$$g(x) = \begin{bmatrix} x \\ 3 \end{bmatrix}$$
  
e.  $g(x) = \begin{bmatrix} x - 3 \end{bmatrix}$ 

e. 
$$g(x) = [x - 3]$$

Identify the parent function and the transformation shown in the graph. Write an equation for the function shown in the graph.



- a. Horizontal shift of  $y = x^3$ ;  $y = (x 3)^3$
- b. Vertical shift of  $y = x^2$ ,  $y = (x 3)^2$
- c. Vertical shift of  $y = x^2$ ,  $y = (x + 3)^2$
- d. Horizontal shift of  $y = x^2$ ;  $y = (x+3)^2$
- e. Vertical shift of  $y = x^3$ ;  $y = (x+3)^3$
- g is related to the parent function. Use function notation to write g in terms of f. 18.

$$g(x) = -7|x-1|-4$$

- a. g(x) = -7f(x-1) + 4b. g(x) = -7f(x+1) 4c. g(x) = -7f(x-1) 4
- d. g(x) = 7f(x-1) 4
- e. g(x) = 7f(x+1) + 4

\_\_\_\_ 19. Find (f/g)(x).

$$f(x) = \frac{1}{x^2}, \quad g(x) = \frac{1}{x^5}$$

- a.  $\frac{1}{x^2}$
- b. <sub>x</sub><sup>7</sup>
- c.  $\frac{1}{x^5}$
- d.  $\frac{1}{r^7}$
- e. x<sup>3</sup>

\_\_\_\_\_ 20. The research and development department of an automobile manufacturer has determined that when a driver is required to stop quickly to avoid an accident, the distance (in feet) the car travels during the driver's reaction time is given by  $R(x) = \frac{3}{2}x$ , where x is the speed of car in miles per hour. The distance (in feet) traveled while the driver is braking is given by  $B(x) = \frac{1}{15}x^2$ . Find the function that represents the total stopping distance T.

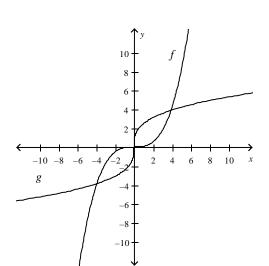
- a.  $T = -\frac{3}{2}x + \frac{1}{15}x^2$
- b.  $T = \frac{3}{2}x \frac{1}{15}x^2$
- c.  $T = \frac{3}{2}x^2 + \frac{1}{15}x^2$
- d.  $T = -\frac{3}{2}x \frac{1}{15}x^2$
- e.  $T = \frac{3}{2}x + \frac{1}{15}x^2$

\_\_\_\_ 21. Find 
$$(f/g)(x)$$
.  
 $f(x) = x^2 + 7x$   $g(x) = -2 - x$ 

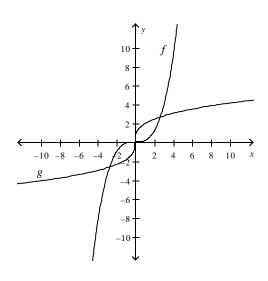
a. 
$$(f/g)(x) = \frac{x^2 + 7x}{-2 - x}, x \neq 0$$

b. 
$$(f/g)(x) = \frac{x+7}{-2}, x \neq 0$$

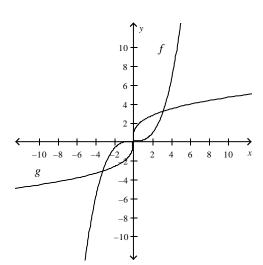
c. 
$$(f/g)(x) = -\frac{x^2}{2} - 7, x \neq 0$$


d. 
$$(f/g)(x) = \frac{x^2 + 7x}{-2 - x}, x \neq -2$$

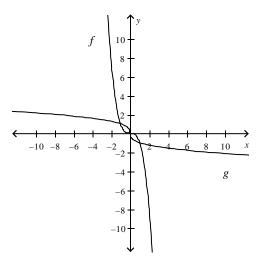
e. 
$$(f/g)(x) = \frac{x^2 + 7x}{-2 - x}, x \neq 2$$


 $\underline{\hspace{1cm}}$  22. Select the correct graph, showing f and g are inverse functions.

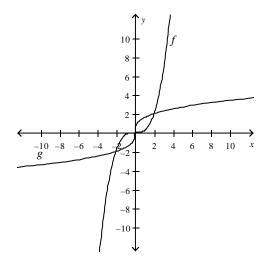
$$f(x) = \frac{x^3}{7}$$
,  $g(x) = \sqrt[3]{7x}$ 


a.




d.




b.



e.



c.



\_\_\_\_ 23. Determine whether the function has an inverse function. If it does, find the inverse function.

$$g(x) = \frac{x}{4}$$

a. 
$$g^{-1}(x) = -4x$$

b. 
$$g^{-1}(x) = 4x$$

c. 
$$g^{-1}(x) = \frac{4}{x}$$

d. 
$$g^{-1}(x) = -\frac{x}{4}$$

e. No inverse