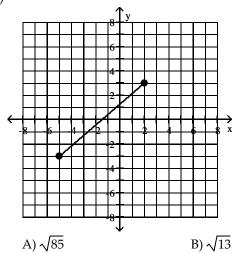

Ch. 1 Graphs/test-bank-precalculus-enhanced-with-graphing-utilities-6e-sullivan

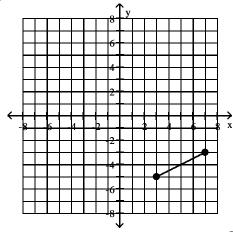
1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations

1 Use the Distance Formula

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.


Find the distance $d(P_1, P_2)$ between the points P_1 and P_2 .

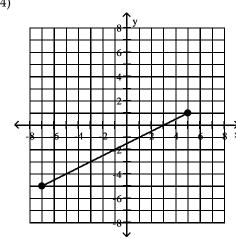
C) $\sqrt{13}$


D) 6

2)

C) 1

3)


A) 2

B) 12√3

C) 12

D) $2\sqrt{5}$

4)

A) 108

B) 6

C) $6\sqrt{5}$

D) $108\sqrt{3}$

5) $P_1 = (5, 5); P_2 = (5, 2)$

A) 2

B) 4

C) 3

D) $\sqrt{3}$

6) $P_1 = (1, 3); P_2 = (-2, -1)$

A) 5

B) 6

C) 10

D) 25

7) $P_1 = (0, -1); P_2 = (-8, -1)$

A) $\sqrt{65}$

B) 64

C) 8

D) 1

8) $P_1 = (0, 0); P_2 = (5, 8)$

A) $2\sqrt{10}$

B) 89

C) $\sqrt{89}$

D) 13

9) $P_1 = (4, 4); P_2 = (-6, -5)$

A) 1

B) 90

C) $\sqrt{19}$

D) $\sqrt{181}$

10) $P_1 = (2, -6); P_2 = (4, -2)$

A) 12

B) $12\sqrt{3}$

C) 2

D) $2\sqrt{5}$

	11) P ₁ = (-1, -4); P ₂ = (4, 6)			
	A) 75	B) 5√5	C) 75√3	D) 5
	12) P ₁ = (0.9, -0.6); P ₂ = (2.7)	-1.9) Round to three decima	l places, if necessary.	
	A) 7.021	B) 2.22	C) 15.5	D) 2.32
Deci	de whether or not the points a 13) (-9, -1), (-4, -1), (-4, 7)	re the vertices of a right triar	ngle.	
	A) Yes		B) No	
	14) (6, 1), (8, 5), (10, 4)			
	A) Yes		B) No	
	15) (10, 12), (16, 14), (15, 9)			
	A) Yes		B) No	
	16) (-3, -1), (3, 1), (9, -6)		T) 2.7	
	A) Yes		B) No	
Solv	e the problem.	. —		
	17) Find all values of k so tha (–5, 5), (k, 0)	t the given points are $\sqrt{29}$ ur	its apart.	
	A) -3, -7	B) -7	C) 7	D) 3, 7
	18) Find the area of the right	triangle ABC with $A = (-2, 7)$	B = (7, -1), C = (3, 9).	
	A) 58 square units	B) 29 square units	C) $\frac{\sqrt{58}}{2}$ square units	D) $\frac{\sqrt{29}}{2}$ square units
	19) Find all the points having	an x-coordinate of 9 whose	distance from the point (3, -2)	is 10.
	A) (9, 2), (9, -4)	B) (9, 13), (9, -7)	C) (9, 6), (9, –10)	D) (9, -12), (9, 8)
		ll playing field is a square, 65 l of the square)? If necessary,	feet on a side. How far is it dir	rectly from home plate to
		D) 02 (D) 02 f

A) 99 feet

B) 92 feet

C) 91 feet

D) 93 feet

21) A motorcycle and a car leave an intersection at the same time. The motorcycle heads north at an average speed of 20 miles per hour, while the car heads east at an average speed of 48 miles per hour. Find an expression for their distance apart in miles at the end of t hours.

A) $52\sqrt{t}$ miles

B) $t\sqrt{68}$ miles

C) $2t\sqrt{13}$ miles

D) 52t miles

22) A rectangular city park has a jogging loop that goes along a length, width, and diagonal of the park. To the nearest yard, find the length of the jogging loop, if the length of the park is 125 yards and its width is 75 yards.

A) 346 yards

B) 145 yards

C) 345 yards

D) 146 yards

23) Find the length of each side of the triangle determined by the three points P₁, P₂, and P₃. State whether the triangle is an isosceles triangle, a right triangle, neither of these, or both.

 $P_1 = (-5, -4), P_2 = (-3, 4), P_3 = (0, -1)$

- A) $d(P_1, P_2) = 2\sqrt{17}$; $d(P_2, P_3) = \sqrt{34}$; $d(P_1, P_3) = 5\sqrt{2}$ right triangle
- B) $d(P_1, P_2) = 2\sqrt{17}$; $d(P_2, P_3) = \sqrt{34}$; $d(P_1, P_3) = 5\sqrt{2}$ neither
- C) $d(P_1, P_2) = 2\sqrt{17}$; $d(P_2, P_3) = \sqrt{34}$; $d(P_1, P_3) = \sqrt{34}$ both
- D) $d(P_1, P_2) = 2\sqrt{17}$; $d(P_2, P_3) = \sqrt{34}$; $d(P_1, P_3) = \sqrt{34}$ isosceles triangle

2 Use the Midpoint Formula

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the midpoint of the line segment joining the points P₁ and P₂.

- 1) $P_1 = (1, 5); P_2 = (9, 3)$
 - A) (-8, 2)

B) (10, 8)

C) (5, 4)

D) (4, 5)

2) $P_1 = (4, 4)$; $P_2 = (7, -7)$

$$B)\left(-\frac{3}{2},\frac{11}{2}\right)$$

D)
$$\left(\frac{11}{2}, -\frac{3}{2}\right)$$

3) $P_1 = (7, 1); P_2 = (-16, -16)$

$$B)\left(\frac{23}{2},\frac{17}{2}\right)$$

$$C)\left(-\frac{9}{2}, -\frac{15}{2}\right)$$

4) $P_1 = (-0.7, 0.1); P_2 = (1.8, -2.1)$

5) $P_1 = (a, 3); P_2 = (0, 9)$

B)
$$\left(-\frac{a}{2}, 6\right)$$

$$D)\left(\frac{a}{2}, 6\right)$$

6) $P_1 = (5b, 9)$; $P_2 = (6b, 4)$

A)
$$(b, 5)$$

B)
$$\left(\frac{11b}{2}, \frac{13}{2}\right)$$

D)
$$\left(\frac{13b}{2}, \frac{11}{2}\right)$$

Solve the problem.

- 7) If (-3, 1) is the endpoint of a line segment, and (2, 4) is its midpoint, find the other endpoint.
 - A) (7, -2)

B) (3, 11)

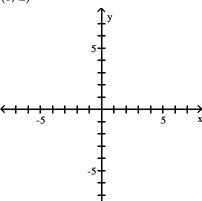
(7,7)

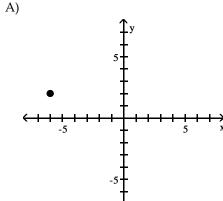
- D) (-13, -5)
- 8) If (4, 5) is the endpoint of a line segment, and (2, 1) is its midpoint, find the other endpoint.
 - A) (-4, 1)

B) (8, 13)

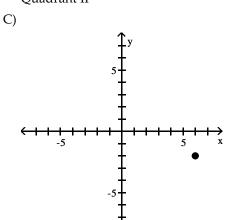
(0, 9)

- D) (0, -3)
- 9) If (-1, -10) is the endpoint of a line segment, and (2, -12) is its midpoint, find the other endpoint.
 - A) (-7, -6)
- B) (-5, -4)
- C) (5, -14)
- D) (5, -8)
- 10) If (5, -3) is the endpoint of a line segment, and (1, -2) is its midpoint, find the other endpoint.
 - A) (-3, -4)
- B) (13, -5)
- C) (7, -11)
- D) (-3, -1)

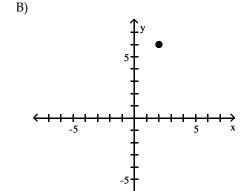

- 11) The medians of a triangle intersect at a point. The distance from the vertex to the point is exactly two-thirds of the distance from the vertex to the midpoint of the opposite side. Find the exact distance of that point from the vertex A(3, 4) of a triangle, given that the other two vertices are at (0, 0) and (8, 0).

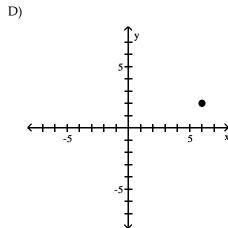

3 Graph Equations by Hand by Plotting Points

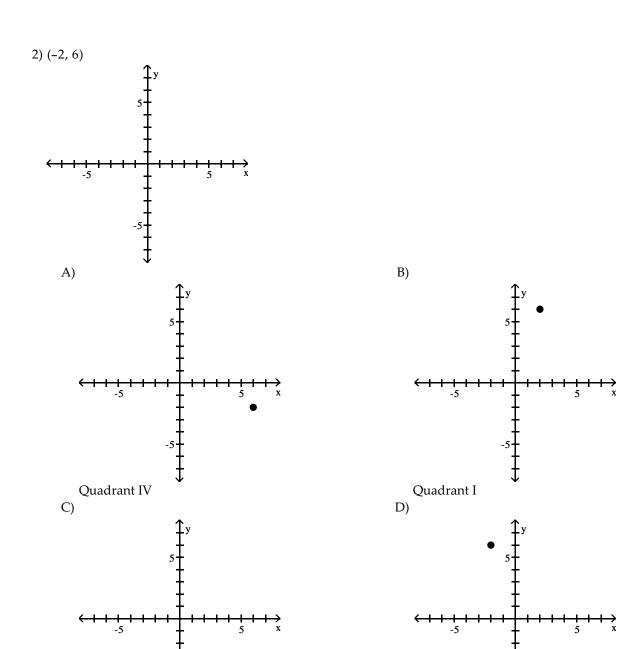
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.


Plot the point in the xy-plane. Tell in which quadrant or on what axis the point lies.

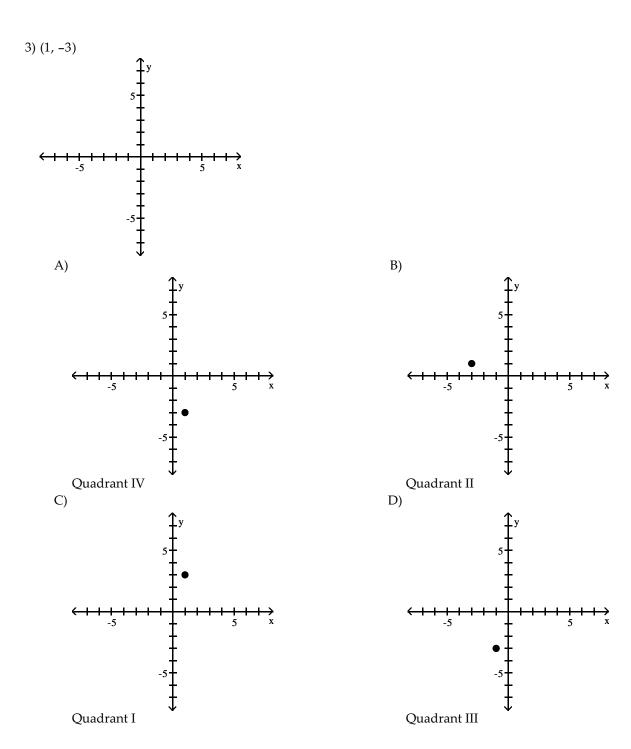
1) (6, 2)

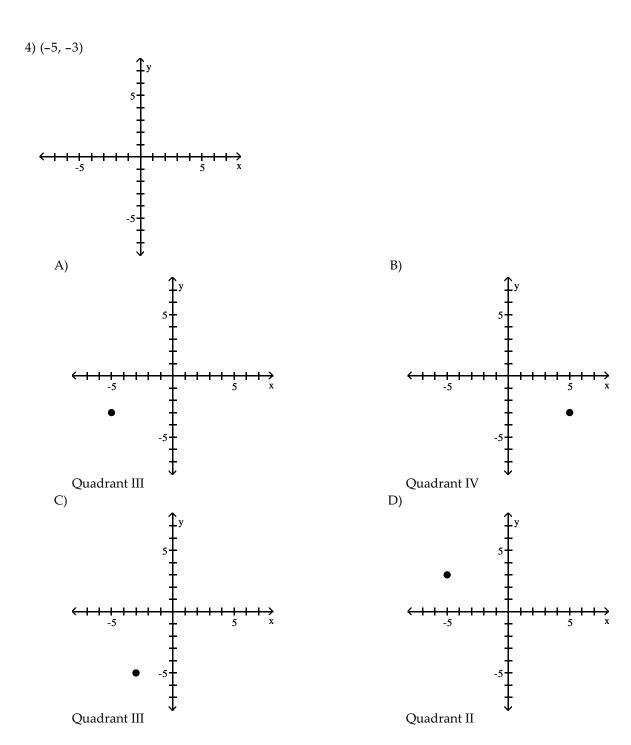


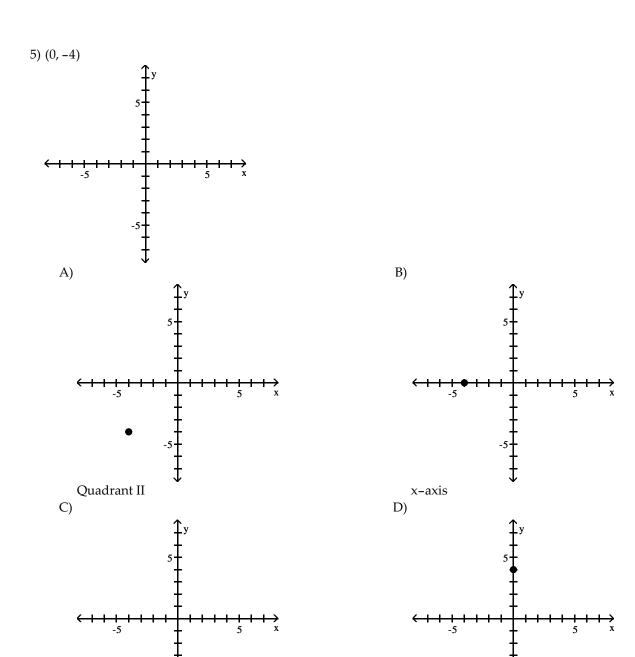

Quadrant II


Quadrant IV

Quadrant I

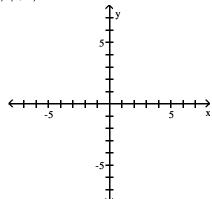


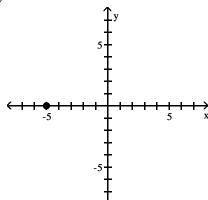

Quadrant I



Quadrant III

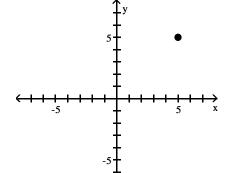
Quadrant II



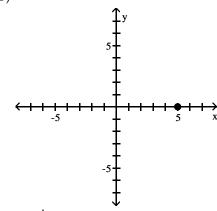

y-axis

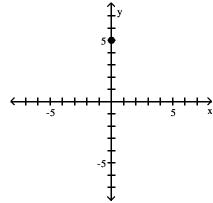
y-axis

6) (5, 0)



A)


x-axis


Quadrant II

B)

x-axis

D)

y-axis

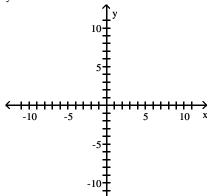
Determine whether the given point is on the graph of the equation.

7) Equation:
$$y = x^4 - \sqrt{x}$$

Point: (4, 254)

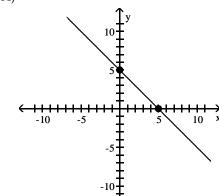
A) Yes

B) No

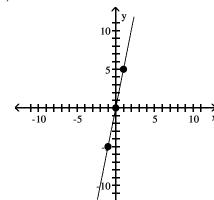

8) Equation:
$$x^2 + y^2 = 64$$

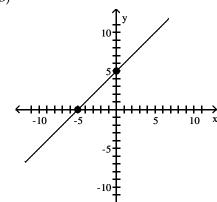
Point: (8, 0)

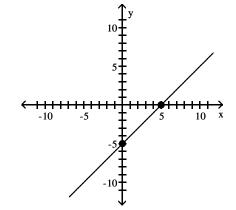
A) Yes

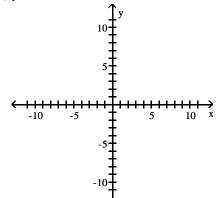

B) No

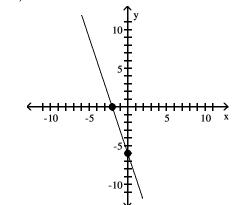
Graph the equation by plotting points. 9) y = x + 5

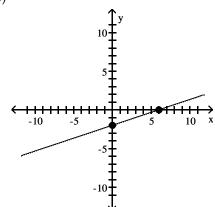

9)
$$y = x + 5$$

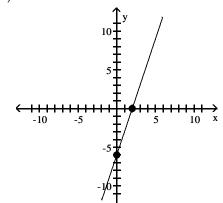

A)


C)


B)

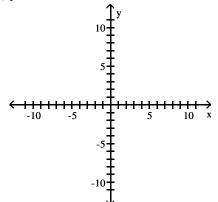




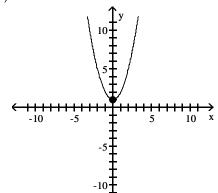

A)

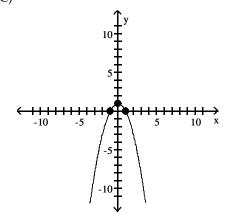


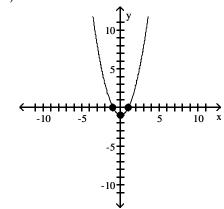
B)

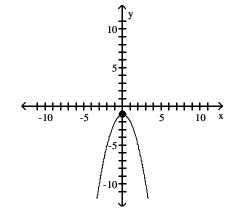


C)

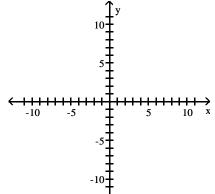




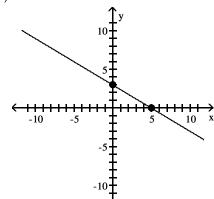

A)

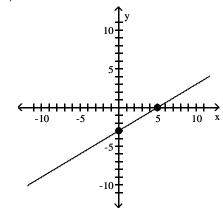


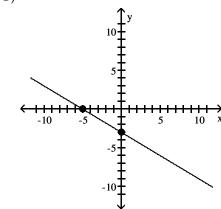
C)

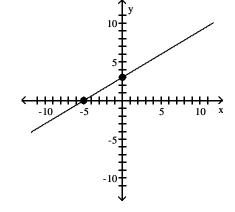


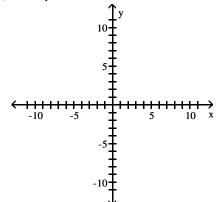
B)

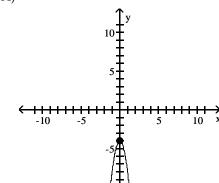


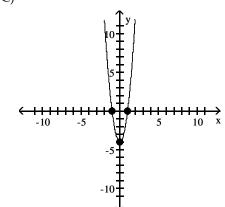


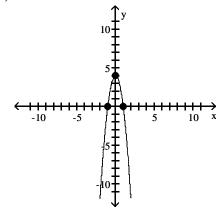

A)

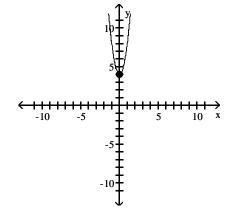

C)


B)


D)

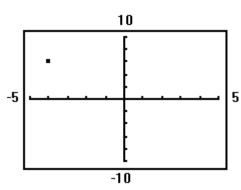



A)



C)

B)

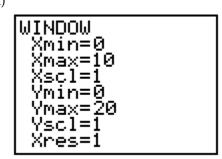


4 Graph Equations Using a Graphing Utility

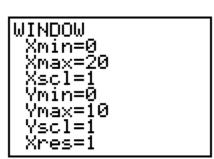
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine the coordinates of the point shown. Tell in which quadrant the point lies. Assume the coordinates are integers.

1)



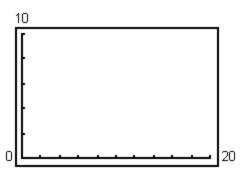
- A) (-4, 6); quadrant I
- B) (-4, 6); quadrant II
- C) (-4, 3); quadrant II
- D) (-4, 3); quadrant I


Select a setting so that each of the given points will lie in the viewing window.

2) (8, 3), (5, 1), (9, 19)

A)

B)

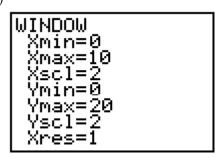


C)

MINDOM	
1	
Xmin=	-5
Xmax=	5
Xscl=	1
Ymin=	-1
Ymax=	
Yscl=	1
1	-
Xres=	1

Determine the viewing window used.

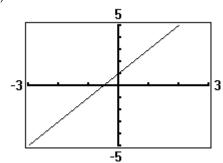
A)

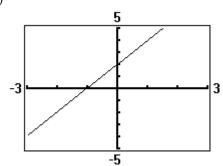

WINDOW_
Xmin=0
Xmax=20 Xscl=1
Ymin=0
Ymax=10
Yscl=1
Xres=1

B)

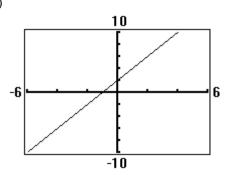
)	
	WINDOW
	Xmin=0_
	<u>Xmax=2</u> 0
	Xscl=2 Ymin=0
	YMIN-0 Ymax=10
	Yscî=2
	Xres=I

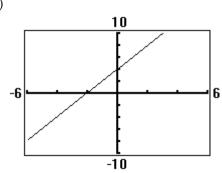
C)

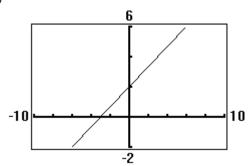

WINDOW	
Xmin=0_	
Xmax=10	
Xscl=1	
Ymin=0_	
l Ymax=20	
Yscl=1	
Xres=1	

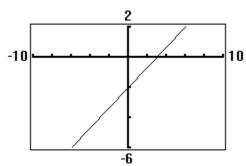

Graph the equation using a graphing utility. 4) y = 2x + 1

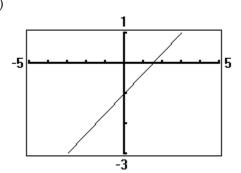
4)
$$v = 2x + 1$$

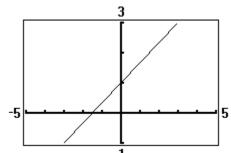

A)


B)

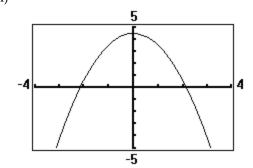

C)

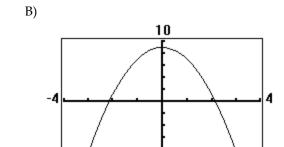

D)

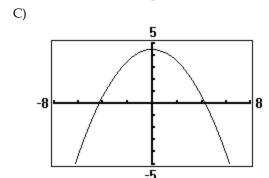

5)
$$2x - 3y = 3$$
 A)

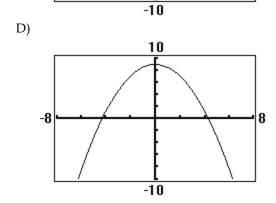


B)



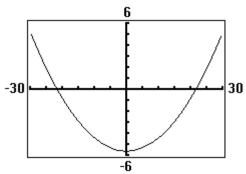

C)

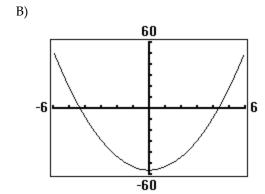


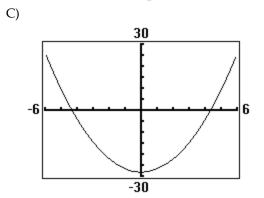


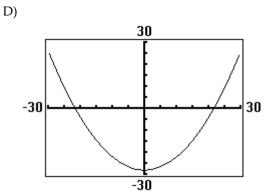
6)
$$y = -2x^2 + 9$$

A)









7)
$$3x^2 - 2y = 56$$
 A)

5 Use a Graphing Utility to Create Tables

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Use a graphing utility to create a table that displays the points on the graph of the given equation for x = -3, -2, -1, 0, 1, 2, and 3.

1) y = 3x + 5

A)

X	Y1	
-3	-4	
-3 -2 -1	-1	
-1	2	
0	2 5 8	
1	8	
2 3	11	
	14	
Y1 = 3X + 9	5	

B)

_			
[X	Y1	
	-3 -2 -1	-4	
١	-2	-1	
١	-1	-2 5	
١	0	5	
١	1	8	
١	2 3	11	
ı	3	14	
[Y1 = 3X + 9	<u> </u>	_

C)

X	Y1	
-3 -2 -1	4	
-2	1	
-1	2	
0	2 5 8	
1	8	
2	11	
3	14	
Y1 = 3X +	5	

D)

Y1 14 11 8 5 2	
11	
5	
2	
_1	
-4	
	I
	-1 -4

2) 6x + 2y = 28

A)

X	Y1	
-3 -2 -1	23	
-2	20	
-1	17	
0	14	
1	11	
2	8	
3	8 5	
Y1 = -3X +	14	

B)

X	Y1	
-3 -2 -1	37	
-2	34	
-1	31	
0	28	
1	25	
2	22	
3	19	
Y1 = -3X +	14	

C)

Х	Y1	
-3	19	
-3 -2 -1	22	
-1	25	
0	28	
1	31	
2	34	
3	37	
Y1 = -3X +	+ 14	_

X	Y1	
-3 -2 -1	5	
-2	8	
-1	11	
0	14	
1 1	17	
2	20	
2	23	
Y1 = -3X +	14	

3) $y = -3x^2 + 10$ A)

×	Y1	
-3 -2 -1	17	
-2	2 -7	
-1	-7	
0	-10	
1	-7	
2	2	
3	17	
$Y1 = -3X^2 +$	· 10	

B)

X	Y1	
-3 -2 -1	-17	
-2	-2	
-1	7	
0	10	
1	7	
2	-2	
3	-17	
$Y1 = -3X^2 + 10$		

C)

×	Y1	
-3 -2 -1	37	
-2	22	
-1	13	
0	10	
1	13	
2 3	22	
	37	
$Y1 = -3X^2 + 10$		

D)

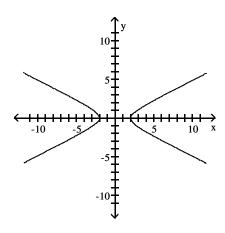
×	Y1	
-3 -2 -1	19	
-2	16	
-1	13	
0	10	
1	7	
2	4	
2	1	
$Y1 = -3X^2 +$	+ 10	

4) $4x^2 - 2y = 16$ A)

×	Y1		
-3 -2 -1	-10		
-2	0 6		
-1	6		
0	8		
1	8 6		
2	0		
3	-10		
$Y1 = 2X^2 -$	$Y1 = 2X^2 - 8$		

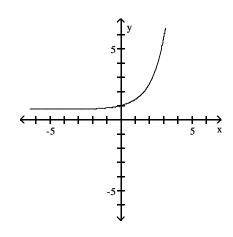
B)

×	Y1	
-3 -2 -1	26	
-2	16	
-1	10	
0	8	
1 1	10	
2 3	16	
	26	
Y1 = 2X ² - 8		


C)

X	Y1	
-3 -2 -1	-14	
-2	-12	
-1	-10	
0	-8	
1	-8 -6	
2	-4 -2	
$Y1 = 2X^2 -$	8	

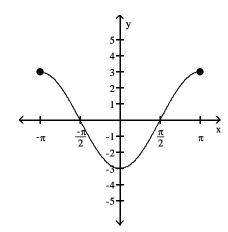
X	Y1	
-3 -2 -1	10	
-2	0	
-1	-6	
0	0 -6 -8 -6	
1	-6	
2 3	0	
	10	
$Y1 = 2X^2 -$	8	


List the intercepts of the graph.

1)

- A) (0, -2), (2, 0)
- B) (-2, 0), (0, 2)
- C) (0, -2), (0, 2)
- D) (-2, 0), (2, 0)

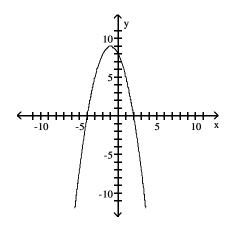
2)


A) (0, 1)

B) (1, 1)

C) (1, 0)

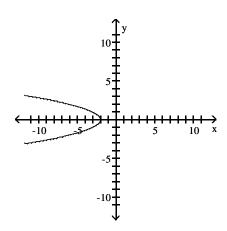
D) (0, 0)


3)

A)
$$\left[0, -\frac{\pi}{2}\right]$$
, $(0, -3)$, $\left[0, \frac{\pi}{2}\right]$
C) $\left[0, -\frac{\pi}{2}\right]$, $(-3, 0)$, $\left[0, \frac{\pi}{2}\right]$

B)
$$\left(-\frac{\pi}{2}, 0\right)$$
, $(0, -3)$, $\left(\frac{\pi}{2}, 0\right)$
D) $\left(-\frac{\pi}{2}, 0\right)$, $(-3, 0)$, $\left(\frac{\pi}{2}, 0\right)$

4)

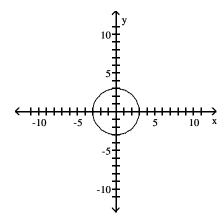

A) (0, -4), (8, 0), (0, 2)

B) (0, -4), (0, 8), (2, 0)

C) (-4, 0), (0, 8), (0, 2)

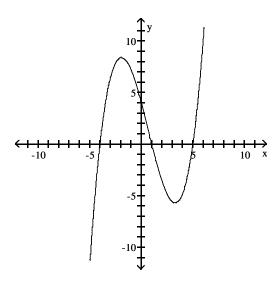
D) (-4, 0), (0, 8), (2, 0)

5)


A) (0, -2)

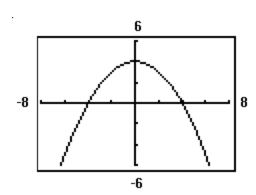
B) (-2, 0)

C) (2, 0)


D) (0, 2)

6)

A)
$$(-3, 0)$$
, $(0, 3)$


7)

- A) (4, 0), (0, 4), (0, 1), (0, -5)
- C) (4, 0), (1, 0), (-5, 0), (0, 4)

- B) (4, 0), (0, -4), (0, 1), (0, 5)
- D) (-4, 0), (1, 0) (5, 0), (0, 4)

8)

- A) (-2, 0), (2, 0)
- B) (-2, 0), (0, 2), (2, 0)
- C) (-2, 0), (0, 4), (2, 0)
- D) (-4, 0), (0, 4), (4, 0)

7 Use a Graphing Utility to Approximate Intercepts

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Graph the equation using a graphing utility. Use a graphing utility to approximate the intercepts rounded to two decimal places, if necessary. Use the TABLE feature to help establish the viewing window.

1)
$$y = -2x + 15$$

2)
$$y = -4x + 15$$

3)
$$y = 3x^2 - 19$$

4)
$$y = 5x^2 - 13$$

5)
$$3x - 4y = 56$$

6)
$$6x - 5y = 67$$

7)
$$3x^2 - 5y = 34$$

C)
$$(0, -6.8), (-3.37, 0), (3.37, 0)$$

8)
$$4x^2 - 5y = 68$$

1.2 Intercepts; Symmetry; Graphing Key Equations

1 Find Intercepts from an Equation

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

List the intercepts for the graph of the equation.

1)
$$y = x + 6$$

D)
$$(-6, 0), (0, -6)$$

2)
$$y = -4x$$

A)
$$(0, -4)$$

C)
$$(-4, 0)$$

D)
$$(-4, -4)$$

3)
$$y^2 = x + 1$$

C)
$$(-1, 0)$$
, $(0, -1)$, $(1, 0)$

D)
$$(0, -1), (-1, 0), (0, 1)$$

4)
$$y = \sqrt[9]{x}$$

A) (1, 0)

C)
$$(0, 1)$$

5)
$$x^2 + y - 9 = 0$$

A) $(0, -3), (9, 0), (0, 3)$
C) $(3, 0), (0, 9), (0, -9)$

6)
$$4x^2 + 9y^2 = 36$$

A) $(-4, 0)$, $(-9, 0)$, $(9, 0)$, $(4, 0)$
C) $(-2, 0)$, $(-3, 0)$, $(3, 0)$, $(2, 0)$

7)
$$4x^2 + y^2 = 4$$

A) $(-4, 0)$, $(0, -1)$, $(0, 1)$, $(4, 0)$
C) $(-1, 0)$, $(0, -2)$, $(0, 2)$, $(1, 0)$

8)
$$y = x^3 - 8$$

A) $(0, -2), (-2, 0)$

11)
$$y = x^2 + 4$$

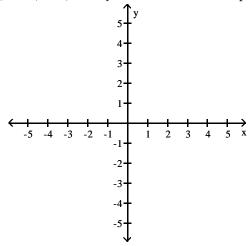
A) $(4, 0)$

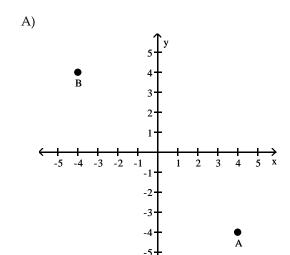
D)
$$(4, 0)$$
, $(0, -2)$, $(0, 2)$

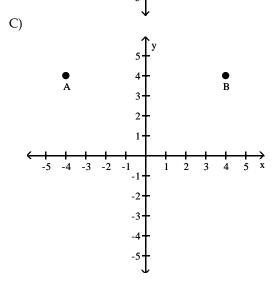
12)
$$y = \frac{9x}{x^2 + 81}$$

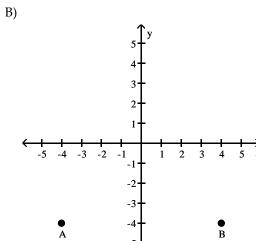
A) (-81, 0), (0, 0), (81, 0)
C) (0, -9), (0, 0), (0, 9)

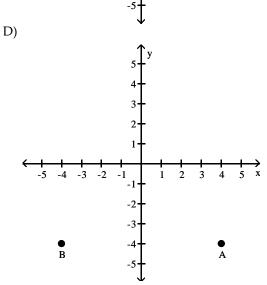
13)
$$y = \frac{x^2 - 9}{3x^4}$$

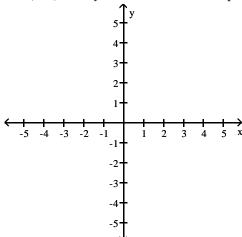

A)
$$(0, -3), (0, 3)$$

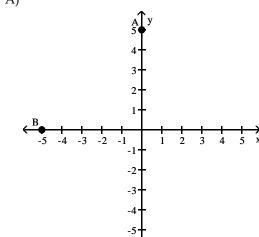

2 Test an Equation for Symmetry

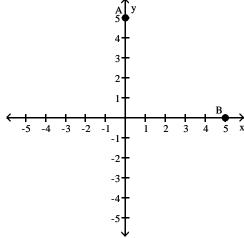

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

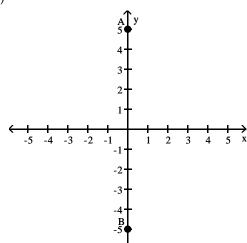

Plot the point A. Plot the point B that has the given symmetry with point A.

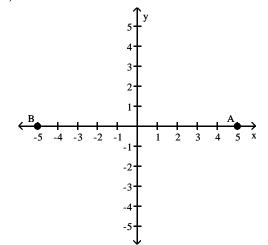

1) A = (4, -4); B is symmetric to A with respect to the y-axis



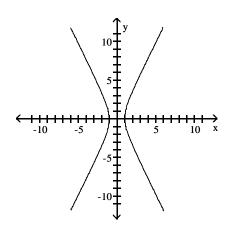


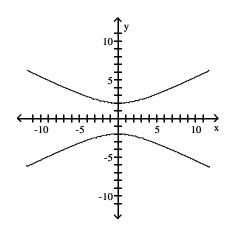

2) A = (0, 5); B is symmetric to A with respect to the origin


A)

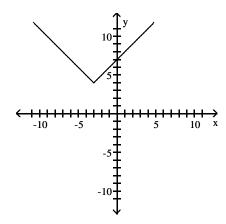


B)


C)

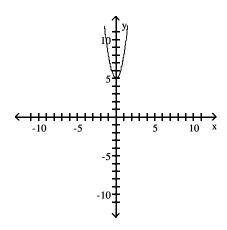

List the intercepts of the graph. Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.

3)

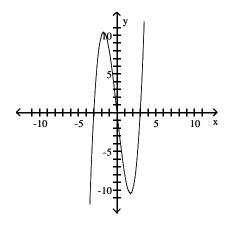

- A) intercepts: (-1, 0) and (1, 0) symmetric with respect to origin
- B) intercepts: (0, -1) and (0, 1) symmetric with respect to y-axis
- C) intercepts: (-1, 0) and (1, 0) symmetric with respect to x-axis, y-axis, and origin
- D) intercepts: (0, -1) and (0, 1) symmetric with respect to x-axis, y-axis, and origin

4)

- A) intercepts: (2, 0) and (-2, 0) symmetric with respect to x-axis, y-axis, and origin
- B) intercepts: (2, 0) and (-2, 0 symmetric with respect to y-axis
- C) intercepts: (0, 2) and (0, -2) symmetric with respect to origin
- D) intercepts: (0, 2) and (0, -2) symmetric with respect to x-axis, y-axis, and origin

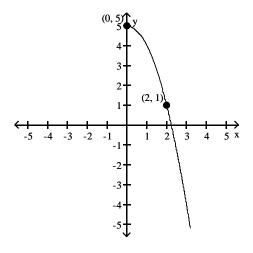

5)

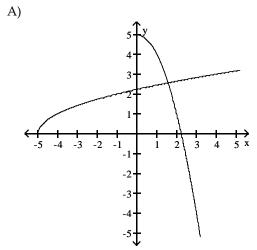
- A) intercept: (0, 7) symmetric with respect to x-axis
- C) intercept: (7, 0) symmetric with respect to y-axis

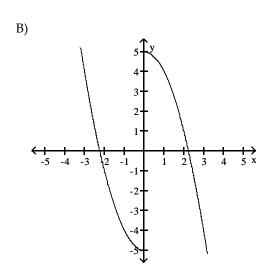

- B) intercept: (0, 7) no symmetry
- D) intercept: (7, 0) no symmetry

6)

- A) intercept: (0, 5) symmetric with respect to y-axis
- C) intercept: (5, 0) symmetric with respect to y-axis

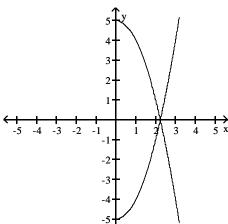

- B) intercept: (5, 0) symmetric with respect to x-axis
- D) intercept: (0, 5) symmetric with respect to origin

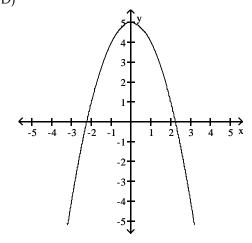



- A) intercepts: (-3, 0), (0, 0), (3, 0) symmetric with respect to x-axis
- B) intercepts: (-3, 0), (0, 0), (3, 0) symmetric with respect to x-axis, y-axis, and origin
- C) intercepts: (-3, 0), (0, 0), (3, 0) symmetric with respect to origin
- D) intercepts: (-3, 0), (0, 0), (3, 0) symmetric with respect to y-axis

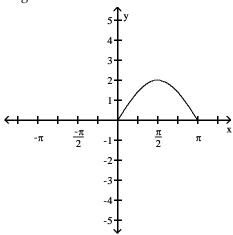
Draw a complete graph so that it has the given type of symmetry.

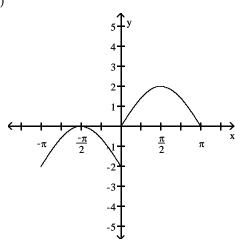
8) Symmetric with respect to the y-axis

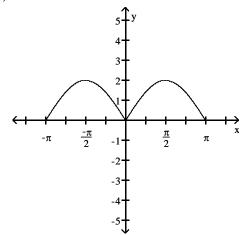


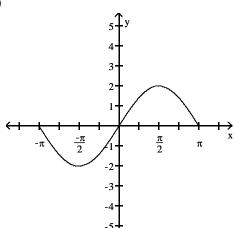


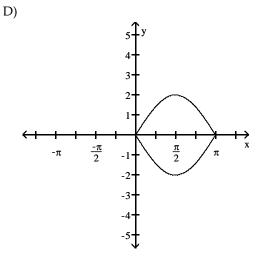
Page 31



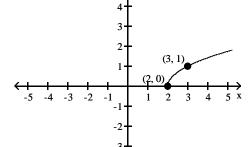

D)


9) origin

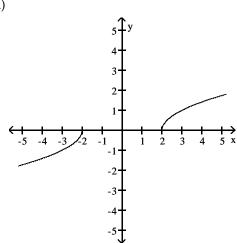

A)

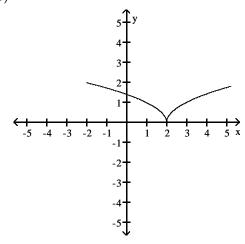


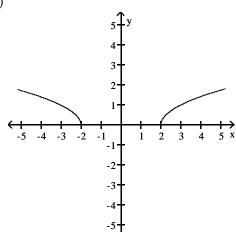
B)

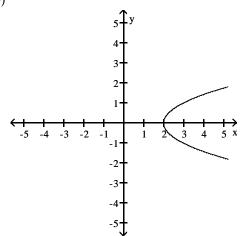


C)




10) Symmetric with respect to the x-axis


A)


B)

C)

D)

List the intercepts and type(s) of symmetry, if any.

11)
$$y^2 = -x + 4$$

- A) intercepts: (-4, 0), (0, 2), (0, -2) symmetric with respect to x-axis
- C) intercepts: (0, 4), (2, 0), (-2, 0) symmetric with respect to y-axis

- B) intercepts: (0, -4), (2, 0), (-2, 0) symmetric with respect to y-axis
- D) intercepts: (4, 0), (0, 2), (0, -2) symmetric with respect to x-axis

12)
$$4x^2 + 9y^2 = 36$$

- A) intercepts: (3, 0), (-3, 0), (0, 2), (0, -2) symmetric with respect to x-axis, y-axis, and origin
- B) intercepts: (2, 0), (-2, 0), (0, 3), (0, -3) symmetric with respect to x-axis and y-axis
- C) intercepts: (2, 0), (-2, 0), (0, 3), (0, -3) symmetric with respect to the origin
- D) intercepts: (3, 0), (-3, 0), (0, 2), (0, -2) symmetric with respect to x-axis and y-axis

13)
$$y = \frac{-x}{x^2 - 7}$$

- A) intercepts: $(\sqrt{7}, 0)$, $(-\sqrt{7}, 0)$, (0, 0) symmetric with respect to origin
- C) intercept: (0, 0) symmetric with respect to y-axis

- B) intercept: (0, 0) symmetric with respect to origin
- D) intercept: (0, 0) symmetric with respect to x-axis

Determine whether the graph of the equation is symmetric with respect to the x -axis, the y-axis, and/or the origin.

14)
$$y = x - 4$$

- A) origin
- B) y-axis
- C) x-axis
- D) x-axis, y-axis, origin
- E) none

- 15) y = 5x
 - A) x-axis
 - B) y-axis
 - C) origin
 - D) x-axis, y-axis, origin
 - E) none
- 16) $x^2 + y 64 = 0$
 - A) x-axis
 - B) y-axis
 - C) origin
 - D) x-axis, y-axis, origin
 - E) none
- 17) $y^2 x 1 = 0$
 - A) y-axis
 - B) origin
 - C) x-axis
 - D) x-axis, y-axis, origin
 - E) none
- 18) $4x^2 + 16y^2 = 64$
 - A) y-axis
 - B) x-axis
 - C) origin
 - D) x-axis, y-axis, origin
 - E) none
- 19) $4x^2 + y^2 = 4$
 - A) x-axis
 - B) y-axis
 - C) origin
 - D) x-axis, y-axis, origin
 - E) none
- 20) $y = x^2 + 18x + 81$
 - A) origin
 - B) y-axis
 - C) x-axis
 - D) x-axis, y-axis, origin
 - E) none
- 21) $y = \frac{7x}{x^2 + 49}$
 - A) x-axis
 - B) origin
 - C) y-axis
 - D) x-axis, y-axis, origin
 - E) none

22) y =	1 7	7 =	$x^2 - 9$
	_	3x4	

- A) y-axis
- B) origin
- C) x-axis
- D) x-axis, y-axis, origin
- E) none

23)
$$y = 5x^2 - 2$$

- A) x-axis
- B) origin
- C) y-axis
- D) x-axis, y-axis, origin
- E) none

24)
$$y = (x + 7)(x + 6)$$

- A) y-axis
- B) x-axis
- C) origin
- D) x-axis, y-axis, origin
- E) none

25)
$$y = -7x^3 + 5x$$

- A) x-axis
- B) y-axis
- C) origin
- D) x-axis, y-axis, origin
- E) none

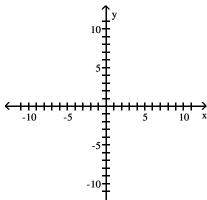
26)
$$y = -5x^4 - 3x + 3$$

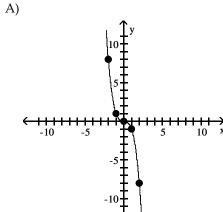
- A) x-axis
- B) origin
- C) y-axis
- D) x-axis, y-axis, origin
- E) none

Solve the problem.

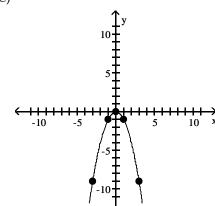
- 27) If a graph is symmetric with respect to the y-axis and it contains the point (5, -6), which of the following points is also on the graph?
 - A) (-6, 5)

- B) (-5, -6)
- C) (5, -6)

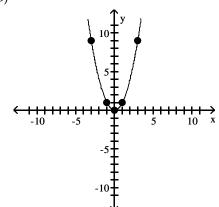

- D) (-5, 6)
- 28) If a graph is symmetric with respect to the origin and it contains the point (-4, 7), which of the following points is also on the graph?
 - A) (-4, -7)
- B) (4, 7)

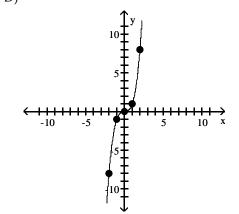

C) (7, -4)

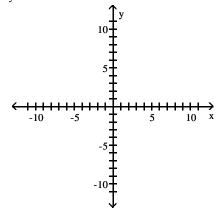
D) (4, -7)

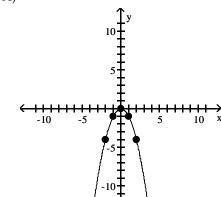

Graph the equation by plotting points.

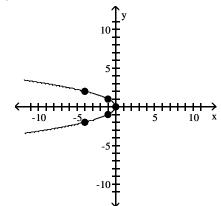
1)
$$y = x^3$$

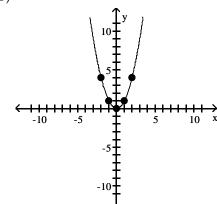


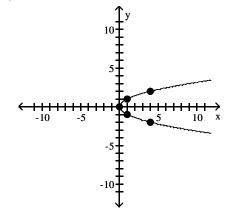

C)

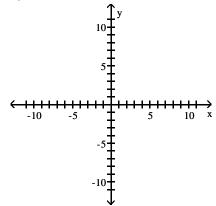

B)

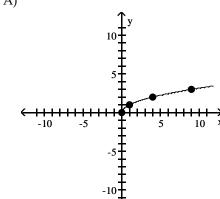

D)

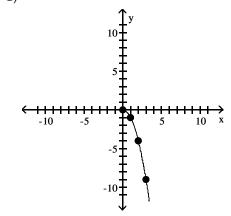

2)
$$x = y^2$$

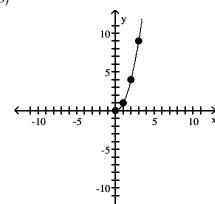

A)

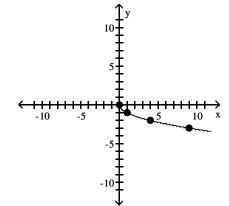

C)

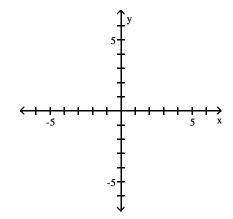

B)

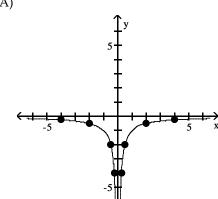

D)

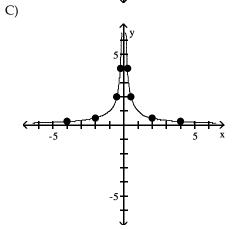

3)
$$y = \sqrt{x}$$


A)

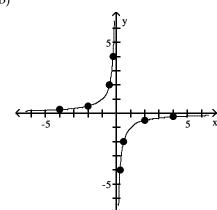

C)


B)

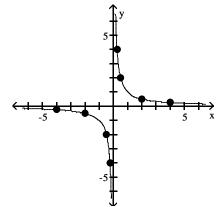




4)
$$y = \frac{1}{x}$$



A)



B)

D)

1.3 Solving Equations Using a Graphing Utility

1 Solve Equations Using a Graphing Utility

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places.

1)
$$x^3 - 6x + 3 = 0$$

A) no solution

2)
$$x^4 - 3x^2 + 4x + 15 = 0$$

D) no solution

3)
$$2x^4 - 5x^2 + 7x = 14$$

4)
$$x^4 - 5x^3 + 6x - 2 = 0$$

5)
$$-x^4 + 3x^3 + \frac{4}{3}x^2 = \frac{9}{2}x + 2$$

Solve the equation algebraically. Verify your solution with a graphing utility.

6)
$$2(2x - 2) = 3(x + 3)$$

A)
$$\{7\}$$

7)
$$4(x + 4) = (4x + 16)$$

8)
$$15(6x - 7) = 3x - 9$$

A)
$$\left\{-\frac{32}{29}\right\}$$

$$B) \left\{ \frac{32}{29} \right\}$$

C)
$$\left\{ \frac{38}{29} \right\}$$

D)
$$\left\{ \frac{32}{31} \right\}$$

9)
$$6x - 1 + 3(x + 1) = -3x - 4$$

A)
$$\left\{-\frac{1}{2}\right\}$$

C)
$$\left\{-\frac{4}{5}\right\}$$

D)
$$\left\{ \frac{3}{4} \right\}$$

10)
$$\frac{-1}{x} + \frac{8}{x} = -4$$

A)
$$\left\{-\frac{4}{7}\right\}$$

B)
$$\left\{ \frac{4}{7} \right\}$$

C)
$$\left\{ \frac{7}{4} \right\}$$

D)
$$\left\{-\frac{7}{4}\right\}$$

11)
$$1 - \frac{7}{8x} = \frac{5}{9}$$

A)
$$\left\{-\frac{63}{32}\right\}$$

C)
$$\left\{-\frac{63}{4}\right\}$$

$$D) \left\{ \frac{63}{32} \right\}$$

12)
$$\frac{4x+9}{5}$$
 + 1 = $-\frac{5x}{3}$

A)
$$\left\{-\frac{12}{37}\right\}$$

$$B) \left\{ \frac{42}{13} \right\}$$

C)
$$\left\{ \frac{12}{37} \right\}$$

D)
$$\left\{ -\frac{42}{37} \right\}$$

13)
$$(x + 8)(x - 1) = (x + 1)^2$$

A)
$$\left\{\frac{8}{5}\right\}$$

B)
$$\left\{ \frac{9}{5} \right\}$$

C)
$$\left\{\frac{9}{8}\right\}$$

14)
$$x^2 - 7x + 10 = 0$$

A)
$$\{5, 2\}$$

15)
$$x^2 - 7x - 8 = 0$$

16)
$$2x^2 = 6 - 4x$$

A) $\{-1, -3\}$

C)
$$\{1, -3\}$$

D)
$$\{1, 3\}$$

17)
$$25x^2 = 70x - 49$$

A)
$$\left\{\frac{7}{5}\right\}$$

B)
$$\left\{-\frac{7}{5}\right\}$$

C)
$$\left\{\frac{5}{7}\right\}$$

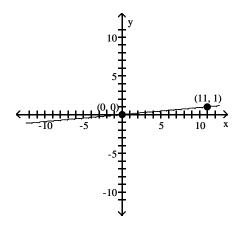
D)
$$\left\{-\frac{5}{7}\right\}$$

18)
$$x^3 + 3x^2 - 4x - 12 = 0$$

19)
$$x^3 + 2x^2 + 9x + 18 = 0$$

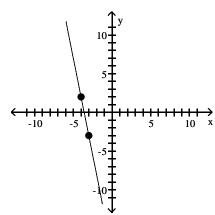
20)
$$\sqrt{x+4} = 9$$

A) $\{85\}$


1.4 Lines

1 Calculate and Interpret the Slope of a Line

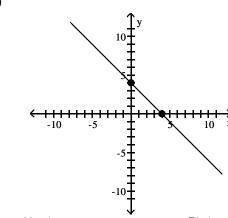
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.


Find the slope of the line through the points and interpret the slope.

1)

- A) 11; for every 1–unit increase in x, y will increase by 11 units
- B) $\frac{1}{11}$; for every 11-unit increase in x, y will increase by 1 unit
- C) -11; for every 1-unit increase in x, y will decrease by 11 units
- D) $\frac{1}{11}$; for every 11–unit increase in x, y will decrease by 1 unit

Find the slope of the line. 2)

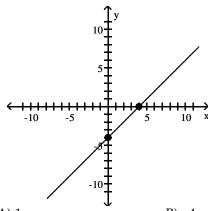


A) - 5

C) $-\frac{1}{5}$

D) 5

3)

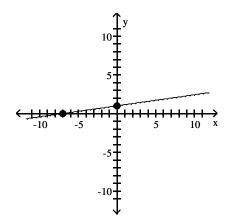

A) -4

B) 4

C) -1

D) 1

4)


A) 1

B) -4

C) 4

D) -1

A) 7

B) $\frac{1}{7}$

C) -7

D) $-\frac{1}{7}$

Find the slope of the line containing the two points.

6) (9, -8); (0, 3)

A)
$$-\frac{9}{11}$$

B) $\frac{9}{11}$

C) $-\frac{11}{9}$

D) $\frac{11}{9}$

7) (8, 0); (0, 5)

A)
$$\frac{8}{5}$$

B) $-\frac{8}{5}$

D) $\frac{5}{8}$

8) (-5, 4); (-2, -6)

A)
$$\frac{10}{3}$$

B) $-\frac{10}{3}$

C) $\frac{3}{10}$

D) $-\frac{3}{10}$

9) (-2, 6); (-2, 9)

B) $-\frac{1}{3}$

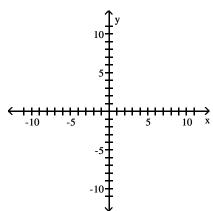
C) 3

D) undefined

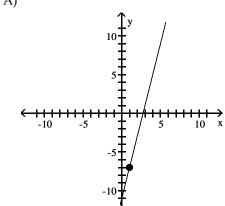
10) (-3, 2); (2, 2) A) $-\frac{1}{5}$

A)
$$-\frac{1}{5}$$

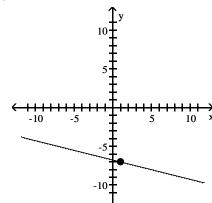
B) 5

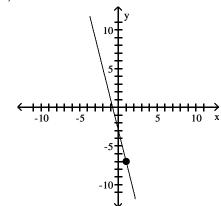

C) 0

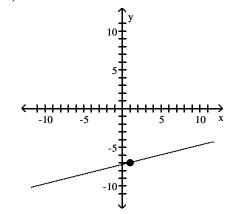
D) undefined

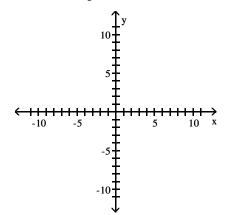

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

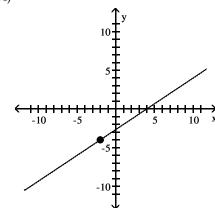
Graph the line containing the point P and having slope m.

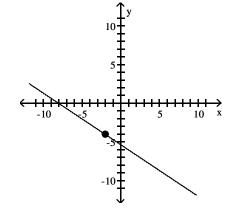

1)
$$P = (1, -7); m = \frac{1}{4}$$

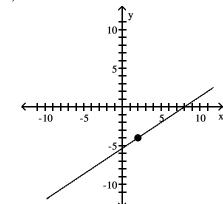

A)

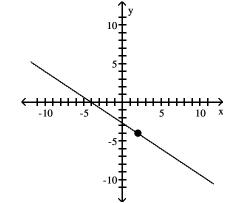

C)

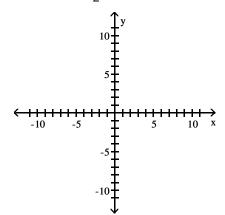

B)

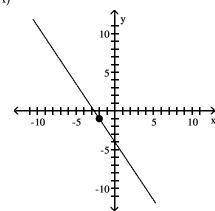

D)

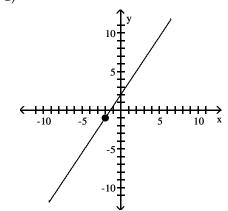

2)
$$P = (-2, -4); m = \frac{2}{3}$$

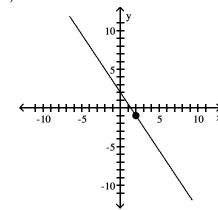

A)

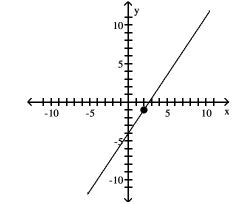

C)

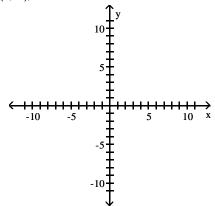

B)

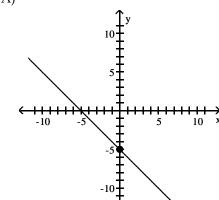


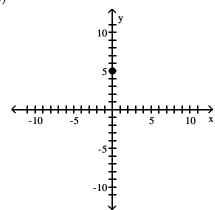

3)
$$P = (-2, -1); m = -\frac{3}{2}$$

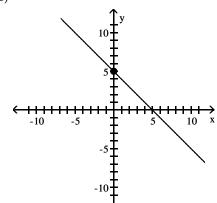

A)

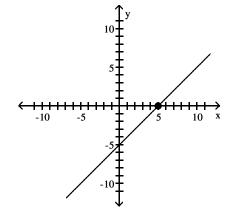

C)

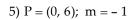

B)

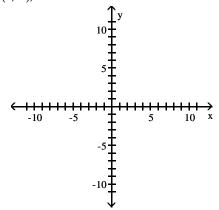


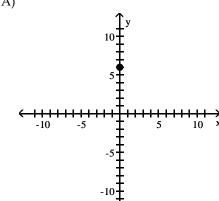

4) P = (0, 5); m = 1

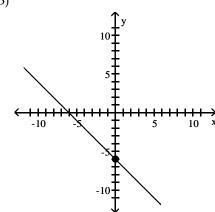

A)

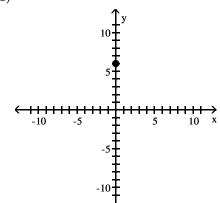

B)

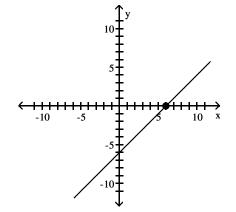


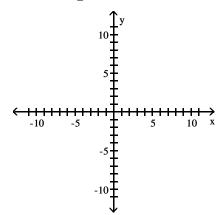

C)

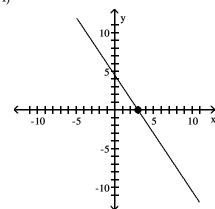

D)

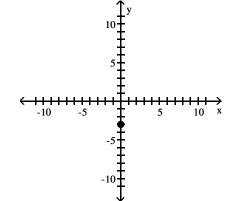


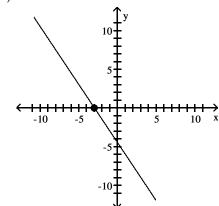

A)

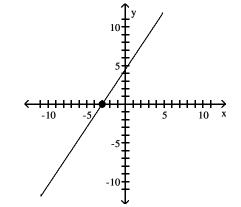

B)

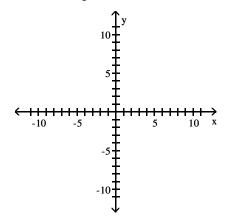


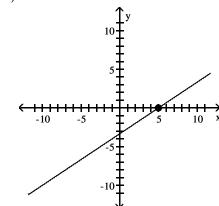

D)

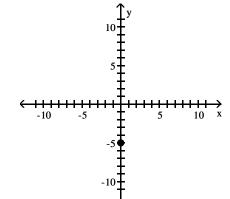

6)
$$P = (-3, 0); m = \frac{3}{2}$$

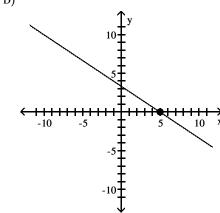

A)


C)

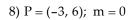

B)

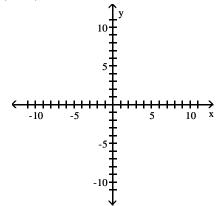

D)

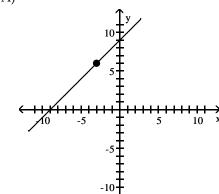

7)
$$P = (5, 0); m = -\frac{2}{3}$$

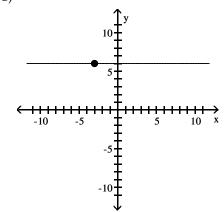

A)

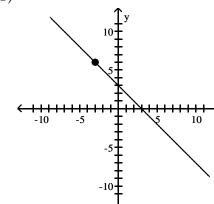

C)

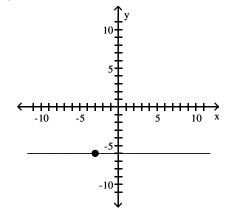


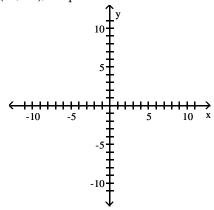

B)

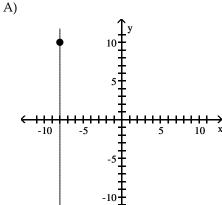




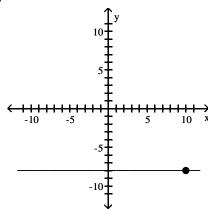

A)


C)

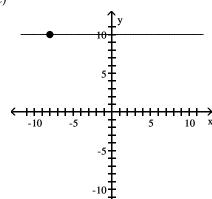

B)

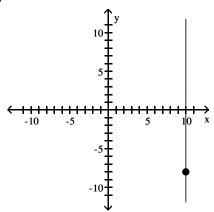


D)



9) P = (10, -8); slope undefined




B)

C)

D)

3 Find the Equation of a Vertical Line

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find an equation for the line with the given properties.

1) Slope undefined; containing the point (3, -1)

A)
$$y = -1$$

B)
$$y = 3$$

C)
$$x = -1$$

D)
$$x = 3$$

2) Vertical line; containing the point (-5, 6)

A)
$$x = -5$$

B)
$$x = 6$$

C)
$$y = -5$$

D)
$$y = 6$$

3) Slope undefined; containing the point
$$\left(-\frac{4}{5}, 7\right)$$

A)
$$y = -\frac{4}{5}$$

B)
$$y = 7$$

C)
$$x = 7$$

D)
$$x = -\frac{4}{5}$$

4) Vertical line; containing the point (0.3, 4.2)

A)
$$x = 4.5$$

B)
$$x = 4.2$$

C)
$$x = 0.3$$

D)
$$x = 0$$

4 Use the Point-Slope Form of a Line; Identify Horizontal Lines

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the slope-intercept form of the equation of the line with the given properties.

1) Horizontal; containing the point (7, -3)

A)
$$y = -3$$

B)
$$x = -3$$

C)
$$y = 7$$

D)
$$x = 7$$

2) Slope = 0; containing the point (1, -3)

$$\bar{A}$$
) $x = 1$

B)
$$y = -3$$

C)
$$y = 1$$

D)
$$x = -3$$

3) Horizontal; containing the point $\left[-\frac{5}{7}, 7\right]$

A)
$$y = 7$$

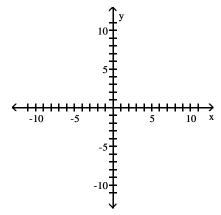
B)
$$y = 0$$

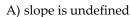
C)
$$y = -\frac{5}{7}$$

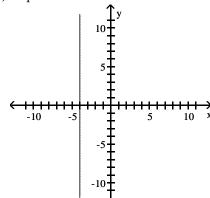
D)
$$y = -7$$

4) Horizontal; containing the point (5.4, -3.3)

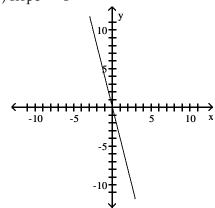
A)
$$y = 5.4$$

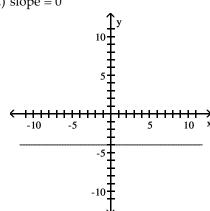

B)
$$y = -3.3$$

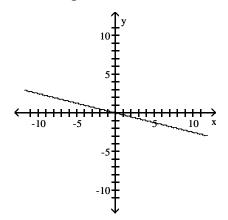

C)
$$y = 0$$


D)
$$y = 2.1$$

Find the slope of the line and sketch its graph.

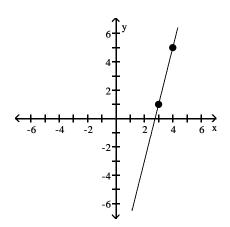

5)
$$y + 4 = 0$$




B) slope =
$$-4$$

C)
$$slope = 0$$

D) slope =
$$-\frac{1}{4}$$



5 Find the Equation of a Line Given Two Points

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the equation of the line in slope-intercept form.

1)

A)
$$y = 4x + 21$$

B)
$$y = 4x - 24$$

C)
$$y = 4x - 11$$

D)
$$y = \frac{1}{4}x + \frac{9}{11}$$

Find an equation for the line, in the indicated form, with the given properties.

2) Containing the points (-6, -1) and (-4, 7); slope-intercept form

A)
$$y = -4x + 23$$

B)
$$y + 1 = 4(x + 6)$$

C)
$$y = mx + 23$$

D)
$$y = 4x + 23$$

A)
$$-10x + 3y = -9$$

B)
$$6x + 7y = 21$$

C)
$$-6x + 7y = 21$$

D)
$$10x - 3y = -9$$

4) Containing the points (4, 0) and (0, -5); general form

A)
$$y = -\frac{5}{4}x + 4$$

B)
$$y = -\frac{5}{4}x - 5$$

C)
$$5x + 4y = 20$$

D)
$$5x - 4y = 20$$

5) Containing the points (0, -7) and (5, 7); general form

A)
$$-7x + 2y = -49$$

B)
$$7x - 2y = -49$$

C)
$$-14x - 5y = 35$$

D)
$$14x - 5y = 35$$

6) Containing the points (-7, -5) and (0, 7); general form

A)
$$2x + 7y = -49$$

B)
$$12x - 7y = -49$$

C)
$$-12x - 7y = -49$$

D)
$$-2x - 7y = -49$$

7) Containing the points (5, 0) and (3, -7); general form

A)
$$5x + 10y = -85$$

B)
$$7x + 2y = -35$$

C)
$$-5x - 10y = -85$$

D)
$$-7x + 2y = -35$$

8) Containing the points (7, -6) and (-3, 7); general form

A)
$$-13x + 10y = -31$$

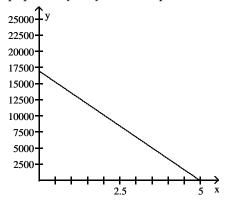
B)
$$-13x + 10y = 31$$

C)
$$13x - 10y = -31$$

D)
$$13x + 10y = 31$$

Solve.

9) The relationship between Celsius (°C) and Fahrenheit (°F) degrees of measuring temperature is linear. Find an equation relating °C and °F if 10° C corresponds to 50° F and 30° C corresponds to 86° F. Use the equation to find the Celsius measure of 21° F.


A)
$$C = \frac{5}{9}F - 10; \frac{5}{3} °C$$

B)
$$C = \frac{5}{9}F - \frac{160}{9}; -\frac{55}{9} ^{\circ}C$$

C)
$$C = \frac{5}{9}F + \frac{160}{9}; \frac{265}{9} °C$$

D)
$$C = \frac{9}{5}F - 80; -\frac{211}{5}$$
 °C

10) A school has just purchased new computer equipment for \$17,000.00. The graph shows the depreciation of the equipment over 5 years. The point (0, 17,000) represents the purchase price and the point (5, 0) represents when the equipment will be replaced. Write a linear equation in slope–intercept form that relates the value of the equipment, y, to years after purchase x. Use the equation to predict the value of the equipment after 4 years.

- A) y = 3400x 17,000;
 - value after 4 years is \$3400.00
- C) y = 17,000x + 5;

value after 4 years is \$3400.00

- B) y = -3400x + 17,000; value after 4 years is \$3400.00;
- D) y = -17,000x + 17,000;

value after 4 years is \$-51,000.00

11) The average value of a certain type of automobile was \$14,820 in 1993 and depreciated to \$4680 in 1996. Let y be the average value of the automobile in the year x, where x = 0 represents 1993. Write a linear equation that relates the average value of the automobile, y, to the year x.

A)
$$y = -3380x + 4680$$

B)
$$y = -3380x - 5460$$

C)
$$y = -\frac{1}{3380}x - 4680$$

D)
$$y = -3380x + 14,820$$

12) An investment is worth \$2663 in 1992. By 1996 it has grown to \$4219. Let y be the value of the investment in the year x, where x = 0 represents 1992. Write a linear equation that relates the value of the investment, y, to the year x.

A)
$$y = \frac{1}{389}x + 2663$$
 B) $y = -389x + 5775$ C) $y = 389x + 2663$

B)
$$y = -389x + 5775$$

C)
$$y = 389x + 2663$$

D)
$$y = -389x + 2663$$

13) A faucet is used to add water to a large bottle that already contained some water. After it has been filling for 3 seconds, the gauge on the bottle indicates that it contains 9 ounces of water. After it has been filling for 10 seconds, the gauge indicates the bottle contains 23 ounces of water. Let y be the amount of water in the bottle x seconds after the faucet was turned on. Write a linear equation that relates the amount of water in the bottle, y, to the time x.

A)
$$y = \frac{1}{2}x + \frac{15}{2}$$

B)
$$y = 2x + 13$$
 C) $y = 2x + 3$

C)
$$y = 2x + 3$$

D)
$$y = -2x + 15$$

14) When making a telephone call using a calling card, a call lasting 5 minutes cost \$2.50. A call lasting 15 minutes cost \$6.50. Let y be the cost of making a call lasting x minutes using a calling card. Write a linear equation that relates the cost of a making a call, y, to the time x.

A)
$$y = \frac{5}{2}x - 10$$

B)
$$y = -0.4x + 4.5$$
 C) $y = 0.4x + 0.5$

C)
$$y = 0.4x + 0.5$$

D)
$$y = 0.4x - 8.5$$

15) A vendor has learned that, by pricing carmel apples at \$1.00, sales will reach 127 carmel apples per day. Raising the price to \$1.75 will cause the sales to fall to 97 carmel apples per day. Let y be the number of carmel apples the vendor sells at x dollars each. Write a linear equation that relates the number of carmel apples sold per day, y, to the price x.

A)
$$y = 40x + 87$$

B)
$$y = -40x + 167$$

C)
$$y = -40x - 167$$

B)
$$y = -40x + 167$$
 C) $y = -40x - 167$ D) $y = -\frac{1}{40}x + \frac{5079}{40}$

16) A vendor has learned that, by pricing hot dogs at \$1.50, sales will reach 118 hot dogs per day. Raising the price to \$2.00 will cause the sales to fall to 96 hot dogs per day. Let y be the number of hot dogs the vendor sells at x dollars each. Write a linear equation that relates the number of hot dogs sold per day to the price x.

A)
$$y = 44x + 52$$

B)
$$y = -44x + 184$$

B)
$$y = -44x + 184$$
 C) $y = -\frac{1}{44}x + \frac{10381}{88}$ D) $y = -44x - 184$

D)
$$y = -44x - 184$$

6 Write the Equation of a Line in Slope-Intercept Form

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the slope-intercept form of the equation of the line with the given properties.

1) Slope = 3; containing the point (-2, -2)

A)
$$y = -3x - 4$$

B)
$$y = -3x + 4$$

C)
$$y = 3x + 4$$

D)
$$y = 3x - 4$$

2) Slope = 0; containing the point (-6, 5)

A)
$$y = -6$$

B)
$$y = 5$$

C)
$$x = -6$$

D)
$$x = 5$$

3) Slope =
$$-6$$
; y-intercept = 8

A)
$$y = 8x + 6$$

B)
$$y = 8x - 6$$

C)
$$y = -6x + 8$$

D)
$$y = -6x - 8$$

4) x-intercept = 3; y-intercept = 2

A)
$$y = \frac{2}{3}x + 2$$

B)
$$y = -\frac{2}{3}x + 2$$

C)
$$y = -\frac{3}{2}x + 3$$

D)
$$y = -\frac{2}{3}x + 3$$

Write the equation in slope-intercept form.

5)
$$16x + 3y = 11$$

A)
$$y = -\frac{16}{3}x + \frac{11}{3}$$

B)
$$y = \frac{16}{3}x - \frac{11}{3}$$

C)
$$y = 16x - 11$$

D)
$$y = \frac{16}{3}x + \frac{11}{3}$$

6)
$$4x + 5y = 1$$

A)
$$y = \frac{5}{4}x - \frac{1}{4}$$

B)
$$y = \frac{4}{5}x + \frac{1}{5}$$

C)
$$y = 4x + 8$$

D)
$$y = \frac{8}{5}x + \frac{1}{5}$$

7)
$$5x - 7y = 4$$

A)
$$y = 5x - 4$$

B)
$$y = \frac{7}{5}x + \frac{4}{5}$$

C)
$$y = \frac{5}{7}x + \frac{4}{7}$$

D)
$$y = \frac{5}{7}x - \frac{4}{7}$$

8)
$$x = 8y + 7$$

A)
$$y = x - \frac{7}{8}$$

B)
$$y = 8x - 7$$

C)
$$y = \frac{1}{8}x - \frac{7}{8}$$

D)
$$y = \frac{1}{8}x - 7$$

Solve.

9) A truck rental company rents a moving truck one day by charging \$27 plus \$0.11 per mile. Write a linear equation that relates the cost C, in dollars, of renting the truck to the number x of miles driven. What is the cost of renting the truck if the truck is driven 150 miles?

A)
$$C = 0.11x - 27$$
; \$10.50

B)
$$C = 27x + 0.11$$
; \$4050.11

C)
$$C = 0.11x + 27$$
; \$43.50

D)
$$C = 0.11x + 27$$
; \$28.65

10) Each week a soft drink machine sells x cans of soda for \$0.75/soda. The cost to the owner of the soda machine for each soda is \$0.10. The weekly fixed cost for maintaining the soda machine is \$25/week. Write an equation that relates the weekly profit, P, in dollars to the number of cans sold each week. Then use the equation to find the weekly profit when 92 cans of soda are sold in a week.

A)
$$P = 0.65x + 25$$
; \$84.80

B)
$$P = 0.75x - 25$$
; \$44.00

C)
$$P = 0.75x + 25$$
; \$94.00

D)
$$P = 0.65x - 25$$
; \$34.80

11) Each day the commuter train transports x passengers to or from the city at \$1.75/passenger. The daily fixed cost for running the train is \$1200. Write an equation that relates the daily profit, P, in dollars to the number of passengers each day. Then use the equation to find the daily profit when the train has 920 passengers in a day.

A)
$$P = 1.75x$$
; \$1610

B)
$$P = 1200 - 1.75x$$
; \$410

C)
$$P = 1.75x + 1200$$
; \$2810

D)
$$P = 1.75x - 1200$$
; \$410

12) Each month a beauty salon gives x manicures for \$12.00/manicure. The cost to the owner of the beauty salon for each manicure is \$7.35. The monthly fixed cost to maintain a manicure station is \$120.00. Write an equation that relates the monthly profit, in dollars, to the number of manicures given each month. Then use the equation to find the monthly profit when 200 manicures are given in a month.

A)
$$P = 4.65x$$
; \$930

B)
$$P = 12x - 120$$
; \$2280

C)
$$P = 7.35x - 120$$
; \$1350

D)
$$P = 4.65x - 120$$
; \$810

13) Each month a gas station sells x gallons of gas at \$1.92/gallon. The cost to the owner of the gas station for each gallon of gas is \$1.32. The monthly fixed cost for running the gas station is \$37,000. Write an equation that relates the monthly profit, in dollars, to the number of gallons of gasoline sold. Then use the equation to find the monthly profit when 75,000 gallons of gas are sold in a month.

A)
$$P = 1.92x - 37,000$$
; \$107,000

B)
$$P = 0.60x - 37,000$$
; \$8000

C)
$$P = 1.32x - 37,000$$
; \$62,000

D)
$$P = 0.60x + 37,000$$
; \$82,000

7 Identify the Slope and y-Intercept of a Line from Its Equation

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the slope and y-intercept of the line.

1)
$$y = \frac{1}{5}x - \frac{9}{2}$$

A) slope =
$$\frac{1}{5}$$
; y-intercept = $-\frac{9}{2}$

C) slope =
$$-\frac{9}{2}$$
; y-intercept = $\frac{1}{5}$

2)
$$x + y = -3$$

A) slope = 1;
$$y$$
-intercept = -3

C) slope = 0; y-intercept =
$$-3$$

3)
$$2x + y = 8$$

A) slope = 2;
$$y$$
-intercept = 8

C) slope =
$$-\frac{1}{2}$$
; y-intercept = 4

4)
$$-4x + 5y = 1$$

A) slope =
$$\frac{4}{5}$$
; y-intercept = $\frac{1}{5}$

5)
$$7x + 2y = 3$$

A) slope =
$$\frac{7}{2}$$
; y-intercept = $-\frac{3}{2}$

C) slope = 7; y-intercept =
$$3$$

6)
$$5x - 4y = 3$$

A) slope =
$$\frac{5}{4}$$
; y-intercept = $-\frac{3}{4}$

C) slope = 5; y-intercept =
$$3$$

B) slope = 5; y-intercept =
$$\frac{9}{2}$$

D) slope =
$$-\frac{1}{5}$$
; y-intercept = $\frac{9}{2}$

B) slope =
$$-1$$
; y-intercept = -3

D) slope =
$$-1$$
; y-intercept = 3

B) slope =
$$\frac{1}{4}$$
; y-intercept = $\frac{1}{8}$

D) slope =
$$-2$$
; y-intercept = 8

B) slope =
$$\frac{5}{4}$$
; y-intercept = $-\frac{1}{4}$

D) slope =
$$\frac{12}{5}$$
; y-intercept = $\frac{1}{5}$

B) slope =
$$\frac{7}{2}$$
; y-intercept = $\frac{3}{2}$

D) slope =
$$-\frac{7}{2}$$
; y-intercept = $\frac{3}{2}$

B) slope =
$$\frac{4}{5}$$
; y-intercept = $\frac{3}{5}$

D) slope =
$$\frac{5}{4}$$
; y-intercept = $\frac{3}{4}$

7)
$$12x - 8y = 96$$

A) slope =
$$\frac{3}{2}$$
; y-intercept = -12

C) slope =
$$\frac{2}{3}$$
; y-intercept = 8

B) slope = 12;
$$y$$
-intercept = 96

D) slope =
$$-\frac{3}{2}$$
; y-intercept = 12

8)
$$x + 11y = 1$$

A) slope =
$$\frac{1}{11}$$
; y-intercept = $\frac{1}{11}$

C) slope =
$$-\frac{1}{11}$$
; y-intercept = $\frac{1}{11}$

D) slope = 1;
$$y$$
-intercept = 1

9)
$$-x + 5y = 10$$

A) slope =
$$-1$$
; y-intercept = 10

C) slope =
$$-\frac{1}{5}$$
; y-intercept = 2

B) slope =
$$\frac{1}{5}$$
; y-intercept = 2

D) slope = 5; y-intercept =
$$-10$$

10)
$$y = -4$$

A)
$$slope = 0$$
; no y-intercept

C) slope =
$$-4$$
; y-intercept = 0

B) slope = 0; y-intercept =
$$-4$$

D) slope = 1; y-intercept =
$$-4$$

11)
$$x = 5$$

A) slope = 0;
$$y$$
-intercept = 5

B) slope = 5;
$$y$$
-intercept = 0

D) slope undefined; y-intercept =
$$5$$

12)
$$y = 6x$$

A) slope =
$$0$$
; y-intercept = 6

C) slope =
$$\frac{1}{6}$$
; y-intercept = 0

B) slope =
$$-6$$
; y-intercept = 0

D) slope = 6; y-intercept =
$$0$$

Graph Lines Written in General Form Using Intercepts

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the general form of the equation for the line with the given properties.

1) Slope =
$$\frac{2}{3}$$
; y-intercept = 2

A)
$$2x + 3y = -6$$
 B) $y = \frac{2}{3}x - 2$

B)
$$y = \frac{2}{3}x - 2$$

C)
$$y = \frac{2}{3}x + 2$$

D)
$$2x - 3y = -6$$

2) Slope =
$$-\frac{2}{5}$$
; containing the point (2, 5)

A)
$$5x + 2y = -29$$

B)
$$2x + 5y = -29$$

C)
$$2x + 5y = 29$$

D)
$$2x - 5y = 29$$

3) Slope =
$$-\frac{7}{8}$$
; containing the point (0, 3)

A)
$$7x - 8v = 24$$

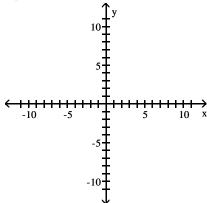
B)
$$8x + 7y = -24$$
 C) $7x + 8y = 24$

C)
$$7x + 8y = 24$$

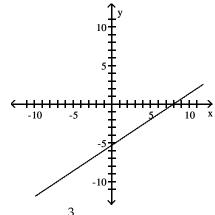
D)
$$7x + 8y = -24$$

4) Slope =
$$\frac{3}{5}$$
; containing (0, 3)

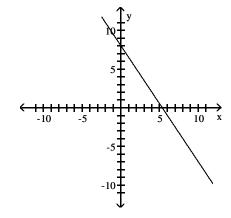
A)
$$-3x + 5y = 15$$

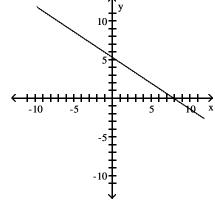

B)
$$5x - 3y = -15$$

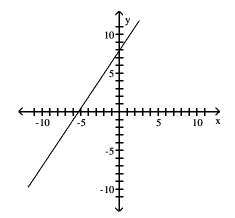
B)
$$5x - 3y = -15$$
 C) $-3x - 5y = 15$ D) $-3x + 5y = -15$

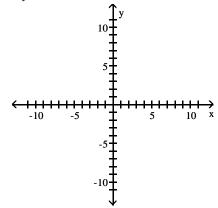

D)
$$-3x + 5y = -15$$

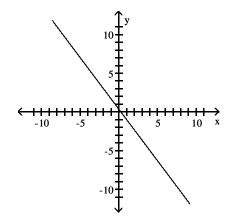
Find the slope of the line and sketch its graph.

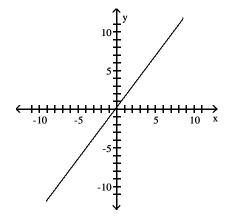

5)
$$2x + 3y = 16$$

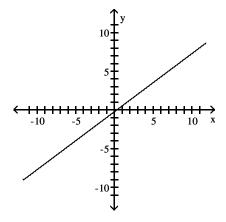

A) slope =
$$\frac{2}{3}$$

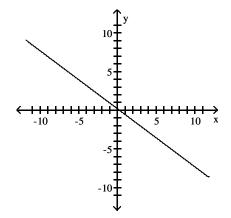

C) slope =
$$-\frac{3}{2}$$


B) slope =
$$-\frac{2}{3}$$

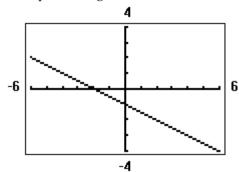

D) slope =
$$\frac{3}{2}$$


6) 3x - 4y = 1


A) slope = $-\frac{4}{3}$


C) slope = $\frac{4}{3}$

B) slope = $\frac{3}{4}$



D) slope = $-\frac{3}{4}$

Solve the problem.

7) Find an equation in general form for the line graphed on a graphing utility.

A)
$$x + 2y = -2$$

B)
$$y = -\frac{1}{2}x - 1$$

C)
$$y = -2x - 1$$

D)
$$2x + y = -1$$

9 Find Equations of Parallel Lines

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find an equation for the line with the given properties.

1) The solid line L contains the point (4, 3) and is parallel to the dotted line whose equation is y = 2x. Give the equation for the line L in slope-intercept form.

A)
$$y = 2x - 5$$

B)
$$y = 2x + b$$

C)
$$y - 3 = 2(x - 4)$$

D)
$$y = 2x - 1$$

2) Parallel to the line
$$y = -4x$$
; containing the point (2, 3)

A)
$$y = -4x + 11$$

B)
$$y = -4x$$

C)
$$y = -4x - 11$$

D)
$$y - 3 = -4x - 2$$

3) Parallel to the line
$$x + 3y = 6$$
; containing the point $(0, 0)$

A)
$$y = \frac{1}{3}x$$

B)
$$y = -\frac{1}{3}x + 6$$

C)
$$y = -\frac{1}{3}x$$

$$D) y = \frac{5}{3}$$

4) Parallel to the line
$$-2x - y = 3$$
; containing the point $(0, 0)$

A)
$$y = -2x$$

B)
$$y = -\frac{1}{2}x$$

C)
$$y = \frac{1}{2}x + 3$$

$$D) y = \frac{1}{2}x$$

5) Parallel to the line
$$y = -3$$
; containing the point $(4, 8)$

A)
$$y = 8$$

B)
$$y = 4$$

C)
$$y = -8$$

D)
$$y = -3$$

6) Parallel to the line
$$x = -8$$
; containing the point $(7, 3)$

A)
$$y = 3$$

B)
$$x = 3$$

C)
$$y = -8$$

D)
$$x = 7$$

7) Parallel to the line 4x + 9y = 42; containing the point (6, -3)

A)
$$4x + 9y = -3$$

B)
$$9x + 4y = -3$$

C)
$$4x - 9y = -3$$

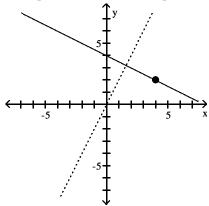
D)
$$6x + 9y = 42$$

8) Parallel to the line 3x - 5y = 4; x-intercept = -2

A)
$$3x - 5y = 10$$

B)
$$-5x - 3y = 10$$

C)
$$-5x - 3y = 6$$


D)
$$3x - 5y = -6$$

10 Find Equations of Perpendicular Lines

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find an equation for the line with the given properties.

1) The solid line L contains the point (4, 2) and is perpendicular to the dotted line whose equation is y = 2x. Give the equation of line L in slope-intercept form.

A)
$$y = -\frac{1}{2}x + 4$$

C)
$$y - 2 = 2(x - 4)$$

C)
$$y - 2 = 2(x - 4)$$
 D) $y - 2 = -\frac{1}{2}(x - 4)$

2) Perpendicular to the line y = -4x + 3; containing the point (2, -2)

A)
$$y = -4x - \frac{5}{2}$$
 B) $y = -\frac{1}{4}x - \frac{5}{2}$ C) $y = \frac{1}{4}x - \frac{5}{2}$

B)
$$y = -\frac{1}{4}x - \frac{5}{2}$$

C)
$$y = \frac{1}{4}x - \frac{5}{2}$$

D)
$$y = 4x - \frac{5}{2}$$

3) Perpendicular to the line $y = \frac{1}{8}x + 8$; containing the point (4, -4)

A)
$$y = 8x - 28$$

B)
$$y = -\frac{1}{8}x - \frac{7}{2}$$
 C) $y = -8x + 28$

C)
$$y = -8x + 28$$

D)
$$y = -8x - 28$$

4) Perpendicular to the line 2x - y = 3; containing the point $(0, \frac{3}{2})$

A)
$$y = -\frac{1}{2}x + \frac{3}{2}$$
 B) $y = \frac{1}{2}x + \frac{3}{2}$

B)
$$y = \frac{1}{2}x + \frac{3}{2}$$

C)
$$y = 1$$

D)
$$y = -\frac{1}{2}x + 3$$

5) Perpendicular to the line x - 8y = 7; containing the point (3, 2)

A)
$$y = 8x - 26$$

B)
$$y = -8x + 26$$

C)
$$y = -8x - 26$$

D)
$$y = -\frac{1}{8}x - \frac{13}{4}$$

6) Perpendicular to the line y = 4; containing the point (1, 6)

$$\hat{A}$$
) y = 6

B)
$$x = 6$$

C)
$$x = 1$$

D)
$$y = 1$$

7) Perpendicular to the line x = -2; containing the point (6, 4)

A)
$$y = 4$$

B)
$$x = 6$$

C)
$$x = 4$$

D)
$$y = 6$$

8) Perpendicular to the line 6x - 7y = 1; containing the point (6, -5)

A)
$$7x - 6y = 12$$

B)
$$6x + 7 = 6$$

C)
$$6x + 7y = 1$$

D)
$$7x + 6y = 12$$

9) Perpendicular to the line 7x - 2y = -40; containing the point (-8, -7)

$$\hat{A}$$
) $-2x + 7y = -40$

B)
$$-2x - 7y = 65$$

C)
$$7x + 2y = 65$$

D)
$$-2x + 7y = 65$$

10) Perpendicular to the line -5x + 4y = -4; y-intercept = -1

A)
$$4x + 5y = -4$$

B)
$$-5x + 4y = 5$$

C)
$$-5x + 4y = -4$$

D)
$$4x + 5y = -5$$

Decide whether the pair of lines is parallel, perpendicular, or neither.

11)
$$3x - 2y = -8$$

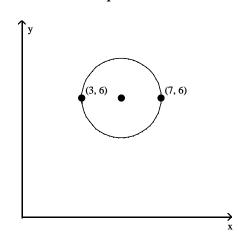
$$2x + 3y = -4$$

12)
$$3x - 6y = 14$$

$$18x + 9y = 11$$

13)
$$9x + 3y = 12$$

$$15x + 5y = 23$$

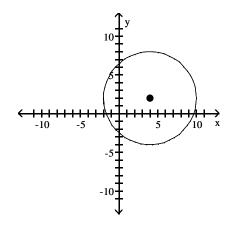

1.5 Circles

1 Write the Standard Form of the Equation of a Circle

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Write the standard form of the equation of the circle.

1)


A)
$$(x-5)^2 + (y-6)^2 = 2$$

C)
$$(x + 5)^2 + (y + 6)^2 = 2$$

B)
$$(x + 5)^2 + (y + 6)^2 = 4$$

D)
$$(x-5)^2 + (y-6)^2 = 4$$

2)

A)
$$(x-2)^2 + (y-4)^2 = 36$$

C)
$$(x + 2)^2 + (y + 4)^2 = 36$$

B)
$$(x + 4)^2 + (y + 2)^2 = 36$$

D)
$$(x-4)^2 + (y-2)^2 = 36$$

Write the standard form of the equation of the circle with radius r and center (h, k).

3)
$$r = 3$$
; $(h, k) = (0, 0)$

A)
$$x^2 + v^2 = 3$$

C)
$$(x-3)^2 + (y-3)^2 = 3$$

B)
$$(x-3)^2 + (y-3)^2 = 9$$

D)
$$x^2 + v^2 = 9$$

4)
$$r = 12$$
; $(h, k) = (-6, 3)$

A)
$$(x-6)^2 + (y+3)^2 = 144$$

C)
$$(x-6)^2 + (y+3)^2 = 12$$

B)
$$(x + 6)^2 + (y - 3)^2 = 12$$

D)
$$(x + 6)^2 + (y - 3)^2 = 144$$

5)
$$r = 3$$
; $(h, k) = (1, 0)$

A)
$$(x-1)^2 + v^2 = 9$$

B)
$$x^2 + (y - 1)^2 = 3$$

C)
$$(x + 1)^2 + y^2 = 9$$

C)
$$(x + 1)^2 + y^2 = 9$$
 D) $x^2 + (y + 1)^2 = 3$

6)
$$r = 9$$
; $(h, k) = (0, 6)$

A)
$$(x-6)^2 + y^2 = 81$$
 B) $x^2 + (y+6)^2 = 9$

B)
$$x^2 + (y + 6)^2 = 9$$

C)
$$x^2 + (y - 6)^2 = 81$$

C)
$$x^2 + (y - 6)^2 = 81$$
 D) $(x + 6)^2 + y^2 = 81$

7)
$$r = \sqrt{19}$$
; $(h, k) = (2, -2)$

A)
$$(x + 2)^2 + (y - 2)^2 = 19$$

C)
$$(x-2)^2 + (y+2)^2 = 19$$

B)
$$(x + 2)^2 + (y - 2)^2 = 361$$

D)
$$(x-2)^2 + (y+2)^2 = 361$$

8)
$$r = \sqrt{19}$$
; $(h, k) = (0, -6)$

A)
$$x^2 + (y + 6)^2 = 19$$

B)
$$x^2 + (y - 6)^2 = 19$$

A)
$$x^2 + (y + 6)^2 = 19$$
 B) $x^2 + (y - 6)^2 = 19$ C) $(x - 6)^2 + y^2 = 361$ D) $(x + 6)^2 + y^2 = 361$

D)
$$(x + 6)^2 + y^2 = 361$$

Solve the problem.

9) Find the equation of a circle in standard form where C(6, -2) and D(-4, 4) are endpoints of a diameter.

A)
$$(x-1)^2 + (y-1)^2 = 34$$

B)
$$(x-1)^2 + (y-1)^2 = 136$$

C)
$$(x + 1)^2 + (y + 1)^2 = 34$$

D)
$$(x + 1)^2 + (y + 1)^2 = 136$$

10) Find the equation of a circle in standard form with center at the point (-3, 2) and tangent to the line y = 4.

A)
$$(x-3)^2 + (y+2)^2 = 4$$

B)
$$(x + 3)^2 + (y - 2)^2 = 16$$

C)
$$(x + 3)^2 + (y - 2)^2 = 4$$

D)
$$(x-3)^2 + (y+2)^2 = 16$$

11) Find the equation of a circle in standard form that is tangent to the line x = -3 at (-3, 5) and also tangent to the line x = 9.

A)
$$(x + 3)^2 + (y + 5)^2 = 36$$

C)
$$(x-3)^2 + (y-5)^2 = 36$$

B)
$$(x + 3)^2 + (y - 5)^2 = 36$$

D)
$$(x-3)^2 + (y+5)^2 = 36$$

Find the center (h, k) and radius r of the circle with the given equation.

12)
$$x^2 + y^2 = 16$$

A)
$$(h, k) = (0, 0); r = 16$$

C)
$$(h, k) = (4, 4); r = 16$$

B)
$$(h, k) = (4, 4); r = 4$$

D)
$$(h, k) = (0, 0); r = 4$$

13)
$$(x - 8)^2 + (y - 3)^2 = 121$$

A)
$$(h, k) = (8, 3); r = 121$$

C)
$$(h, k) = (8, 3); r = 11$$

B)
$$(h, k) = (3, 8); r = 11$$

D)
$$(h, k) = (3, 8); r = 121$$

14)
$$(x - 9)^2 + y^2 = 64$$

A)
$$(h, k) = (0, 9); r = 8$$

C)
$$(h, k) = (9, 0); r = 64$$

B)
$$(h, k) = (0, 9); r = 64$$

D)
$$(h, k) = (9, 0); r = 8$$

15)
$$x^2 + (y + 8)^2 = 16$$

A)
$$(h, k) = (0, -8); r = 16$$

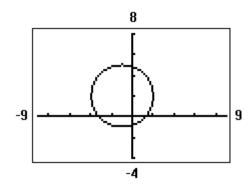
C)
$$(h, k) = (0, -8); r = 4$$

B)
$$(h, k) = (-8, 0); r = 16$$

D)
$$(h, k) = (-8, 0); r = 4$$

16)
$$2(x + 1)^2 + 2(y - 6)^2 = 22$$

A)
$$(h, k) = (-1, 6); r = 2\sqrt{11}$$


C) (h, k) = (1, -6);
$$r = \sqrt{11}$$

B)
$$(h, k) = (1, -6); r = 2\sqrt{11}$$

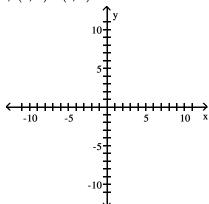
D)
$$(h, k) = (-1, 6); r = \sqrt{11}$$

Solve the problem.

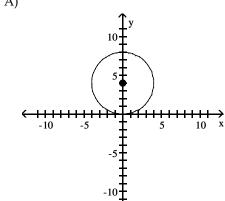
17) Find the standard form of the equation of the circle. Assume that the center has integer coordinates and the radius is an integer.

A)
$$(x-1)^2 + (y+2)^2 = 9$$

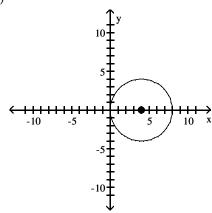
C)
$$(x + 1)^2 + (y - 2)^2 = 9$$

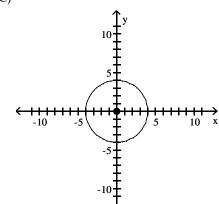

B)
$$x^2 + y^2 - 2x + 4y - 4 = 0$$

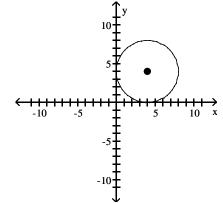
D)
$$x^2 + y^2 + 2x - 4y - 4 = 0$$

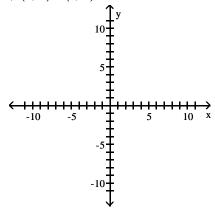

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

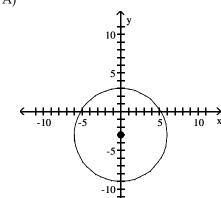
Graph the circle with radius r and center (h, k).

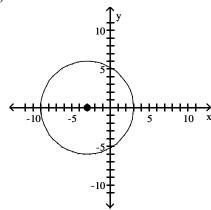

1)
$$r = 4$$
; $(h, k) = (0, 0)$

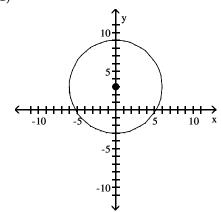

A)

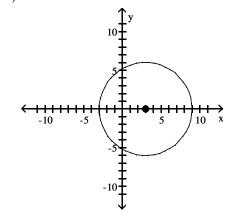

B)

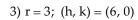

C)

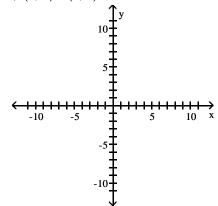

D)

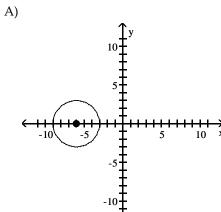

2) r = 6; (h, k) = (0, 3)


A)

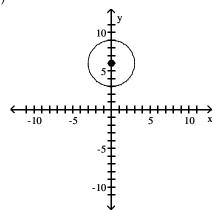

B)



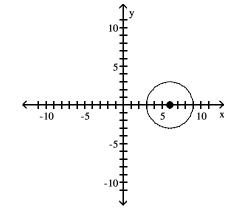

C)

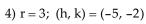


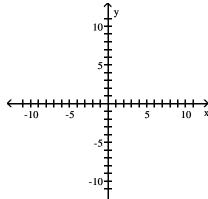
D)

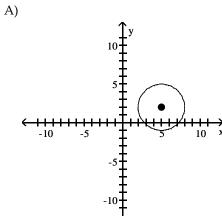


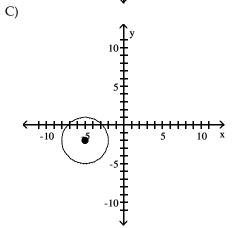


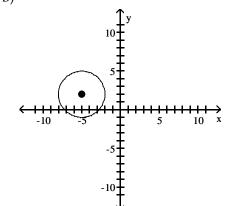

B)

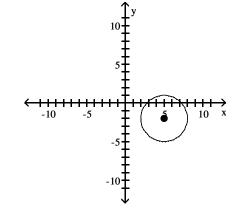




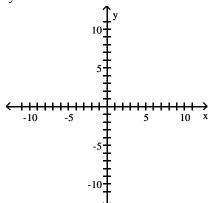


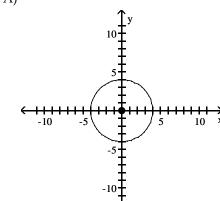

D)

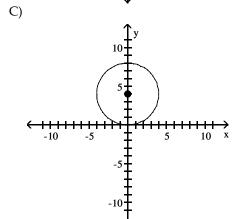




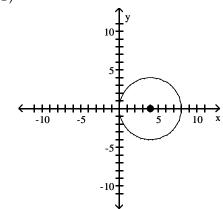
B)



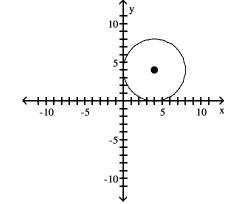


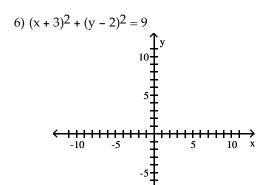

Graph the equation. 5) $x^2 + y^2 = 16$

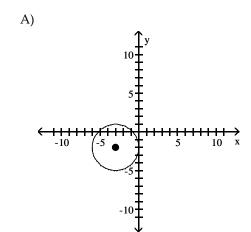
5)
$$x^2 + y^2 = 16$$

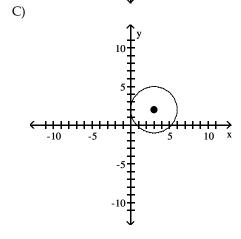


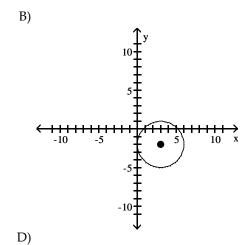
A)

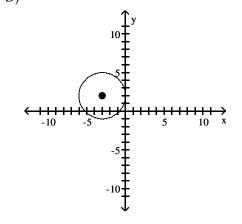


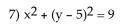


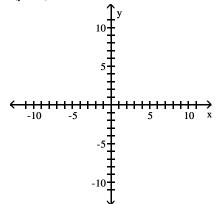

B)

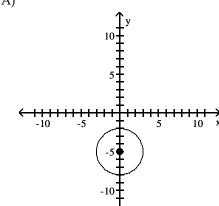


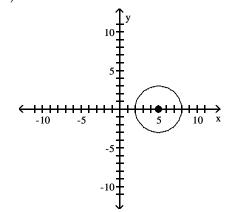




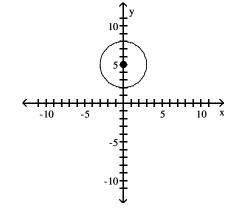


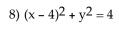


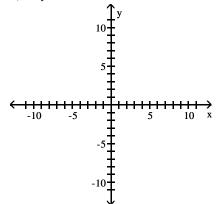


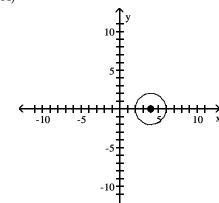


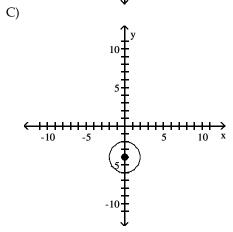

A)

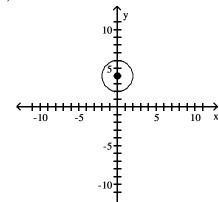

C)



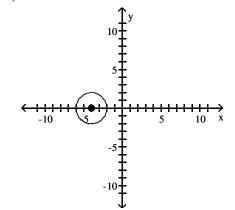

B)





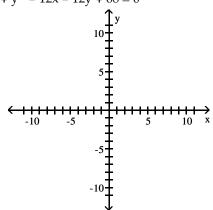


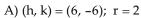
A)

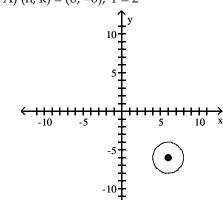


B)

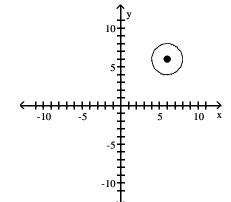
D)

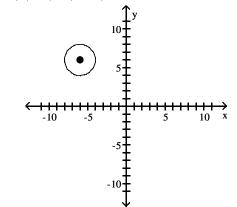


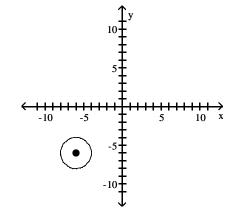

3 Work with the General Form of the Equation of a Circle

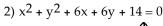

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

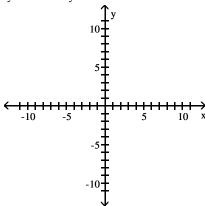
Find the center (h, k) and radius r of the circle. Graph the circle.

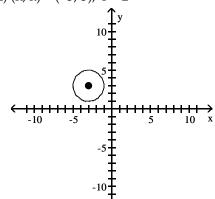

1)
$$x^2 + y^2 - 12x - 12y + 68 = 0$$

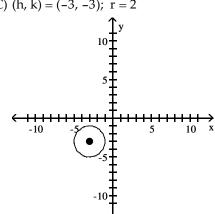


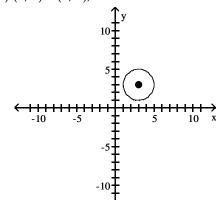

C)
$$(h, k) = (6, 6); r = 2$$

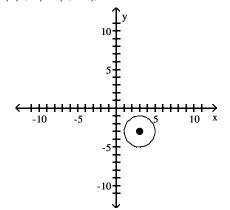



B)
$$(h, k) = (-6, 6); r = 2$$


D)
$$(h, k) = (-6, -6); r = 2$$




A)
$$(h, k) = (-3, 3); r = 2$$


C)
$$(h, k) = (-3, -3); r = 2$$

B)
$$(h, k) = (3, 3); r = 2$$

D)
$$(h, k) = (3, -3); r = 2$$

Find the center (h, k) and radius r of the circle with the given equation.

3)
$$x^2 + 6x + 9 + (y - 6)^2 = 16$$

A)
$$(h, k) = (-6, 3); r = 16$$

C)
$$(h, k) = (-3, 6); r = 4$$

B)
$$(h, k) = (3, -6); r = 16$$

D)
$$(h, k) = (6, -3); r = 4$$

4)
$$x^2 + 12x + 36 + y^2 - 18y + 81 = 25$$

A)
$$(h, k) = (6, -9); r = 25$$

C)
$$(h, k) = (-9, 6); r = 25$$

B)
$$(h, k) = (-6, 9); r = 5$$

D)
$$(h, k) = (9, -6); r = 5$$

5)
$$x^2 + y^2 - 8x - 10y + 41 = 81$$

A)
$$(h, k) = (5, 4); r = 9$$

C)
$$(h, k) = (4, 5); r = 9$$

B)
$$(h, k) = (-4, -5); r = 81$$

D)
$$(h, k) = (-5, -4); r = 81$$

6)
$$x^2 + y^2 - 12x - 16y = -96$$

A)
$$(h, k) = (-8, -6); r = 4$$

C)
$$(h, k) = (-6, -8); r = 4$$

B)
$$(h, k) = (8, 6); r = 2$$

D)
$$(h, k) = (6, 8); r = 2$$

7)
$$4x^2 + 4y^2 - 12x + 16y - 5 = 0$$

A)
$$(h, k) = (\frac{3}{2}, -2); r = \frac{\sqrt{30}}{2}$$

C)
$$(h, k) = (-\frac{3}{2}, 2); r = \frac{\sqrt{30}}{2}$$

B)
$$(h, k) = (-\frac{3}{2}, 2); r = \frac{3\sqrt{5}}{2}$$

D) (h, k) =
$$(\frac{3}{2}, -2)$$
; $r = \frac{3\sqrt{5}}{2}$

Find the general form of the equation of the the circle.

8) Center at the point (-4, -3); containing the point (-3, 3)

A)
$$x^2 + y^2 - 6x + 6y - 12 = 0$$

C)
$$x^2 + y^2 + 6x + 8y - 17 = 0$$

A)
$$x^2 + y^2 + 4x - 6y + 4 = 0$$

C)
$$x^2 + y^2 - 4x + 6y + 4 = 0$$

C)
$$x^2 + y^2 - 4x + 6y + 4 = 0$$

B)
$$x^2 + v^2 + 4x - 6v + 22 = 0$$

B) $x^2 + y^2 + 6x - 6y - 17 = 0$

D) $x^2 + v^2 + 8x + 6v - 12 = 0$

D)
$$x^2 + y^2 - 4x + 6y + 22 = 0$$

10) Center at the point (3, 5); tangent to y-axis

A)
$$x^2 + y^2 + 6x + 10y + 25 = 0$$

C)
$$x^2 + y^2 - 6x - 10y + 25 = 0$$

B)
$$x^2 + y^2 - 6x - 10y + 9 = 0$$

D)
$$x^2 + y^2 - 6x - 10y + 43 = 0$$

Solve the problem.

11) If a circle of radius 1 is made to roll along the x-axis, what is the equation for the path of the center of the circle?

$$A) y = 0$$

B)
$$y = 2$$

C)
$$x = 1$$

D)
$$y = 1$$

12) Earth is represented on a map of the solar system so that its surface is a circle with the equation $x^2 + y^2 + 10x + 2y - 3818 = 0$. A weather satellite circles 0.8 units above the Earth with the center of its circular orbit at the center of the Earth. Find the general form of the equation for the orbit of the satellite on this map.

A)
$$x^2 + y^2 - 10x - 2y - 3917.84 = 0$$

C)
$$x^2 + y^2 - 10x - 2y - 3517.34 =$$

B)
$$x^2 + y^2 + 10x + 2y - 3917.84 = 0$$

D)
$$x^2 + y^2 + 10x + 2y + 25.36 = 0$$

13) Find an equation of the line containing the centers of the two circles

$$x^2 + y^2 - 2x - 10y + 25 = 0$$

$$x^2 + y^2 - 12x - 6y + 41 = 0$$

A)
$$2x + 5y - 27 = 0$$

B)
$$-2x + 5y - 27 = 0$$

C)
$$8x - 7y - 27 = 0$$

D)
$$2x - 5y - 27 = 0$$

14) A wildlife researcher is monitoring a black bear that has a radio telemetry collar with a transmitting range of 21 miles. The researcher is in a research station with her receiver and tracking the bear's movements. If we put the origin of a coordinate system at the research station, what is the equation of all possible locations of the bear where the transmitter would be at its maximum range?

A)
$$x^2 - y^2 = 21$$

B)
$$x^2 + y^2 = 21$$

C)
$$x^2 + y^2 = 42$$

D)
$$x^2 + y^2 = 441$$

15) If a satellite is placed in a circular orbit of 380 kilometers above the Earth, what is the equation of the path of the satellite if the origin is placed at the center of the Earth (the diameter of the Earth is approximately 12,740 kilometers)?

A)
$$x^2 + y^2 = 40,576,900$$

B)
$$x^2 + y^2 = 144,400$$

C)
$$x^2 + y^2 = 172,134,400$$

D)
$$x^2 + y^2 = 45,562,500$$

16) A power outage affected all homes and businesses within a 15 mi radius of the power station. If the power station is located 9 mi north of the center of town, find an equation of the circle consisting of the furthest points from the station affected by the power outage.

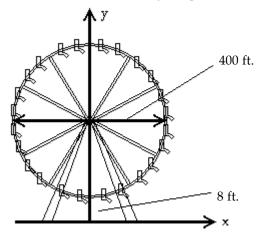
A)
$$x^2 + (y + 9)^2 = 225$$

B)
$$x^2 + (y - 9)^2 = 225$$
 C) $x^2 + (y - 9)^2 = 15$

C)
$$x^2 + (y - 9)^2 = 15$$

D)
$$x^2 + y^2 = 225$$

17) A power outage affected all homes and businesses within a 2 mi radius of the power station. If the power station is located 5 mi west and 6 mi north of the center of town, find an equation of the circle consisting of the furthest points from the station affected by the power outage.


A)
$$(x + 5)^2 + (y + 6)^2 = 4$$

B)
$$(x-5)^2 + (y-6)^2 = 4$$

C)
$$(x + 5)^2 + (y - 6)^2 = 4$$

D)
$$(x-5)^2 + (y+6)^2 = 4$$

18) A Ferris wheel has a diameter of 400 feet and the bottom of the Ferris wheel is 8 feet above the ground. Find the equation of the wheel if the origin is placed on the ground directly below the center of the wheel, as illustrated.

A)
$$x^2 + y^2 = 40,000$$

C)
$$x^2 + (y - 208)^2 = 40,000$$

B)
$$x^2 + (y - 200)^2 = 160,000$$

D)
$$x^2 + (y - 200)^2 = 40,000$$

Ch. 1 Graphs Answer Key

3) A 4) A 5) C 6) B 7) A 8) A 9) B 10) D 11) B 12) A 13) B

Answer Key 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations 1 Use the Distance Formula 1) C 2) A 3) D 4) C 5) C 6) A 7) C 8) C 9) D 10) D 11) B 12) B 13) A 14) A 15) B 16) B 17) A 18) B 19) C 20) B 21) D 22) A 23) C 2 Use the Midpoint Formula 1) C 2) D 3) C 4) B 5) D 6) B 7) C 8) D 9) C 10) D 11) D 3 Graph Equations by Hand by Plotting Points 1) D 2) D

Page 80

4	Graph Equations Using a Graphing Utility
	1) B
	2) A
	3) B
	4) A
	5) C
	6) B
	7) C
5	Use a Graphing Utility to Create Tables
	1) A
	2) A
	3) B
	4) D
6	Find Intercepts from a Graph
	1) D
	2) A
	3) B
	4) D
	5) B
	6) D
	7) D
	8) D
7	Use a Graphing Utility to Approximate Intercepts
	1) C
	2) D
	3) D
	4) C
	5) D
	6) D
	7) C
	8) A
1.	2 Intercepts; Symmetry; Graphing Key Equations
1	Find Intercepts from an Equation
	1) A
	2) B
	3) D
	4) B
	5) B
	6) B
	7) C
	8) B
	9) C
	10) A
	11) B
	12) B
	13) B
2	Test an Equation for Symmetry
	1) D
	2) C
	3) C
	4) D 5) B
	5) B
	6) A 7) C
	,, <u> </u>

```
8) D
   9) C
  10) D
  11) D
  12) A
  13) B
  14) E
  15) C
  16) B
  17) C
  18) D
  19) D
  20) E
  21) B
  22) A
  23) C
  24) E
  25) C
  26) E
  27) D
  28) D
3 Know How to Graph Key Equations
   1) D
   2) D
   3) A
   4) D
1.3 Solving Equations Using a Graphing Utility
1 Solve Equations Using a Graphing Utility
   1) C
   2) D
   3) C
   4) C
   5) A
   6) B
   7) C
   8) B
   9) A
  10) D
  11) D
  12) D
  13) B
  14) A
  15) D
  16) C
  17) A
  18) B
  19) A
  20) C
1.4 Lines
1 Calculate and Interpret the Slope of a Line
   1) B
   2) A
   3) C
   4) A
```

5) B
6) C
7) C
8) B
9) D
10) C
Graph Lines Given a Point and the Slope
1) D
2) A
3) A
4) B
5) A
6) D
7) B
8) C
9) D
Find the Equation of a Vertical Line
1) D
2) A
3) D
4) C
Use the Point-Slope Form of a Line; Identify Horizontal Lines 1) A
2) B
3) A
·
4) B
5) C Find the Forestian of a Line Circan True Points
Find the Equation of a Line Given Two Points
1) C
2) D
3) B
4) D
5) D
6) B
7) D
8) D
9) B
10) B
11) D
12) C
13) C
14) C
15) B
16) B
Write the Equation of a Line in Slope-Intercept Form
1) C
2) B
3) C
4) B
5) A
() D
6) B
7) D
•

	10) D
	11) D
	12) D
	13) B
7	Identify the Slope and y-Intercept of a Line from Its Equation
	1) A
	2) B
	3) D
	4) A
	5) D
	6) A
	7) A
	8) C
	9) B
	10) B
	11) C
	12) D
Q	Graph Lines Written in General Form Using Intercepts
0	1) D
	2) C
	3) C
	4) A
	•
	5) B
	6) B
0	7) A
9	Find Equations of Parallel Lines
	1) A 2) A
	3) C
	·
	4) A
	5) A
	6) D
	7) A 8) D
10	·
10	
	1) A
	2) C 3) C
	4) A
	5) B
	6) C
	7) A
	8) D
	9) B
	·
	10) D
	11) B
	12) B
4	13) A
	5 Circles
1	Write the Standard Form of the Equation of a Circle
	1) D
	2) D
	3) D
	4) D

- 5) A
- 6) C
- 7) C
- 8) A
- 9) A
- 10) C
- 11) C
- 12) D
- 13) C
- 14) D
- 15) C
- 16) D
- 17) C

2 Graph a Circle

- 1) C
- 2) C
- 3) D
- 4) C
- 5) A
- 6) D
- 7) D
- 8) A

3 Work with the General Form of the Equation of a Circle

- 1) C
- 2) C
- 3) C
- 4) B
- 5) C
- 6) D
- 7) A
- 8) D 9) C
- 10) C
- 11) D 12) B
- 13) A
- 14) D
- 15) D
- 16) B 17) C
- 18) C