CHAPTER 1: Research Methods

CONCEPT MAP

I. Introduction

II. Making Observations

- A. Defining the Question
 - i. Testable Hypotheses—create an hypothesis that is testable
 - ii. Operational Definition—present definitions that are observable and testable
 - iii. Construct Validity—create valid and true measurements
- B. Parts of an Experiment
 - i. Independent Variables—what is manipulated by the experimenter
 - ii. Dependent Variables—what is measured by the experimenter
- C. Systematically Collecting Data
 - i. Confirmation Bias—biases common to experiments may alter results
 - ii. Anecdotal Information—anecdotal information and common sense are not scientific but may provide clues to important questions
- D. Defining the Sample
 - i. Population—all possible representatives of a group
 - ii. Sample—a subset of the population
 - iii. Random Sample—several methods including maximum variation sampling used to ensure randomness to a sample and maximum variant sampling
 - iv. Case Studies—single subject or limited case studies may also be used
- E. Issues That May Compromise Experiments
 - i. External Validity—ensure that your study measures what it was supposed to measure
 - ii. Demand Characteristics—be alert to characteristics of the experimenter or subject that hinder experiments
 - iii. Double-blind Design—reduce or eliminate experimenter and subject bias

III. Working with the Data

- A. Descriptive Statistics
 - i. Frequency Distributions—tallying and tabling the data
 - ii. Measure of Central Tendency—ways to summarize and present the data
 - iii. Finding the "Average"—means, median, modes
 - iv. Measures of Variability—characterizing variability of the data set and summarizing variability using standard deviations
- B. Correlations, Reliability, and Validity
 - i. Scatter Plots—graphing the data
 - ii. Correlation Coefficients—studying relationships between variables
 - iii. Reliability—measures of reliability such as test–retest reliability and interobserver reliability
- C. Inferential Statistics and Testing Differences
 - i. Testing Differences—determining whether experimental manipulation produced an effect
 - ii. Statistical Significance—defining p-values and determining effect size

IV. Observational Studies: Alternatives to Experiments

- A. Quasi-experiments
 - i. Observational Studies—studies that do not explicitly manipulate variables
 - ii. Quasi-experimental Design—study of nonrandomly assigned variables such as gender or age
 - iii. Third Variable Problem—may be a third, unaccounted for, variable that is the causal agent for your results
- B. Establishing Cause and Effect
 - i. Experimental Groups—the group that receives the manipulation
 - ii. Control Group—the group that gets no manipulation
 - iii. Random Assignment—assures that the experimental and control group are similar
 - iv. Within-Subject Comparisons—comparing a subject to itself before and after a manipulation.
 - v. Power of Experiments—experimental design increases the power of an experiment

C. Internal Validity

i. Internal Validity—did you measure what you thought you measured?

V. Beyond the Single Experiment

- A. Peer Review—ensuring quality in research
- B. Replication—when and how to replicate research
- C. Literature Reviews—an alternative to research
- D. Disconfirming vs. Proving
 - i. Research does not prove.
 - ii. Research only disconfirms previous research studies.

VI. Research Ethics

- A. APA Ethical Guidelines
 - i. Informed Consent of Subjects—subjects must be informed about the parameters of the experiment
 - ii. Debriefing—participants must be given sufficient information regarding the experiment and its results following the experiment
 - iii. Other Ethical Guidelines
- B. Institutional Review Boards
- C. The Power of Science