## https://selldocx.com/products/test-bank-psychopharmacology-2e-ettinger

| Psychopharmacology<br>Chapter 2                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Pharmacokinetics refers to the study of         <ul> <li>mechanisms of drug action.</li> <li>how drugs are developed and manufactured.</li> <li>drug administration, distribution, and fate.</li> <li>how drugs interact.</li> </ul> </li> </ol>                                                                                                         |
| 2. <i>N</i> -methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]-propan-1-amine is an example of a drug's name.  a. generic  *b. chemical c. brand d. trade                                                                                                                                                                                                            |
| 3. Prozac is an example of a drug's name. a. generic b. trade c. brand *d. Both b and c are correct                                                                                                                                                                                                                                                               |
| 4. The administration of hormones via skin patches is an example of administration.  a. subcutaneous  *b. transdermal c. intraperitoneal d. intramuscular                                                                                                                                                                                                         |
| 5. Which of the following methods is typically used to administer drugs for experimentation to small laboratory animals (e.g., mice and rats)?  a. Intravenous b. Subcutaneous c. Inhalation *d. Intraperitoneal                                                                                                                                                  |
| <ul><li>6. The route of drug administration that results in the fastest peak plasma levels is</li><li>a. inhalation.</li><li>b. oral.</li><li>*c. intravenous.</li><li>d. intranasal.</li></ul>                                                                                                                                                                   |
| <ul> <li>7. The main advantage of administering drugs orally is</li> <li>*a. it is relatively safe.</li> <li>b. its reliable absorption.</li> <li>c. it is easy to administer.</li> <li>d. All of the above are correct</li> </ul>                                                                                                                                |
| <ul> <li>8. Cell membranes are made up of phospholipid molecules arranged in</li> <li>*a. two layers with their negatively charged heads forming the inner and outer surfaces.</li> <li>b. a single layer with their hydrophobic tails facing inward.</li> <li>c. two layers with their positively charged heads forming the inner and outer surfaces.</li> </ul> |

- d. two layers with their positively charged tails forming the inner and outer surfaces.
- 9. Glucose and other larger substances are transported across cell membranes
- a. because of their fat solubility.
- b. because they are hydrophilic.
- \*c. by transporter protein molecules imbedded within the cell membrane.
- d. through gaps in the membrane surface.
- 10. In order for a drug to pass through cell membranes, it must be
- a. water-soluble.
- \*b. lipid-soluble.
- c. hydrophobic.
- d. hydrophilic.
- 11. The blood brain barrier is constructed of
- \*a. tight junctions between astrocytic feet.
- b. an extra phospholipid layer in the cell membrane.
- c. negatively charged ions on the surface of the cell membrane.
- d. protein molecules imbedded in the cell membrane.
- 12. The blood brain barrier
- a. is impermeable to all substances.
- b. is strongest in the area postrema of the medulla.
- c. prevents blood from leaving the brain.
- \*d. protects the brain from toxic substances, including most viruses and bacteria.
- 13. The blood brain barrier is weakest in which of the following areas of the brain?
- a. The subfornical area near the lateral ventricles
- b. The area postrema of the medulla
- c. The meninges surrounding the brain
- \*d. Both a and b are correct
- 14. When a drug binds to inactive sites throughout the body, this is referred to as
- a. metabolism.
- b. receptor binding.
- \*c. depot binding.
- d. distribution.
- 15. A breathalyzer relies upon
- \*a. small amounts of alcohol being excreted through exhalation.
- b. small amounts of alcohol being excreted through perspiration.
- c. small amounts of alcohol remaining in the mouth after consumption.
- d. the detection of alcohol metabolites.
- 16. A drug's half-life is
- a. the amount of time it takes for a drug's peak plasma level to be metabolized by 50 percent.
- \*b. the amount of time it takes for a drug's initial blood level to be metabolized by 50 percent.
- c. one-half of a drug's shelf life.
- d. the amount of time it takes for a drug to be equally distributed to tissues throughout the body.

- 17. If a drug reaches tissue equilibrium one hour after administration and its plasma level decreases by one-half between hours 2 through 5 after administration, its half-life would be \_\_\_\_\_ hours.
- a. 5
- b. 4
- \*c. 3
- d. 2
- 18. Which of the following statements is TRUE regarding the half-life of the antidepressant Prozac?
- a. It has a half-life of about two days.
- b. It has an active metabolite with a half-life of almost six days.
- c. Because of its relatively long half-life, missing a daily dose may not be problematic.
- \*d. All of the above are correct.
- 19. A drug will have a longer duration of action if it
- a. has a short half-life.
- \*b. has a long half-life.
- c. has higher initial blood plasma levels.
- d. doesn't have an active metabolite.
- 20. Dose response curves are typically
- a. linear functions describing drug effects at different doses.
- \*b. "S"-shaped functions describing drug effects at different doses.
- c. "S"-shaped functions describing how a single dose affects different people.
- d. "S"-shaped functions describing how drug tolerance develops.
- 21. Most drugs have
- a. a single dose response curve representing all of its effects at different doses.
- \*b. multiple dose response curves representing all of its effects at different doses.
- c. two dose response curves—one representing its initial effects and the other representing its effects after tolerance develops.
- d. a single dose response curve that can shift depending on how long the drug has been used.
- 22. Drug tolerance can be defined as a
- a. decrease in a drug's effectiveness after repeated administration.
- b. decrease in the rate of a drug's metabolism.
- c. shift to the right in a drug's dose response curve after repeated administration.
- \*d. Both a and c are correct
- 23. Cross-tolerance typically occurs when
- a. tolerance to a drug is rapidly lost.
- b. tolerance to a drug of one class, such as opiates, contributes to tolerance to a drug from a different class, such as barbiturates.
- c. metabolizing enzymes for a drug of one class begin to metabolize a drug from a different class.
- \*d. tolerance to a drug contributes to tolerance to a similarly acting drug.
- 24. Metabolic tolerance could develop as a consequence of
- a. Pavlovian conditioning to drug-associated cues.
- b. downregulation of receptor sites for a drug.
- \*c. an increase in the synthesis of metabolizing enzymes.
- d. a shift in the dose response curve.

| <ul> <li>25. Cellular tolerance is typically a consequence of</li> <li>*a. downregulation of receptors.</li> <li>b. an increase in the synthesis of metabolizing enzymes.</li> <li>c. Pavlovian conditioning of drug-associated cues.</li> <li>d. upregulation of receptor sites.</li> </ul>                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26. If an animal expressed tolerance to a drug in one context but not in another, you would suspect this was an example of tolerance. a. cellular b. metabolic c. behavioral *d. associative                                                                                                                                                                       |
| <ul> <li>27. If after demonstrating associative tolerance to opiates in a specific context, you exposed an animal to the context repeatedly without the drug, you would see</li> <li>a. upregulation of receptors.</li> <li>b. downregulation of receptors.</li> <li>*c. extinction of tolerance in that context.</li> <li>d. habituation of tolerance.</li> </ul> |
| 28. The neural mechanism underlying associative tolerance is most likely a. habituation to the drug. b. cross-tolerance. *c. downregulation of drug receptors. d. metabolic tolerance.                                                                                                                                                                             |
| 29. Associative tolerance is a consequence of, whereas behavioral tolerance is a consequence of a. operant conditioning; Pavlovian conditioning b. habituation; Pavlovian conditioning c. Pavlovian conditioning; habituation *d. Pavlovian conditioning; operant conditioning                                                                                     |
| 30. If a laboratory animal is trained to perform a complex motor task under the influence of alcohol and later fails to perform the task without alcohol, this would demonstrate a. associative tolerance. b. cross-tolerance. *c. state dependent learning. d. upregulation.                                                                                      |
| 31. The area of drug doses between a drug's dose response curve for analgesia and its dose response curve for respiratory depression is called the a. LD50 dose. b. LD100 dose. *c. therapeutic index. d. placebo effect.                                                                                                                                          |
| <ul><li>32. When a patient responds positively to an inert substance, this is referred to as</li><li>a. tolerance.</li><li>b. upregulation.</li><li>*c. the placebo effect.</li></ul>                                                                                                                                                                              |

| d. the pseudo effect.                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33. Pharmacodynamics refers to the study of *a. mechanisms of drug action. b. how drugs are developed and manufactured. c. drug administration, distribution, and fate. d. how drugs interact.                                                               |
| 34. Drugs that increase or facilitate neurotransmission are called a. antagonists. b. partial antagonists. c. psychoactive. *d. agonists.                                                                                                                    |
| 35. Drugs that decrease or interfere with neurotransmission are called *a. antagonists. b. partial agonists. c. inactive. d. agonists.                                                                                                                       |
| 36. L -dopa, a drug used to treat Parkinson's disease, is classified as an because it  a. antagonist; disrupts dopamine release  *b. agonist; is a precursor for dopamine synthesis c. antagonist; blocks dopamine receptors d. None of the above is correct |
| <ul> <li>37. A drug that blocks the reuptake of a neurotransmitter would be classified as a(n)</li> <li>a. agonist.</li> <li>b. antagonist.</li> <li>c. reuptake inhibitor.</li> <li>*d. Both a and c are correct</li> </ul>                                 |
| 38. The degrading enzyme for the neurotransmitters dopamine and nonrepinephrine is a. MAO *b. acetylcholinesterase c. acetyldehydrogenase d. acetylaldehyde                                                                                                  |
| 39. The drug Narcan (naloxone) is classified as an because it  a. agonist; facilitates opiate binding to receptors  *b. antagonist; blocks opiate receptors c. antagonist; disrupts opiate synthesis and release d. Both b and c are correct                 |
| 40. Botox is classified as an because it  *a. antagonist; inhibits the release of acetylcholine b. agonist; blocks the reuptake of acetylcholine c. agonist; blocks the degradation of acetylcholine d. Both b and c are correct                             |