NUMERIC RESPONSE

1. The point P(4, 2) lies on the curve $y = \sqrt{x}$. If is the point $Q(x, \sqrt{x})$, use your calculator to find the slope of the secant line PQ(correct to six decimal places) for the value x = 3.99.

ANS: 0.250156

PTS: 1 DIF: Medium MSC: Numerical Response

NOT: Section 2.1

2. The position of a car is given by the values in the following table.

t(seconds)	0	1	2	3	4	5
s(feet)	0	19	33	74	114	178

Estimate the instantaneous velocity when t=2 by averaging the velocities for the periods $\begin{bmatrix} 1, 2 \end{bmatrix}$ and $\begin{bmatrix} 2, 3 \end{bmatrix}$.

ANS: 27.5

PTS: 1 DIF: Medium MSC: Numerical Response

NOT: Section 2.1

3. If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height in meters t seconds later is given by $y = 10t - 1.86t^2$. Find the average velocity over the time interval $\begin{bmatrix} 1, 2 \end{bmatrix}$.

ANS: 4.42 m/s

PTS: 1 DIF: Medium MSC: Numerical Response

NOT: Section 2.1

4. Find the limit.

$$\lim_{x \to -\infty} \frac{\sqrt{x^2 - 9}}{2x - 6}$$

5. Find an equation of the tangent line to the curve
$$y = 5x^3$$
 at the point $(-3, -135)$.

ANS:
$$y = 135x + 270$$

$$\lim_{x \to 0} f(x)$$

6. Use the graph of the function to state the value of
$$x \to 0$$
, if it exists.

$$f(x) = \frac{x^2 + x}{2\sqrt{x^3 + x^2}}$$

7. Find the derivative of the function.

$$f(x) = 14 - 3x + 5x^2$$

ANS:
$$10x - 3$$

8. If
$$1 \le f(x) \le x^2 + 2x + 2$$
, for all x find the limit.

$$\lim_{x \to -1} f(x)$$

9. If an equation of the tangent line to the curve y = f(x) at the point where a = 2 is y = 4x - 5, find f(2) and f'(2).

$$f(2) = 3$$

ANS:
$$f'(2) = 4$$

10. How close to 2 do we have to take x so that 5x + 3 is within a distance of 0.01 from 13?

ANS:
$$|x-2| < 0.002$$

11. Find the vertical asymptotes of the function.

$$y = \frac{2x^2 + 1}{3x - 2x^2}$$

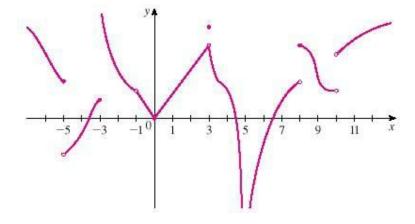
ANS:
$$x = 0, x = \frac{3}{2}$$

12. If $g(x) = \sqrt{3-5x}$, find the domain of g'(x).

ANS:
$$\left(-\infty, \frac{3}{5}\right)$$

$$\lim_{x \to 0} \frac{2 \sin x}{\sin \pi x}$$

by graphing the function
$$f(x) = \frac{(2 \sin x)}{(\sin \pi x)}$$
. State your answer correct to two decimal places.


14. Evaluate the limit, if it exists.

$$\lim_{h \to 0} \frac{(x-h)^3 - x^3}{h}$$

ANS:
$$-3x^2$$

15. A machinist is required to manufacture a circular metal disk with area 1000 cm². If the machinist is allowed an error tolerance of ±7 cm² in the area of the disk, how close to the ideal radius must the machinist control the radius?

16. For x = 5 determine whether f is continuous from the right, from the left, or neither.

PTS: 1 DIF: Medium MSC: Numerical Response

NOT: Section 2.5

17. Find the point at which the given function is discontinuous.

$$f(x) = \begin{cases} \frac{1}{x-4}, & x \neq 4 \\ 4, & x = 4 \end{cases}$$

ANS: 4

PTS: 1 DIF: Medium MSC: Numerical Response

NOT: Section 2.5

 $f(x) = \frac{(\cos x - \cos 2x)}{x^2}$ 18. By graphing the function $\lim_{x \to 0} f(x).$ crosses the *y*-axis, estimate the value of $x \to 0$

ANS: 1.5

PTS: 1 DIF: Medium MSC: Numerical Response

NOT: Section 2.5

19. Use the definition of the derivative to find f'(2), where $f(x) = x^3 - 2x$.

ANS: 10

PTS: 1 DIF: Medium MSC: Numerical Response

NOT: Section 2.7

20. How would you define f(3) in order to make f continuous at 3?

$$f(x) = \frac{x^2 - 2x - 3}{x - 3}$$

ANS: f(3) = 4

PTS: 1 NOT: Section 2.5 DIF: Medium MSC: Numerical Response