https://selldocx.com/products

Chapter 01: /tastodarcki-sonography-principles-and-instruments-9e-phd

Kremkau: Sonography Principles and Instruments, 9th Edition

MUI	TIPL	Е СН	OICE

1.	Diagnostic ultrasound transducers generate a of sound into the body. a. wave b. pulse c. frequency d. Doppler
	ANS: B Diagnostic ultrasound transducers generate the ultrasound pulses and receive the returning pulses.
	REF: p. 2 OBJ: Explain the fundamental principle used in sonographic imaging. TOP: Pulse wave
2.	The brightness of the dot corresponds to the of the returning echo. a. location b. speed c. strength d. angle
	ANS: C The brightness of the dot corresponds to the echo strength, producing what then is known as a gray-scale image.
	REF: pp. 2-5 OBJ: Explain the fundamental principle used in sonographic imaging. TOP: Pulse wave
3.	A rectangular image display is seen when using a transducer. a. sector b. vector c. convex d. linear
	ANS: D Pulses (scan lines) travel from different points parallel with each other, displaying a rectangular image.
	REF: p. 5 OBJ: Describe the image formats used in sonography. TOP: Pulse wave
4.	The location of each dot corresponds to the of the echo to return. a. strength b. time c. pulse d. frequency ANS: B
	1110. D

	structure.
	REF: p. 5 OBJ: Explain the fundamental principle used in sonographic imaging. TOP: Pulse wave
5.	The method by which each pulse originates from the same starting point is called a image. a. sector b. linear c. convex d. none of the above
	ANS: A A sector image results when each pulse originates from the same starting point and subsequent pulses going out in different directions.
	REF: p. 5 OBJ: Describe the image formats used in sonography. TOP: Pulse wave
6.	Sonographic images are composed of many a. crystals b. scan lines c. focal points d. frequency shifts
	ANS: B Sonographic images are composed of many scan lines (pulses).
	REF: p. 7 OBJ: Explain the fundamental principle used in sonographic imaging. TOP: Pulse wave
7.	Echoes produced by objects have different than the pulses sent into the body. a. stationary; frequencies b. stable; directions c. moving; frequencies d. moving; echoes
	ANS: C Echoes produced by moving objects have different frequencies than the pulses sent into the body.
	REF: p. 7 OBJ: Explain how the Doppler effect is applied to sonography. TOP: Doppler ultrasound
8.	Doppler ultrasound measures the movement of a. tissue b. blood c. A and B d. none of the above

The location of each dot corresponds to the anatomic location of the echo-generating

	Doppler ultrasound is used in detecting and measuring tissue motion and blood flow.
	REF: p. 7 OBJ: Explain how the Doppler effect is applied to sonography. TOP: Doppler ultrasound
9.	Quantitative data are determined by which Doppler display? a. Color imaging. b. Power imaging. c. B-mode (gray-scale, or brightness) imaging. d. Spectral imaging.
	ANS: D Doppler information is applied to loudspeakers for audible evaluation and to the spectral display for quantitative analysis.
	REF: p. 8 OBJ: List the ways in which Doppler information is presented. TOP: Doppler ultrasound
10.	The Doppler effect is a change in echo a. frequency b. strength c. amplitude d. direction
	ANS: A The Doppler effect is a change in frequency caused by moving objects.
	REF: p. 7 OBJ: Explain how the Doppler effect is applied to sonography. TOP: Doppler ultrasound
11.	Vertical parallel scan lines are seen with which transducer format? a. vector. b. convex. c. linear. d. curvilinear.
	ANS: C A linear transducer generates vertical parallel scan lines.
	REF: p. 5 OBJ: Describe the image formats used in sonography. TOP: Pulse wave
12.	A gray-scale ultrasound image is the visible counterpart of a/an a. frequency shift b. spectral display c. invisible object d. electronic wave
	ANS: C An ultrasound image is the visible counterpart of an invisible object, produced in an electric

ANS: C

An ultrasound image is the visible counterpart of an invisible object, produced in an electronic instrument by the interaction of ultrasound with the object.

	REF: pp. 1-2 OBJ: Explain the fundamental principle used in sonographic imaging. TOP: Pulse wave
13.	A scan is shaped like a slice of pie. a. sector b. convex c. linear d. curvilinear
	ANS: A A sector image is shaped like a slice of pie.
	REF: p. 5 OBJ: Describe the image formats used in sonography. TOP: Pulse wave
14.	Sonography is medical anatomic imaging using a technique. a. starting point b. pulse echo c. vertical parallel d. transducer instrument
	ANS: B Anatomic imaging with ultrasound is accomplished by the pulse-echo principle.
	REF: p. 2 OBJ: Explain the fundamental principle used in sonographic imaging. TOP: Pulse wave
15.	Three-dimensional imaging requires many adjacent tissue to build the image. a. moving objects b. frequency shifts c. cross-sections d. ultrasound pulses
	ANS: C Three-dimensional, or volume, imaging requires scanning the ultrasound through many adjacent two-dimensional tissue-cross-sections to build up a three-dimensional volume of echo information.
	REF: p. 7 OBJ: Describe the image formats used in sonography. TOP: Pulse wave
TRUI	E/FALSE
1.	One pulse of ultrasound generates a single scan line as it travels through tissue.
	ANS: T One line of echo information (pulse) is equal to one scan line.
	REF: p. 5 OBJ: Explain the fundamental principle used in sonographic imaging. TOP: Pulse wave

2. Pulsed ultrasound transducers can generate only ultrasound pulses.

ANS: F

The transducer generates the ultrasound pulses and receives the returning echoes.

REF: p. 2 OBJ: Explain the fundamental principle used in sonographic imaging.

TOP: Pulse wave

3. The Doppler effect is caused by a difference in the depth of two moving objects.

ANS: F

The Doppler effect is a change in frequency caused by moving objects.

REF: p. 7 OBJ: Explain how the Doppler effect is applied to sonography.

TOP: Doppler ultrasound

4. Animals have applied ultrasound to detect and capture prey.

ANS: T

Bats, dolphins, and other animals use ultrasound to detect, locate, determine motion of, and capture prey; to avoid obstacles; to detect and avoid predators; and to court mates.

REF: p. 1 OBJ: Explain the fundamental principle used in sonographic imaging.

TOP: General ultrasound physics

5. Color Doppler imaging is superimposed on a gray-scale image.

ANS: T

Rapid scanning and processing of the Doppler data enable color-coded presentation of Doppler information to be superimposed on a gray-scale anatomic image.

REF: pp. 7-8 OBJ: Explain how the Doppler effect is applied to sonography.

TOP: Doppler ultrasound