
Chapter 2—Introduction to Optimization and Linear Programming

MULTIPLE CHOICE

1. What most motivates a business to be concerned with efficient use of their resources?
a. Resources are limited and valuable.
b. Efficient resource use increases business costs.
c. Efficient resources use means more free time.
d. Inefficient resource use means hiring more workers.

ANS: A PTS: 1

2. Which of the following fields of management science finds the optimal method of using resources to 
achieve the objectives of a business?
a. Simulation
b. Regression
c. Mathematical programming
d. Discriminant analysis

ANS: C PTS: 1

3. Mathematical programming is referred to as
a. optimization.
b. satisficing.
c. approximation.
d. simulation.

ANS: A PTS: 1

4. What are the three common elements of an optimization problem?
a. objectives, resources, goals.
b. decisions, constraints, an objective.
c. decision variables, profit levels, costs.
d. decisions, resource requirements, a profit function.

ANS: B PTS: 1

5. A mathematical programming application employed by a shipping company is most likely
a. a product mix problem.
b. a manufacturing problem.
c. a routing and logistics problem.
d. a financial planning problem.

ANS: C PTS: 1

6. What is the goal in optimization?
a. Find the decision variable values that result in the best objective function and satisfy all 

constraints.
b. Find the values of the decision variables that use all available resources.
c. Find the values of the decision variables that satisfy all constraints.
d. None of these.

ANS: A PTS: 1
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7. A set of values for the decision variables that satisfy all the constraints and yields the best objective 
function value is
a. a feasible solution.
b. an optimal solution.
c. a corner point solution.
d. both (a) and (c).

ANS: B PTS: 1

8. A common objective in the product mix problem is
a. maximizing cost.
b. maximizing profit.
c. minimizing production time.
d. maximizing production volume.

ANS: B PTS: 1

9. A common objective when manufacturing printed circuit boards is
a. maximizing the number of holes drilled.
b. maximizing the number of drill bit changes.
c. minimizing the number of holes drilled.
d. minimizing the total distance the drill bit must be moved.

ANS: D PTS: 1

10. Limited resources are modeled in optimization problems as
a. an objective function.
b. constraints.
c. decision variables.
d. alternatives.

ANS: B PTS: 1

11. Retail companies try to find
a. the least costly method of transferring goods from warehouses to stores.
b. the most costly method of transferring goods from warehouses to stores.
c. the largest number of goods to transfer from warehouses to stores.
d. the least profitable method of transferring goods from warehouses to stores.

ANS: A PTS: 1

12. Most individuals manage their individual retirement accounts (IRAs) so they
a. maximize the amount of money they withdraw.
b. minimize the amount of taxes they must pay.
c. retire with a minimum amount of money.
d. leave all their money to the government.

ANS: B PTS: 1

13. The number of units to ship from Chicago to Memphis is an example of a(n)
a. decision.
b. constraint.
c. objective.
d. parameter.

ANS: A PTS: 1



14. A manager has only 200 tons of plastic for his company. This is an example of a(n)
a. decision.
b. constraint.
c. objective.
d. parameter.

ANS: B PTS: 1

15. The desire to maximize profits is an example of a(n)
a. decision.
b. constraint.
c. objective.
d. parameter.

ANS: C PTS: 1

16. The symbols X1, Z1, Dog are all examples of
a. decision variables.
b. constraints.
c. objectives.
d. parameters.

ANS: A PTS: 1

17. A greater than or equal to constraint can be expressed mathematically as
a. f(X1, X2, ..., Xn)  b.
b. f(X1, X2, ..., Xn)  b.
c. f(X1, X2, ..., Xn) = b.
d. f(X1, X2, ..., Xn)  b.

ANS: B PTS: 1

18. A production optimization problem has 4 decision variables and resource 1 limits how many of the 4 
products can be produced. Which of the following constraints reflects this fact?
a. f(X1, X2, X3, X4)  b1

b. f(X1, X2, X3, X4)  b1

c. f(X1, X2, X3, X4) = b1

d. f(X1, X2, X3, X4)  b1

ANS: A PTS: 1

19. A production optimization problem has 4 decision variables and a requirement that at least b1 units of 
material 1 are consumed. Which of the following constraints reflects this fact?
a. f(X1, X2, X3, X4)  b1

b. f(X1, X2, X3, X4)  b1

c. f(X1, X2, X3, X4) = b1

d. f(X1, X2, X3, X4)  b1

ANS: B PTS: 1

20. Which of the following is the general format of an objective function?
a. f(X1, X2, ..., Xn)  b
b. f(X1, X2, ..., Xn)  b
c. f(X1, X2, ..., Xn) = b



d. f(X1, X2, ..., Xn)

ANS: D PTS: 1

21. Linear programming problems have
a. linear objective functions, non-linear constraints.
b. non-linear objective functions, non-linear constraints.
c. non-linear objective functions, linear constraints.
d. linear objective functions, linear constraints.

ANS: D PTS: 1

22. The first step in formulating a linear programming problem is
a. Identify any upper or lower bounds on the decision variables.
b. State the constraints as linear combinations of the decision variables.
c. Understand the problem.
d. Identify the decision variables.
e. State the objective function as a linear combination of the decision variables.

ANS: C PTS: 1

23. The second step in formulating a linear programming problem is
a. Identify any upper or lower bounds on the decision variables.
b. State the constraints as linear combinations of the decision variables.
c. Understand the problem.
d. Identify the decision variables.
e. State the objective function as a linear combination of the decision variables.

ANS: D PTS: 1

24. The third step in formulating a linear programming problem is
a. Identify any upper or lower bounds on the decision variables.
b. State the constraints as linear combinations of the decision variables.
c. Understand the problem.
d. Identify the decision variables.
e. State the objective function as a linear combination of the decision variables.

ANS: E PTS: 1

25. The following linear programming problem has been written to plan the production of two products. 
The company wants to maximize its profits.

X1 = number of product 1 produced in each batch
X2 = number of product 2 produced in each batch

MAX: 150 X1 + 250 X2

Subject to: 2 X1 + 5 X2  200
3 X1 + 7 X2  175
X1, X2  0

How much profit is earned per each unit of product 2 produced?
a. 150
b. 175
c. 200
d. 250



ANS: D PTS: 1

26. The following linear programming problem has been written to plan the production of two products. 
The company wants to maximize its profits.

X1 = number of product 1 produced in each batch
X2 = number of product 2 produced in each batch

MAX: 150 X1 + 250 X2

Subject to: 2 X1 + 5 X2  200  resource 1
3 X1 + 7 X2  175  resource 2
X1, X2  0

How many units of resource 1 are consumed by each unit of product 1 produced?
a. 1
b. 2
c. 3
d. 5

ANS: B PTS: 1

27. The following linear programming problem has been written to plan the production of two products. 
The company wants to maximize its profits.

X1 = number of product 1 produced in each batch
X2 = number of product 2 produced in each batch

MAX: 150 X1 + 250 X2

Subject to: 2 X1 + 5 X2  200
3 X1 + 7 X2  175
X1, X2  0

How much profit is earned if the company produces 10 units of product 1 and 5 units of product 2?
a. 750
b. 2500
c. 2750
d. 3250

ANS: C PTS: 1

28. A company uses 4 pounds of resource 1 to make each unit of X1 and 3 pounds of resource 1 to make 
each unit of X2. There are only 150 pounds of resource 1 available. Which of the following constraints 
reflects the relationship between X1, X2 and resource 1?
a. 4 X1 + 3 X2  150
b. 4 X1 + 3 X2  150
c. 4 X1 + 3 X2 = 150
d. 4 X1  150

ANS: B PTS: 1

29. A diet is being developed which must contain at least 100 mg of vitamin C. Two fruits are used in this 
diet. Bananas contain 30 mg of vitamin C and Apples contain 20 mg of vitamin C. The diet must 
contain at least 100 mg of vitamin C. Which of the following constraints reflects the relationship 
between Bananas, Apples and vitamin C?



a. 20 A + 30 B  100
b. 20 A + 30 B  100
c. 20 A + 30 B = 100
d. 20 A = 100

ANS: A PTS: 1

30. The constraint for resource 1 is 5 X1 + 4 X2  200. If X1 = 20, what it the maximum value for X2?
a. 20
b. 25
c. 40
d. 50

ANS: B PTS: 1

31. The constraint for resource 1 is 5 X1 + 4 X2  200. If X2 = 20, what it the minimum value for X1?
a. 20
b. 24
c. 40
d. 50

ANS: B PTS: 1

32. The constraint for resource 1 is 5 X1 + 4 X2  200. If X1 = 20 and X2 = 5, how much of resource 1 is 
unused?
a. 0
b. 80
c. 100
d. 200

ANS: B PTS: 1

33. The constraint for resource 1 is 5 X1 + 4 X2  200. If X1 = 40 and X2 = 20, how many additional units, 
if any, of resource 1 are employed above the minimum of 200?
a. 0
b. 20
c. 40
d. 80

ANS: D PTS: 1

34. The objective function for a LP model is 3 X1 + 2 X2. If X1 = 20 and X2 = 30, what is the value of the 
objective function?
a. 0
b. 50
c. 60
d. 120

ANS: D PTS: 1

35. A company makes two products, X1 and X2. They require at least 20 of each be produced. Which set of 
lower bound constraints reflect this requirement?
a. X1  20, X2  20
b. X1 + X2  20
c. X1 + X2  40



d. X1  20, X2  20, X1 + X2  40

ANS: A PTS: 1

36. Why do we study the graphical method of solving LP problems?
a. Lines are easy to draw on paper.
b. To develop an understanding of the linear programming strategy.
c. It is faster than computerized methods.
d. It provides better solutions than computerized methods.

ANS: B PTS: 1

37. The constraints of an LP model define the
a. feasible region
b. practical region
c. maximal region
d. opportunity region

ANS: A PTS: 1

38. The following diagram shows the constraints for a LP model. Assume the point (0,0) satisfies 
constraint (B,J) but does not satisfy constraints (D,H) or (C,I). Which set of points on this diagram 
defines the feasible solution space?

a. A, B, E, F, H
b. A, D, G, J
c. F, G, H, J
d. F, G, I, J

ANS: D PTS: 1

39. If constraints are added to an LP model the feasible solution space will generally
a. decrease.
b. increase.
c. remain the same.
d. become more feasible.

ANS: A PTS: 1



40. Which of the following actions would expand the feasible region of an LP model?
a. Loosening the constraints.
b. Tightening the constraints.
c. Multiplying each constraint by 2.
d. Adding an additional constraint.

ANS: A PTS: 1

41. Level curves are used when solving LP models using the graphical method. To what part of the model 
do level curves relate?
a. constraints
b. boundaries
c. right hand sides
d. objective function

ANS: D PTS: 1

42. This graph shows the feasible region (defined by points ACDEF) and objective function level curve 
(BG) for a maximization problem. Which point corresponds to the optimal solution to the problem?

a. A
b. B
c. C
d. D
e. E

ANS: D PTS: 1

43. When do alternate optimal solutions occur in LP models?
a. When a binding constraint is parallel to a level curve.
b. When a non-binding constraint is perpendicular to a level curve.
c. When a constraint is parallel to another constraint.
d. Alternate optimal solutions indicate an infeasible condition.

ANS: A
Chapter says level curve sits on feasible region edge, which implies parallel

PTS: 1

44. A redundant constraint is one which
a. plays no role in determining the feasible region of the problem.
b. is parallel to the level curve.



c. is added after the problem is already formulated.
d. can only increase the objective function value.

ANS: A PTS: 1

45. When the objective function can increase without ever contacting a constraint the LP model is said to 
be
a. infeasible.
b. open ended.
c. multi-optimal.
d. unbounded.

ANS: D PTS: 1

46. If there is no way to simultaneously satisfy all the constraints in an LP model the problem is said to be
a. infeasible.
b. open ended.
c. multi-optimal.
d. unbounded.

ANS: A PTS: 1

47. Which of the following special conditions in an LP model represent potential errors in the 
mathematical formulation?
a. Alternate optimum solutions and infeasibility.
b. Redundant constraints and unbounded solutions.
c. Infeasibility and unbounded solutions.
d. Alternate optimum solutions and redundant constraints.

ANS: C PTS: 1

PROBLEM

48. Solve the following LP problem graphically by enumerating the corner points.

MAX: 2 X1 + 7 X2

Subject to: 5 X1 + 9 X2  90
9 X1 + 8 X2  144
X2  8
X1, X2  0

ANS:
Obj = 63.20
X1 = 3.6
X2 = 8

PTS: 1

49. Solve the following LP problem graphically by enumerating the corner points.

MAX: 4 X1 + 3 X2

Subject to: 6 X1 + 7 X2  84
X1  10
X2  8



X1, X2  0

ANS:
Obj = 50.28
X1 = 10
X2 = 3.43

PTS: 1

50. Solve the following LP problem graphically using level curves.

MAX: 7 X1 + 4 X2

Subject to: 2 X1 + X2  16
X1 + X2  10
2 X1 + 5 X2  40
X1, X2  0

ANS:
Obj = 58
X1 = 6
X2 = 4

PTS: 1

51. Solve the following LP problem graphically using level curves.

MAX: 5 X1 + 6 X2

Subject to: 3 X1 + 8 X2  48
12 X1 + 11 X2  132
2 X1 + 3 X2  24
X1, X2  0

ANS:
Obj = 57.43
X1 = 9.43
X2 = 1.71

PTS: 1

52. Solve the following LP problem graphically by enumerating the corner points.

MIN: 8 X1 + 3 X2

Subject to: X2  8
8 X1 + 5 X2  80
3 X1 + 5 X2  60
X1, X2  0

ANS:
Obj = 48
X1 = 0
X2 = 16



PTS: 1

53. Solve the following LP problem graphically by enumerating the corner points.

MIN: 8 X1 + 5 X2

Subject to: 6 X1 + 7 X2  84
X1  4
X2  6
X1, X2  0

ANS:
Obj = 74.86
X1 = 4
X2 = 8.57

PTS: 1

54. Solve the following LP problem graphically using level curves.

MAX: 5 X1 + 3 X2

Subject to: 2 X1  1 X2  2
6 X1 + 6 X2  12
1 X1 + 3 X2  5
X1, X2  0

ANS:
Obj = 11.29
X1 = 1.57
X2 = 1.14

PTS: 1

55. Solve the following LP problem graphically using level curves.

MIN: 8 X1 + 12 X2

Subject to: 2 X1 + 1 X2  16
2 X1 + 3 X2  36
7 X1 + 8 X2  112
X1, X2  0

ANS:
Alternate optima solutions exist between the corner points

X1 = 9.6 X1 = 18
X2 = 5.6 X2 = 0

PTS: 1

56. Solve the following LP problem graphically using level curves.

MIN: 5 X1 + 7 X2

Subject to: 4 X1 + 1 X2  16



6 X1 + 5 X2  60
5 X1 + 8 X2  80
X1, X2  0

ANS:
Obj = 72.17
X1 = 3.48
X2 = 7.83

PTS: 1

57. The Happy Pet pet food company produces dog and cat food. Each food is comprised of meat, 
soybeans and fillers. The company earns a profit on each product but there is a limited demand for 
them. The pounds of ingredients required and available, profits and demand are summarized in the 
following table. The company wants to plan their product mix, in terms of the number of bags 
produced, in order to maximize profit.

Product
Profit per
Bag ($)

Demand for
product

Pounds of
Meat per bag

Pounds of Soybeans
per bag

Pounds of
Filler per bag

Dog food 4 40         4         6         4
Cat food 5 30         5         3     10

Material available (pounds) 100 120 160

a. Formulate the LP model for this problem.

b. Solve the problem using the graphical method.

ANS:
a. Let X1 = bags of Dog food to produce

X2 = bags of Cat food to produce

MAX: 4 X1 + 5 X2

Subject to: 4 X1 + 5 X2  100 (meat)
6 X1 + 3 X2  120 (soybeans)
4 X1 + 10 X2  160 (filler)
X1  40 (Dog food demand)
X2  30 (Cat food demand)

b. Obj = 100
X1 = 10
X2 = 12

PTS: 1

58. Jones Furniture Company produces beds and desks for college students. The production process 
requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. 
Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry 
time and 40 hours of varnishing time available. Beds generate $30 of profit and desks generate $40 of 
profit. Demand for desks is limited so at most 8 will be produced.

a. Formulate the LP model for this problem.

b. Solve the problem using the graphical method.



ANS:
a. Let X1 = Number of Beds to produce

X2 = Number of Desks to produce

MAX: 30 X1 + 40 X2

Subject to: 6 X1 + 4 X2  36 (carpentry)
4 X1 + 8 X2  40 (varnishing)
X2  8 (demand for X2)
X1, X2  0

b. Obj = 240
X1 = 4
X2 = 3

PTS: 1

59. The Byte computer company produces two models of computers, Plain and Fancy. It wants to plan 
how many computers to produce next month to maximize profits. Producing these computers requires 
wiring, assembly and inspection time. Each computer produces a certain level of profits but faces a 
limited demand. There are a limited number of wiring, assembly and inspection hours available next 
month. The data for this problem is summarized in the following table.

Computer
Model

Profit per
Model ($)

Maximum
demand for

product
Wiring Hours

Required

Assembly
Hours

Required

Inspection
Hours

Required
Plain 30 80  .4  .5  .2
Fancy 40 90  .5  .4  .3

Hours Available 50 50 22

a. Formulate the LP model for this problem.

b. Solve the problem using the graphical method.

ANS:
a. Let X1 = Number of Plain computers produce

X2 = Number of Fancy computers to produce

MAX: 30 X1 + 40 X2

Subject to: .4 X1 + .5 X2  50 (wiring hours)
.5 X1 + .4 X2  50 (assembly hours)
.2 X1 + .2 X2  22 (inspection hours)
X1  80 (Plain computers demand)
X2  90 (Fancy computers demand)
X1, X2  0

b. Obj = 3975
X1 = 12.5
X2 = 90

PTS: 1



60. The Big Bang explosives company produces customized blasting compounds for use in the mining 
industry. The two ingredients for these explosives are agent A and agent B. Big Bang just received an 
order for 1400 pounds of explosive. Agent A costs $5 per pound and agent B costs $6 per pound. The 
customer's mixture must contain at least 20% agent A and at least 50% agent B. The company wants to 
provide the least expensive mixture which will satisfy the customers requirements.

a. Formulate the LP model for this problem.

b. Solve the problem using the graphical method.

ANS:
a. Let X1 = Pounds of agent A used

X2 = Pounds of agent B used

MIN: 5 X1 + 6 X2

Subject to: X1  280 (Agent A requirement)
X2  700 (Agent B requirement)
X1 + X2 = 1400 (Total pounds)
X1, X2  0

b. Obj = 7700
X1 = 700
X2 = 700

PTS: 1

61. Jim's winery blends fine wines for local restaurants. One of his customers has requested a special blend 
of two burgundy wines, call them A and B. The customer wants 500 gallons of wine and it must 
contain at least 100 gallons of A and be at least 45% B. The customer also specified that the wine have 
an alcohol content of at least 12%. Wine A contains 14% alcohol while wine B contains 10%. The 
blend is sold for $10 per gallon. Wine A costs $4 per gallon and B costs $3 per gallon. The company 
wants to determine the blend that will meet the customer's requirements and maximize profit.

a. Formulate the LP model for this problem.

b. Solve the problem using the graphical method.

c. How much profit will Jim make on the order?

ANS:
a. Let X1 = Gallons of wine A in mix

X2 = Gallons of wine B in mix

MIN: 4 X1 + 3 X2

Subject to: X1 + X2  500 (Total gallons of mix)
X1  100 (X1 minimum)
X2  225 (X2 minimum)
.14 X1 + .10 X2  60 (12% alcohol minimum)
X1, X2  0

b. Obj = 1750
X1 = 250
X2 = 250



c. $3250 total profit.

PTS: 1

62. Bob and Dora Sweet wish to start investing $1,000 each month. The Sweets are looking at five 
investment plans and wish to maximize their expected return each month. Assume interest rates remain 
fixed and once their investment plan is selected they do not change their mind. The investment plans 
offered are:

Fidelity     9.1% return per year
Optima 16.1% return per year
CaseWay     7.3% return per year
Safeway     5.6% return per year
National 12.3% return per year

Since Optima and National are riskier, the Sweets want a limit of 30% per month of their total 
investments placed in these two investments. Since Safeway and Fidelity are low risk, they want at 
least 40% of their investment total placed in these investments.

Formulate the LP model for this problem.

ANS:
MAX: 0.091X1 + 0.161X2 + 0.073X3 + 0.056X4 + 0.123X5

Subject to: X1 + X2 + X3 + X4 + X5 = 1000
X2 + X5  300
X1 + X4  400
X1, X2, X3, X4, X5  0

PTS: 1

PROJECT

63. Project 2.1

Joey Koons runs a small custom computer parts company. As a sideline he offers customized and pre-
built computer system packages. In preparation for the upcoming school year, he has decided to offer 
two custom computer packages tailored for what he believes are current student needs. System A 
provides a strong computing capability at a reasonable cost while System B provides a much more 
powerful computing capability, but at a higher cost. Joey has a fairly robust parts inventory but is 
concerned about his stock of those components that are common to each proposed system. A portion of 
his inventory, the item cost, and inventory level is provided in the table below.

Part
Type /
Cost

On
Hand

Type /
Cost

On
Hand

Type /
Cost

On
Hand

Type /
Cost

On
Hand

Processor 366 MHZ     40 500 MHZ 40 650 MHZ 40 700 MHZ 40
$175 $239 $500 $742

Memory 64 MB     40 96 MB 40 128 MB 15 256 MB 15
$95 $189 $250 $496

Hard 4 GB     10 6 GB 25 13 GB 35 20 GB 50
Drive $89 $133 $196 $350
Monitor 14 "         3 15 " 65 17 " 25 19 " 10

$95 $160 $280 $480



Graphics
Card

Stock
$100

100 3-D
$250

15

CD- 24X         5 40X 25 72X 50 DVD 45
ROM $30 $58 $125 $178
Sound Stock 100 Sound II 50 Plat II 25
Card $99 $150 $195
Speakers Stock     75 60 W 75 120 W 25

$29 $69 $119
Modem Stock

$99
125

Mouse Stock
$39

125 Ergo
$69

35

Keyboard Stock
$59

100 Ergo
$129

35

Game
Devices

Stock
$165

    25

The requirements for each system are provided in the following table:

System A System B
Processor 366 MHZ 700 MHZ
Memory 64 MG 96 MG
Hard Drive 6 GB 20 GB
Monitor 15 " 15 "
Graphics Card Stock Stock
CD-ROM 40X 72X
Sound Card Stock Stock
Speakers Stock 60W
Modem Stock Stock
Mouse Stock Stock
Keyboard Stock Stock

Each system requires assembly, testing and packaging. The requirements per system built and 
resources available are summarized in the table below.

System A System B Total Hours Available
Assembly (hours) 2.25 2.50 200
Testing (hours) 1.25 2.00 150
Packaging (hours) 0.50 0.50     75

Joey is uncertain about product demand. In the past he has put together similar types of computer 
packages but his sales results vary. As a result is unwilling to commit all his in-house labor force to 
building the computer packages. He is confident he can sell all he can build and is not overly 
concerned with lost sales due to stock-outs. Based on his market survey, he has completed his 
advertising flyer and will offer System A for $ 1250 and will offer system B for $ 2325. Joey now 
needs to let his workers know how many of each system to build and he wants that mix to maximize 
his profits.

Formulate an LP for Dave's problem.    Solve the model using the graphical method.    What is Dave's 
preferred product mix?    What profit does Dave expect to make from this product mix?

ANS:



The cost to make System A is $1007 while the cost to make System B is $1992. The inventory levels 
for hard drives limit System A production to 25 while the 700 MHZ processor inventory limits System 
B production to 40. The common monitor is the 15 " unit and its inventory limits total production to 
60. Coupled with the assembly, testing, and packaging constraints, the LP formulation is:

Maximize $243 X1 + $333 X2

2.25 X1 + 2.50 X2  200 {assembly hours}
1.25 X1 + 2.00 X2  150 {testing hours}
0.50 X1 + 0.50 X2  75 {packaging hours}
X1  25 {hard drive limits}
X2  40 {processor limits}
X1 + X2  60 {monitor limits}
X1 , X2  0

Build 20 System A and 40 System B, total profit $18,180.

PTS: 1


