https://selldocx.com/products/test-bank-statistics-and-data-analysis-for-nursing-research-2e-polit

Chapter 1

Introduction to Data Analysis in an Evidence-Based Practice Environment

- 1.1. Statistical skills can play an important role in nursing because they help nurses to:
 - a. Calculate appropriate doses and clinical measurements
 - b. Generate clinical questions
 - *c. Evaluate and generate research evidence for nursing practice
 - d. Make better use of computers and the Internet
- 1.2. In the context of a quantitative study, a concept is called a(n):
 - a. Operational definition
 - *b. Variable
 - c. Statistic
 - d. Parameter
- 1.3. An example of a variable is:
 - *a. Systolic blood pressure
 - b. Pi (π)
 - c. 52.5 kilograms
 - d. Number of seconds in a minute
- 1.4. An example of a datum is:
 - a. Systolic blood pressure
 - b. Pi (π)
 - *c. 52.5 kilograms
 - d. Number of seconds in a minute
- 1.5. Which of the following is *not* a component of a research question?
 - a. An independent variable
 - b. A population
 - *c. A sample
 - d. A dependent variable
- 1.6. Identify the dependent variable in the following: In elderly men, what is the effect of chronic fatigue on level of depression?
 - a. Age
 - b. Sex
 - c. Chronic fatigue
 - *d. Depression
- 1.7. Which of the following is a continuous variable?
 - a. Number of pages in a book
 - *b. Age at death
 - c. Falls during hospitalization
 - d. Number of times married

 1.8. Measurement is the assignment of numbers to characteristics of people or objects according to specified (Fill in the blank.) *a. Rules b. Definitions c. Concepts d. Parameters
 1.9. The measurement level that classifies attributes, indicates magnitude, and has equal intervals between values, but does not have a rational zero, is: a. Nominal b. Ordinal *c. Interval d. Ratio
 1.10. The measurement level that is sometimes called <i>categorical</i> or <i>qualitative</i> is: *a. Nominal b. Ordinal c. Interval d. Ratio
 1.11. It is not meaningful to calculate an arithmetic average with data from which of the following? a. Nominal measures b. Ordinal measures *c. Nominal and ordinal measures d. All measures can be meaningfully averaged.
 1.12. Degree of pain measured as <i>none</i>, a little, or a lot is measured on which of the following scales? a. Nominal *b. Ordinal c. Interval d. Ratio
1.13. Body temperature is measured on which of the following scales?a. Nominalb. Ordinal*c. Interval

1.14. Type of birth (vaginal or cesarean) is measured on the: *a. Nominal scale

b. Ordinal scale

d. Ratio

- c. Interval scale
- d. Ratio scale

 1.15. Which of the following is a ratio-level measure? *a. Dietary cholesterol intake (mg) b. Cognitive impairment on a 50-item scale c. Pain on a 10-point scale d. Military rank 	
 1.16. Ratio-level measures are different than any other level by virtue of which pra. Classification b. Equal intervals between values *c. A true, rational zero d. Indication of magnitude 	operty?
 1.17. Which level of measurement communicates the most information? a. Nominal b. Ordinal c. Interval *d. Ratio 	
1.18. Researchers typically collect data from a and hope to generalize the to a (Fill in the blanks.) a. Population, sample b. Statistic, parameter c. Sample, statistic *d. Sample, population	ieir results
1.19. If the average amount of sleep for all people in the United States was 7.6 hornight, this average would be a(n) of the population of U.S. residents. (blank.) a. Variable *b. Parameter c. Statistic d. Datum	
 1.20. If a nurse researcher measured the anxiety level of 100 hospitalized children children's average score on an anxiety scale would be a(n): a. Variable b. Parameter *c. Statistic d. Operational definition 	, the
 1.21. Statistical methods that are used to draw conclusions about a population are *a. Inferential statistics b. Descriptive statistics c. Univariate statistics d. Multivariate statistics 	called:

Chapter 2

Frequency Distributions: Tabulating and Displaying Data

- 2.1. A major purpose of constructing a frequency distribution with sample data is to:
 - a. Estimate a population parameter
 - b. Test a research hypothesis
 - *c. Get an organized view of an entire set of scores
 - d. Get experience with statistical software
- 2.2. In a frequency distribution, the two key informational components are:
 - *a. Score values (X), frequencies (f)
 - b. A horizontal (X) axis, a vertical (Y) axis
 - c. Frequencies (f), percentages (%)
 - d. Participant ID number (id), score values (X)
- 2.3. In a frequency distribution, which of the following is true?
 - a. $\Sigma N = \%$
 - b. $\Sigma N = f$
 - c. $\Sigma f = \%$
 - *d. $\Sigma f = N$
- 2.4. In the equation Σ % = 100.0, the symbol Σ signifies:
 - a. A percentage
 - *b. The sum of
 - c. A data value
 - d. A frequency
- 2.5. In a frequency distribution, percentages are sometimes called:
 - a. Proportions
 - b. Relative proportions
 - *c. Relative frequencies
 - d. Cumulative proportions
- 2.6. Data for which of the following variables is most likely to be presented in a grouped frequency distribution?
 - a. Nursing specialty area
 - *b. Daily cholesterol intake
 - c. Number of abortions
 - d. Number of pets owned
- 2.7. The level of measurement for data appropriately presented in a bar graph is:
 - a. Interval or ratio
 - b. Nominal only
 - c. Interval only
 - *d. Nominal or ordinal

- 2.8. In a frequency distribution graph, frequencies are typically presented on the ____ and data values are presented on the ____ . (Fill in the blanks.)
 - *a. Y axis, X axis
 - b. X axis, Y axis
 - c. faxis, Naxis
 - d. N axis, f axis
- 2.9. Which of the following sets of data is *not* unimodal?
 - *a. 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5
 - b. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4

 - d. 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9
- 2.10. Which of the following variables is most likely to be negatively skewed in a general population?
 - a. Number of times arrested
 - *b. Age at retirement
 - c. Number of times married
 - d. Age at birth
- 2.11. A normal distribution is *not*:
 - a. Skewed
 - b. Leptokurtic
 - c. Platykurtic
 - *d. All of the above
- 2.12. A wild code is:
 - *a. A value that is impossible given the coding scheme
 - b. An outlier or high value
 - c. A code for which there is a very low frequency
 - d. A code for which there is a very high frequency

The next eight questions pertain to the following table (Table 2):

Table 2

Number of	Frequency	Percentage	Cumulative
Pregnancies of Study			Percentage
Participants			
0	24	11.1	11.1
1	29	13.5	24.6
2	78	36.3	60.9
3	46	21.4	82.3
4	22	10.2	92.5
5	11	5.1	97.6
6	4	1.9	99.5
7	1	0.4	100.0
Total	215	100.0	