# https://selldocx.com/products/test-bank-the-essential-world-history-14e-anderson

# Chapter 1 - Introduction

| -    | , - | _  |     |
|------|-----|----|-----|
| True | /   | Fа | lse |

| True / False                         |                            |                                                                    |               |
|--------------------------------------|----------------------------|--------------------------------------------------------------------|---------------|
| 1. The process of d                  | ecision making is more     | limited than that of problem solving.                              |               |
|                                      | a.                         | True                                                               |               |
|                                      | b.                         | False                                                              |               |
| ANSWER:                              | True                       |                                                                    |               |
| POINTS:                              | 1                          |                                                                    |               |
| TOPICS:                              | Problem solv               | ng and decision making                                             |               |
| 2. The terms 'stocha                 | astic' and 'deterministic' | have the same meaning in quantitative analysis.                    |               |
|                                      | a.                         | True                                                               |               |
|                                      | b.                         | False                                                              |               |
| ANSWER:                              |                            | False                                                              |               |
| POINTS:                              |                            | 1                                                                  |               |
| TOPICS:                              |                            | Model development                                                  |               |
| 3. The volume that                   | results in marginal reve   | nue equaling marginal cost is called the break-even point.         |               |
|                                      | a.                         | True                                                               |               |
|                                      | b.                         | False                                                              |               |
| ANSWER:                              | False                      |                                                                    |               |
| POINTS:                              | 1                          |                                                                    |               |
| TOPICS:                              | Problem solv               | ng and decision making                                             |               |
| 4. Problem solving                   | encompasses both the i     | dentification of a problem and the action to resolve it.           |               |
|                                      | a.                         | True                                                               |               |
|                                      | b.                         | False                                                              |               |
| ANSWER:                              | True                       |                                                                    |               |
| POINTS:                              | 1                          |                                                                    |               |
| TOPICS:                              | Problem solv               | ng and decision making                                             |               |
| 5. The decision mal                  | king process includes in   | aplementation and evaluation of the decision.                      |               |
|                                      | a.                         | True                                                               |               |
|                                      | b.                         | False                                                              |               |
| ANSWER:                              | False                      |                                                                    |               |
| POINTS:                              | 1                          |                                                                    |               |
| TOPICS:                              | Problem solv               | ng and decision making                                             |               |
| 6. The most successfully structured. | sful quantitative analys   | s will separate the analyst from the managerial team until after t | he problem is |
|                                      | a.                         | True                                                               |               |
|                                      | b.                         | False                                                              |               |
| ANSWER:                              |                            | False                                                              |               |
| POINTS:                              |                            | 1                                                                  |               |
| TOPICS:                              |                            | Quantitative analysis                                              |               |
|                                      |                            |                                                                    |               |

|                                          | a.                         | True                  |                                                               |
|------------------------------------------|----------------------------|-----------------------|---------------------------------------------------------------|
|                                          | b.                         | False                 |                                                               |
| ANSWER:                                  |                            | True                  |                                                               |
| POINTS:                                  |                            | 1                     |                                                               |
| TOPICS:                                  |                            | Model develop         | ment                                                          |
| 8. Uncontrollable in                     | nputs are the decision     | variables for a mo    | lel.                                                          |
|                                          | a.                         | True                  |                                                               |
|                                          | b.                         | False                 |                                                               |
| ANSWER:                                  |                            | False                 |                                                               |
| POINTS:                                  |                            | 1                     |                                                               |
| TOPICS:                                  |                            | Model develop         | ment                                                          |
| 9. The feasible solu                     | ition is the best solution | on possible for a m   | athematical model.                                            |
|                                          | a.                         | True                  |                                                               |
|                                          | b.                         | False                 |                                                               |
| ANSWER:                                  |                            | False                 |                                                               |
| POINTS:                                  |                            | 1                     |                                                               |
| TOPICS:                                  |                            | Model                 | solution                                                      |
| 10. A company see                        | ks to maximize profit      | subject to limited    | availability of man-hours. Man-hours is a controllable input. |
|                                          | a.                         | True                  |                                                               |
|                                          | b.                         | False                 |                                                               |
| ANSWER:                                  |                            | False                 |                                                               |
| POINTS:                                  |                            | 1                     |                                                               |
| TOPICS:                                  |                            | Model develop         | ment                                                          |
| 11. Frederick Taylo                      | or is credited with form   | ning the first MS/C   | OR interdisciplinary teams in the 1940's.                     |
|                                          | a.                         | True                  |                                                               |
|                                          | b.                         | False                 |                                                               |
| ANSWER:                                  |                            |                       | False                                                         |
| POINTS:                                  |                            |                       | 1                                                             |
| TOPICS:                                  |                            |                       | Introduction                                                  |
| 12. To find the cho                      | ice that provides the h    | nighest profit and th | e fewest employees, apply a single-criterion decision process |
|                                          | a.                         | True                  |                                                               |
|                                          | b.                         | False                 |                                                               |
| ANSWER:                                  | False                      |                       |                                                               |
| POINTS:                                  | 1                          |                       |                                                               |
| TOPICS:                                  | Problem sol                | ving and decision     | naking                                                        |
| 13. The most critica problem definition. | _                          | mining the success    | or failure of any quantitative approach to decision making is |
|                                          | a.                         | True                  |                                                               |
|                                          | b.                         | False                 |                                                               |

| Chapter 1 - Intro                          | duction                   |                                                                                      |                 |
|--------------------------------------------|---------------------------|--------------------------------------------------------------------------------------|-----------------|
| ANSWER:                                    |                           | True                                                                                 |                 |
| POINTS:                                    |                           | 1                                                                                    |                 |
| TOPICS:                                    |                           | Quantitative analysis                                                                |                 |
| 14. The first step in                      | the decision making p     | rocess is to identify the problem.                                                   |                 |
|                                            | a.                        | True                                                                                 |                 |
|                                            | b.                        | False                                                                                |                 |
| ANSWER:                                    |                           | True                                                                                 |                 |
| POINTS:                                    |                           | 1                                                                                    |                 |
| TOPICS:                                    |                           | Introduction                                                                         |                 |
| 15. All uncontrollab solution for the prob |                           | be specified before we can analyze the model and recommend a                         | a decision or   |
|                                            | a.                        | True                                                                                 |                 |
|                                            | b.                        | False                                                                                |                 |
| ANSWER:                                    |                           | True                                                                                 |                 |
| POINTS:                                    |                           | 1                                                                                    |                 |
| TOPICS:                                    |                           | Quantitative analysis                                                                |                 |
| 16. In quantitative a                      | nalysis, the optimal so   | lution is the mathematically-best solution.                                          |                 |
|                                            | a.                        | True                                                                                 |                 |
|                                            | b.                        | False                                                                                |                 |
| ANSWER:                                    |                           | True                                                                                 |                 |
| POINTS:                                    |                           | 1                                                                                    |                 |
| TOPICS:                                    |                           | Quantitative analysis                                                                |                 |
|                                            | ing to buy either mach    | ine A, B, or C with the objective of minimizing the sum of labor criterion decision. | r, material and |
|                                            | a.                        | True                                                                                 |                 |
|                                            | b.                        | False                                                                                |                 |
| ANSWER:                                    | True                      |                                                                                      |                 |
| POINTS:                                    | 1                         |                                                                                      |                 |
| TOPICS:                                    | Problem solv              | ing and decision making                                                              |                 |
| 18. Model developmimplementation stag      |                           | quantitative analysts; the model user's involvement should begin                     | at the          |
|                                            | a.                        | True                                                                                 |                 |
|                                            | b.                        | False                                                                                |                 |
| ANSWER:                                    | False                     |                                                                                      |                 |
| POINTS:                                    | 1                         |                                                                                      |                 |
| TOPICS:                                    | Problem solv              | ing and decision making                                                              |                 |
| 19. A feasible solut                       | ion is one that satisfies | at least one of the constraints in the problem.                                      |                 |
|                                            | a.                        | True                                                                                 |                 |
|                                            | b.                        | False                                                                                |                 |

False

ANSWER:

| Chapter 1     | - Introduction           |                     |                                               |
|---------------|--------------------------|---------------------|-----------------------------------------------|
| POINTS:       |                          |                     | 1                                             |
| TOPICS:       |                          |                     | Model solution                                |
| 20. A toy tra | ain layout designed to   | represent an actua  | al railyard is an example of an analog model. |
|               | а                        | ı <b>.</b>          | True                                          |
|               | ł                        | ) <b>.</b>          | False                                         |
| ANSWER:       |                          | False               |                                               |
| POINTS:       |                          | 1                   |                                               |
| TOPICS:       |                          | Model               | development                                   |
| Multiple Ch   | noice                    |                     |                                               |
|               | d of management scien    |                     |                                               |
|               | •                        | -                   | th techniques based on the scientific method. |
|               |                          |                     | hods to assist in decision making.            |
|               | another name for decis   |                     | or operations research.                       |
|               | ch of these choices are  | true.               |                                               |
| ANSWER:       |                          |                     | d                                             |
| POINTS:       |                          |                     | 1                                             |
| TOPICS:       |                          |                     | Introduction                                  |
| 22. Identific | cation and definition of | f a problem         |                                               |
| a.            | is the final step of p   | problem solving.    |                                               |
| b.            | cannot be done unt       | il alternatives are | proposed.                                     |
| c.            | requires considerat      | ion of multiple cr  | iteria.                                       |
| d.            | is the first step of d   | ecision making.     |                                               |
| ANSWER:       | d                        |                     |                                               |
| POINTS:       | 1                        |                     |                                               |
| TOPICS:       | Prob                     | lem solving and d   | ecision making                                |
| 23. Decision  | n alternatives           |                     |                                               |
| a.            | should be identified b   | efore decision cri  | teria are established.                        |
| b.            | are limited to quantita  | tive solutions      |                                               |
| c.            | are evaluated as a par   | t of the problem d  | efinition stage.                              |
| d.            | are best generated by    | brain-storming.     |                                               |
| ANSWER:       | a                        |                     |                                               |
| POINTS:       | 1                        |                     |                                               |
| TOPICS:       | Prob                     | lem solving and d   | ecision making                                |
|               |                          |                     |                                               |

## 24. Decision criteria

- a. are the ways to evaluate the choices faced by the decision maker.
- b. are the choices faced by the decision maker.
- c. must be unique for a problem.
- d. are the problems faced by the decision maker.

ANSWER:

a

| Chapter 1     | - Introduc     | etion                        |                                                                          |
|---------------|----------------|------------------------------|--------------------------------------------------------------------------|
| POINTS:       |                | 1                            |                                                                          |
| TOPICS:       |                | Problem solving and          | decision making                                                          |
| 25. In a mul  | lticriteria de | cision problem               |                                                                          |
| a. su         | ccessive de    | cisions must be made over    | time.                                                                    |
| b. it i       | is impossibl   | e to select a single decisio | n alternative.                                                           |
| c. the        | e decision n   | naker must evaluate each a   | Iternative with respect to each criterion.                               |
| d. ea         | ch of these    | choices are true.            |                                                                          |
| ANSWER:       |                | c                            |                                                                          |
| POINTS:       |                | 1                            |                                                                          |
| TOPICS:       |                | Problem solving and          | decision making                                                          |
| 26. The qua   | ntitative an   | alysis approach requires     |                                                                          |
| a.            | mathemat       | cal expressions for the rela | ationships.                                                              |
| b.            | the manag      | er's prior experience with   | a similar problem.                                                       |
| c.            | a relativel    | y uncomplicated problem.     |                                                                          |
| ANSWER:       |                | a                            |                                                                          |
| POINTS:       |                | 1                            |                                                                          |
| TOPICS:       |                | Quantitative analysis as     | nd decision making                                                       |
| 27. A physic  | cal model tl   | nat does not have the same   | physical appearance as the object being modeled is                       |
|               | a.             | a qualitative model.         |                                                                          |
|               | b.             | a mathematical model.        |                                                                          |
|               | c.             | an analog model.             |                                                                          |
|               | d.             | an iconic model.             |                                                                          |
| ANSWER:       |                | c                            |                                                                          |
| POINTS:       |                | 1                            |                                                                          |
| TOPICS:       |                | Mod                          | lel development                                                          |
| 28. Inputs to | o a quantita   | rive model                   |                                                                          |
| a.            | must all be    | deterministic if the proble  | m is to have a solution.                                                 |
| b.            | are uncerta    | n for a stochastic model.    |                                                                          |
| c.            | are a trivial  | part of the problem solving  | ng process.                                                              |
| d.            | are uncontr    | ollable for the decision var | riables.                                                                 |
| ANSWER:       |                | b                            |                                                                          |
| POINTS:       |                | 1                            |                                                                          |
| TOPICS:       |                | Mod                          | lel development                                                          |
| 29. When th   | ne value of t  | _                            | nined even if the value of the controllable input is known, the model is |
|               | a              | deterministic.               |                                                                          |
|               | b              | $\mathcal{E}$                |                                                                          |
|               | c              | stochastic.                  |                                                                          |
|               | d              | . digital.                   |                                                                          |
| ANSWER:       |                | c                            |                                                                          |
| POINTS:       |                | 1                            |                                                                          |

| TOPICS:       | Model development                                                               |
|---------------|---------------------------------------------------------------------------------|
| 30. The volu  | me that results in total revenue being equal to total cost is the               |
|               | a. profit mix.                                                                  |
|               | b. marginal volume.                                                             |
|               | c. marginal cost.                                                               |
|               | d. break-even point.                                                            |
| ANSWER:       | d                                                                               |
| POINTS:       | 1                                                                               |
| TOPICS:       | Break-even analysis                                                             |
| 31. Manager   | ment science and operations research both involve                               |
| a.            | operational management skills.                                                  |
| b.            | quantitative approaches to decision making.                                     |
| c.            | scientific research as opposed to applications.                                 |
| d.            | qualitative managerial skills.                                                  |
| ANSWER:       | ь                                                                               |
| POINTS:       | 1                                                                               |
| TOPICS:       | Introduction                                                                    |
| 32 George I   | Dantzig is important in the history of management science because he developed  |
| a.            | the scientific management revolution.                                           |
| b.            | powerful digital computers.                                                     |
| c.            | World War II operations research teams.                                         |
| d.            | the simplex method for linear programming.                                      |
| ANSWER:       | d                                                                               |
| POINTS:       | 1                                                                               |
| TOPICS:       | Introduction                                                                    |
| 33. The first | step in problem solving is                                                      |
|               | inition of decision variables.                                                  |
| b. the        | identification of a difference between the actual and desired state of affairs. |
|               | ermination of the correct analytical solution procedure.                        |
|               | plementation.                                                                   |
| ANSWER:       | ь                                                                               |
| POINTS:       | 1                                                                               |
| TOPICS:       | Problem solving and decision making                                             |
| 34. Problem   | definition                                                                      |
| a.            | must involve the analyst and the user of the results.                           |
| b.            | includes specific objectives and operating constraints.                         |
| c.            | must occur prior to the quantitative analysis process.                          |
| d.            | each of these choices are true.                                                 |
| ANSWER:       | d                                                                               |
| POINTS:       | 1                                                                               |

#### TOPICS:

### Quantitative analysis

- 35. A model that uses a system of symbols to represent a problem is called
  - a. iconic.
  - b. constrained.
  - c. mathematical.
  - d. analog.

ANSWER: c
POINTS: 1

TOPICS: Model development

- 36. Which of the following is <u>not</u> one of the commonly used names for the body of knowledge involving quantitative approaches to decision-making?
  - a. efficiency studies
  - b. management science
  - c. business analytics
  - d. operations research

ANSWER:

a

POINTS:

1

TOPICS:

Introduction

Subjective Short Answer

- 37. A snack food manufacturer buys corn for tortilla chips from two cooperatives, one in Iowa and one in Illinois. The price per unit of the Iowa corn is \$6.00 and the price per unit of the Illinois corn is \$5.50.
- a. Define variables that would tell how many units to purchase from each source.
- b. Develop an objective function that would minimize the total cost.
- The manufacturer needs at least 12000 units of corn. The Iowa cooperative can supply up to 8000 units, and the
- Illinois cooperative can supply at least 6000 units. Develop constraints for these conditions.

#### ANSWER:

a. Let  $x_1$  = the number of units from Iowa

Let  $x_2$  = the number of units from Illinois

- b.  $\min 6x_1 + 5.5x_2$
- c.  $x_1 + x_2 \ge 12000$

 $x_1 \ge 8000$ 

 $x_1 \ge 6000$ 

POINTS: 1

TOPICS: Model development

- 38. The relationship d = 5000 25p describes what happens to demand (d) as price (p) varies. Here, price can vary between \$10 and \$50.
- a. How many units can be sold at the \$10 price? How many can be sold at the \$50 price?
- b. Model the expression for total revenue.
- Consider prices of \$20, \$30, and \$40. Which of these three price alternative will maximize total revenue? What are

the values for demand and revenue at this price?

#### ANSWER:

a. For p = 10, d = 4750

For 
$$p = 50$$
,  $d = 3750$   
b.  $TR = p(5000 - 25p)$   
c. For  $p = 20$ ,  $d = 4500$ ,  $TR = $90,000$ 

For p = 30, d = 4250, TR = 
$$127,500$$
  
For p = 40, d = 4000, TR =  $160,000$  (maximum total revenue)

POINTS: 1

TOPICS: Model development

- 39. There is a fixed cost of \$50,000 to start a production process. Once the process has begun, the variable cost per unit is \$25. The revenue per unit is projected to be \$45.
- a. Write an expression for total cost.
- b. Write an expression for total revenue.
- c. Write an expression for total profit.
- d. Find the break-even point.

ANSWER:

- a. C(x) = 50000 + 25x
- b. R(x) = 45x
- c. P(x) = 45x (50000 + 25x)
- d. x = 2500

POINTS: 1

TOPICS: Break-even analysis

40. An author has received an advance against royalties of \$10,000. The royalty rate is \$1.00 for every book sold in the United States, and \$1.35 for every book sold outside the United States. Define variables for this problem and write an expression that could be used to calculate the number of books to be sold to cover the advance.

ANSWER: Let  $x_1$  = the number of books sold in the U.S.

Let  $x_2$  = the number of books sold outside the U.S.

$$10000 = 1x_1 + 1.35x_2$$

POINTS:

TOPICS: Break-even analysis

41. A university schedules summer school courses based on anticipated enrollment. The cost for faculty compensation, laboratories, student services, and allocated overhead for a computer class is \$8500. If students pay \$920 to enroll in the course, how large would enrollment have to be for the university to break even?

ANSWER: Enrollment would need to be 10 students.

POINTS:

TOPICS: Break-even analysis

42. As part of their application for a loan to buy Lakeside Farm, a property they hope to develop as a bed-and-breakfast operation, the prospective owners have projected:

Monthly fixed cost (loan payment, taxes, insurance, maintenance)

Variable cost per occupied room per night

Revenue per occupied room per night

\$ 20

\$ 75

- a. Write the expression for total cost per month. Assume 30 days per month.
- b. Write the expression for total revenue per month.
- c. If there are 12 guest rooms available, can they break even? What percentage of rooms would need to be occupied, on average, to break even?

ANSWER:

a. C(x) = 6000 + 20(30)x (monthly)

b. R(x) = 75(30)x (monthly)

Break-even occupancy = 3.64 or 4 occupied rooms per night, so they have enough rooms to break even.

c. This would be a 33% occupancy rate.

POINTS: 1

TOPICS: Break-even analysis

- 43. Organizers of an Internet training session will charge participants \$150 to attend. It costs \$3000 to reserve the room, hire the instructor, bring in the equipment, and advertise. Assume it costs \$25 per student for the organizers to provide the course materials.
- a. How many students would have to attend for the company to break even?
- b. If the trainers think, realistically, that 20 people will attend, then what price should be charged per person for the organization to break even?

ANSWER:

a. C(x) = 3000 + 25x

R(x) = 150x

Break-even students = 24

b. Cost = 3000 + 25(20)

Revenue = 20p

Break-even price = 175

*POINTS:* 

TOPICS: Break-even analysis

- 44. In this portion of an Excel spreadsheet, the user has given values for selling price, the costs, and a sample volume. Give the cell formula for
- a. cell E12, break-even volume.
- b. cell E16, total revenue.
- c. cell E17, total cost.
- d. cell E19, profit (loss).

|    | A                      | В                      | С | D   | Е    |
|----|------------------------|------------------------|---|-----|------|
| 1  |                        |                        |   |     |      |
| 2  |                        |                        |   |     |      |
| 3  |                        |                        |   |     |      |
| 4  | Break-even calculat    | ion                    |   |     |      |
| 5  |                        |                        |   |     |      |
| 6  |                        | Selling price per unit |   |     | 10   |
| 7  |                        |                        |   |     |      |
| 8  |                        | Costs                  |   |     |      |
| 9  |                        | Fix cost               |   |     | 8400 |
| 10 | Variable cost per unit |                        |   | 4.5 |      |
| 11 |                        |                        |   |     |      |
| 12 |                        | Break-even volume      |   |     |      |
| 13 |                        |                        |   |     |      |
| 14 |                        | Sample calculation     |   |     |      |
| 15 |                        | Volume                 |   |     | 2000 |
| 16 | Total revenue          |                        |   |     |      |
| 17 |                        | Total cost             |   |     |      |
| 18 |                        |                        |   |     |      |
| 19 |                        | Profit (loss)          |   |     |      |

ANSWER:

a. =E9/(E6-E10)

b. =E15\*E6

c. =E9+E10\*E15

d. =E16-E17

POINTS: 1

TOPICS: Spreadsheets for management science

- 45. A furniture store has set aside 800 square feet to display its sofas and chairs. Each sofa utilizes 50 sq. ft. and each chair utilizes 30 sq. ft. At least five sofas and at least five chairs are to be displayed.
- a. Write a mathematical model representing the store's constraints.
- b. Suppose the profit on sofas is \$200 and on chairs is \$100. On a given day, the probability that a displayed sofa will be sold is .03 and that a displayed chair will be sold is .05. Mathematically model each of the following objectives:
  - 1. Maximize the total pieces of furniture displayed.
  - 2. Maximize the total expected number of daily sales.
  - 3. Maximize the total expected daily profit.

ANSWER:

a.  $50s + 30c \le 800$ 

 $s \geq 5\,$ 

 $c \ge 5$ 

b. (1) Max s + c

(2) Max .03s + .05c

(3) Max 6s + 5c

POINTS:

2017101

TOPICS: Model development

- 46. A manufacturer makes two products, doors and windows. Each must be processed through two work areas. Work area #1 has 60 hours of available production time per week. Work area #2 has 48 hours of available production time per week. Manufacturing of a door requires 4 hours in work area #1 and 2 hours in work area #2. Manufacturing of a window requires 2 hours in work area #1 and 4 hours in work area #2. Profit is \$8 per door and \$6 per window.
- a. Define decision variables that will tell how many units to build (doors and windows) per week.
- b. Develop an objective function that will maximize total profit per week.
- c. Develop production constraints for work area #1 and #2.

ANSWER:

a. Let D = the number of doors to build per week

Let N = the number of windows to build per week

b. Weekly Profit = 8D + 6W

c.  $4D + 2W \le 60$ 

 $2D + 4W \le 48$ 

POINTS: 1

TOPICS: Model development

47. A small firm builds galvanized swing sets. The investment in plant and equipment is \$200,000. The variable cost per swing set is \$500. The selling price of the swing set is \$1000. How many swing sets would have to be sold for the firm to break even?

ANSWER: 400 swing sets

POINTS:

TOPICS: Break-even analysis

48. A computer rework center has the capacity to rework 300 computers per day. The expected number of computers

needing to be reworked per day is 225. The center is paid \$26 for each computer reworked. The fixed cost of renting the reworking equipment is \$250 per day. Work space rents for \$150 per day. The cost of material is \$18 per computer and labor costs \$3 per computer. What is the break-even number of computers reworked per day?

ANSWER: 80 computers

POINTS:

TOPICS: Break-even analysis

- 49. To establish a driver education school, organizers must decide how many cars, instructors, and students to have. Costs are estimated as follows. Annual fixed costs to operate the school are \$30,000. The annual cost per car is \$3000. The annual cost per instructor is \$11,000 and one instructor is needed for each car. Tuition for each student is \$350. Let x be the number of cars and y be the number of students.
- a. Write an expression for total cost.
- b. Write an expression for total revenue.
- c. Write an expression for total profit.
- d. The school offers the course eight times each year. Each time the course is offered, there are two sessions. If they decide to operate five cars, and if four students can be assigned to each car, will they break even?

#### ANSWER:

- a. C(x) = 30000 + 14000x
- b. R(y) = 350y
- c. P(x,y) = 350y (30000 + 14000x)
- d. Each car/instructor can serve up to (4 students/session)(2 sessions/course)(8 courses/year) = 64 students annually. Five cars can serve 320 students. If the classes are filled, then profit for five cars is 350(320) (30000 + 14000(5)) = 12000. So, the school can reach the break-even point.

POINTS: 1

TOPICS: Break-even analysis

- 50. Zipco Printing operates a shop that has five printing machines. The machines differ in their capacities to perform various printing operations due to differences in the machines' designs and operator skill levels. At the start of the workday there are five printing jobs to schedule. The manager must decide what the job-machine assignments should be.
- a. How could a quantitative approach to decision making be used to solve this problem?
- b. What would be the uncontrollable inputs for which data must be collected?
- c. Define the decision variables, objective function, and constraints to appear in the mathematical model.
- d. Is the model deterministic or stochastic?
- e. Suggest some simplifying assumptions for this problem.

#### ANSWER:

- a. A quantitative approach to decision making can provide a systematic way for deciding the job-machine pairings so that total job processing time is minimized.
- b. How long it takes to process each job on each machine, and any job-machine pairings that are unacceptable.
- c. <u>Decision variables:</u> one for each job-machine pairing, taking on a value of 1 if the pairing is used and 0 otherwise.

Objective function: minimize total job processing time.

<u>Constraints:</u> each job is assigned to exactly one machine, and each machine be assigned no more than one job.

- d. Stochastic: job processing times vary due to varying machine set-up times, variable operator performance, and more.
- e. Assume that processing times are deterministic (known/fixed).

POINTS: 1

TOPICS: Model development

- 51. Consider a department store that must make weekly shipments of a certain product from two different warehouses to four different stores.
- a. How could a quantitative approach to decision making be used to solve this problem?
- b. What would be the uncontrollable inputs for which data must be gathered?
- c. What would be the decision variables of the mathematical model? the objective function? the constraints?
- d. Is the model deterministic or stochastic?
- e. Suggest assumptions that could be made to simplify the model.

#### ANSWER:

- a. A quantitative approach to decision making can provide a systematic way to determine a minimum shipping cost from the warehouses to the stores.
- b. Fixed costs and variable shipping costs; the demand each week at each store; the supplies each week at each warehouse.
  - Decision variables--how much to ship from each warehouse to each store; objective function--minimize
- c. total shipping costs; constraints--meet the demand at the stores without exceeding the supplies at the warehouses.
- d. Stochastic--weekly demands fluctuate as do weekly supplies; transportation costs could vary depending upon the amount shipped, other goods sent with a shipment, etc.
- e. Make the model deterministic by assuming fixed shipping costs per item, demand is constant at each store each week, and weekly supplies in the warehouses are constant.

POINTS:

TOPICS:

1

Model development

52. Three production processes - A, B, and C - have the following cost structure:

| Process | Fixed Cost<br>per Year | Variable Cost<br>per Unit |
|---------|------------------------|---------------------------|
| A       | \$120,000              | \$3.00                    |
| В       | 90,000                 | 4.00                      |
| C       | 80,000                 | 4.50                      |

- a. What is the most economical process for a volume of 8,000 units?
- b. How many units per year must be sold with each process to have annual profits of \$50,000 if the selling price is \$6.95 per unit?
- c. What is the break-even volume for each process?

#### ANSWER:

a. C(x) = FC + VC(x)

Process A: C(x) = \$120,000 + \$3.00(8,000) = \$144,000 per year

Process B: C(x) = \$ 90,000 + \$4.00(8,000) = \$122,000 per year

Process C: C(x) = \$80,000 + \$4.50(8,000) = \$116,000 per year

Process C has the lowest annual cost for a production volume of 8,000 units.

b. Q = (profit + FC)/(price - VC)

Process A: Q = (\$50,000 + \$120,000)/(\$6.95 - \$3.00) = 43,038 units

Process B: Q = (\$50,000 + \$ 90,000)/(\$6.95 - \$4.00) = 47,458 units

Process C: Q = (\$50,000 + \$80,000)/(\$6.95 - \$4.50) = 53,062 units

Process A requires the lowest production volume for an annual profit of \$50,000.

c. At breakeven, profit (the pretax profits per period) is equal to zero.

Q = FC/(price - VC)

Process A: Q = \$120,000/(\$6.95 - \$3.00) = 30,380 units Process B: Q = \$90,000/(\$6.95 - \$4.00) = 30,509 units Process C: Q = \$80,000/(\$6.95 - \$4.50) = 32,654 units

Process A has the lowest break-even quantity, while Process B's is almost as low.

POINTS: 1

TOPICS: Break-even analysis

53. Jane Persico, facility engineer at the El Paso plant of Computer Products Corporation (CPC), is studying a process selection decision at the plant. A new printer is to be manufactured and she must decide whether the printer will be auto-assembled or manually assembled. The decision is complicated by the fact that annual production volume is expected to increase by almost 50% over three years. Jane has developed these estimates for two alternatives for the printer assembly process:

|                             |        | Auto-<br>Assembly<br>Process | Manual<br>Assembly<br>Process |
|-----------------------------|--------|------------------------------|-------------------------------|
| Annual fixed cost           |        | \$690,000                    | \$269,000                     |
| Variable cost per product   |        | \$29.56                      | \$31.69                       |
| Estimated annual production |        |                              |                               |
| (in number of products):    | Year 1 | 152,000                      | 152,000                       |
|                             | Year 2 | 190,000                      | 190,000                       |
|                             | Year 3 | 225,000                      | 225,000                       |

- a. Which production process would be the least-cost alternative in Years 1, 2, and 3?
- b. How much would the variable cost per unit have to be in Year 2 for the auto-assembly process to justify the additional annual fixed cost for the auto-assembly process over the manual assembly process?

#### ANSWER:

```
a. C(x) = \text{fixed cost} + \text{variable cost}(x)

Year 1:

C_A = 690,000 + 29.56(152,000) = \$5,183,120

C_M = 269,000 + 31.69(152,000) = \$5,085,880 (least-cost alternative)

Year 2:

C_A = 690,000 + 29.56(190,000) = \$6,306,400

C_M = 269,000 + 31.69(190,000) = \$6,290,100 (least-cost alternative)

Year 3:

C_A = 690,000 + 29.56(225,000) = \$7,341,000 (least-cost alternative)

C_M = 269,000 + 31.69(225,000) = \$7,399,250

b. C_A = C_M

FC_A + v_A(190,000) = FC_M + v_M(190,000)

690,000 + v(190,000) = 269,000 + 31.69(190,000)

v_A = (269,000 + 6,021,100 - 690,000)/190,000

v_A = \$29.47 (roughly a 0.3% reduction)
```

| Chapter 1 -                    | Introduction                                                 |                                                                                 |
|--------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|
| POINTS:                        | 1                                                            |                                                                                 |
| TOPICS:                        | Cost and volume models                                       |                                                                                 |
| Essay                          |                                                              |                                                                                 |
| 54. Should the                 | e problem solving process be                                 | e applied to all problems?                                                      |
| ANSWER:                        | Answer not p                                                 |                                                                                 |
| POINTS:                        | 1                                                            |                                                                                 |
| TOPICS:                        | Problem solv                                                 | ving and decision making                                                        |
| 55. Explain th<br>ANSWER:      | ne difference between quanti<br>Answer not pro               | tative and qualitative analysis from the manager's point of view.               |
| POINTS:                        | 1                                                            |                                                                                 |
| TOPICS:                        | Quantitative an                                              | alysis and decision making                                                      |
| 56. Explain th                 | ne relationship among model                                  | development, model accuracy, and the ability to obtain a solution from a model. |
| ANSWER:                        |                                                              | Answer not provided.                                                            |
| POINTS:                        |                                                              | 1                                                                               |
| TOPICS:                        |                                                              | Model solution                                                                  |
| effectiveness                  | three of the management sci<br>of these applications be incr | ence techniques that practitioners use most frequently? How can the eased?      |
| ANSWER:                        | Answer                                                       | not provided.                                                                   |
| POINTS:                        | 1                                                            |                                                                                 |
| TOPICS:                        | Method                                                       | s used most frequently                                                          |
| 58. What step                  | s of the problem solving pro                                 | ocess are involved in decision making?                                          |
| ANSWER:                        |                                                              | Answer not provided.                                                            |
| POINTS:                        |                                                              | 1                                                                               |
| TOPICS:                        |                                                              | Introduction                                                                    |
| 59. Give three                 | e benefits of model developr                                 | nent and an example of each.                                                    |
| ANSWER:                        |                                                              | Answer not provided.                                                            |
| POINTS:                        |                                                              | 1                                                                               |
| TOPICS:                        |                                                              | Model development                                                               |
| 60. Explain th<br>mathematical | _                                                            | rmation systems specialists and quantitative analysts in the solution of large  |
| ANSWER:                        |                                                              | Answer not provided.                                                            |
| POINTS:                        |                                                              | 1                                                                               |
| TOPICS:                        |                                                              | Data preparation                                                                |
| 61. Define an                  | d contrast the terms feasible                                | solution, infeasible solution and optimal solution.                             |
| ANSWER:                        |                                                              | Answer not provided.                                                            |
| POINTS:                        |                                                              | 1                                                                               |

Model solution

TOPICS:

62. Define three forms of models and provide an example of each.

ANSWER: Answer not provided.

POINTS:

TOPICS: Model development

63. Explain the difference between controllable and uncontrollable inputs to a mathematical model and provide an example of each.

ANSWER: Answer not provided.

POINTS:

TOPICS: Model development