https://selldocx.com/products /test-bankathermqtknamliqs-focanapineers-si-egition-1e-kroos

1. Which of the following would be identified as a control volume?

B) Filling a tire with air at a service station

C) Expansion of gases in a cylinder **D**) Compression of air in a cylinder

A) The air in a tire as a car is driven from Michigan to Arizona

2.	Which of the follow	hich of the following could be a quasi-equilibrium process?			
	 A) Mixing a fluid in a rigid volume B) Combustion of the air-fuel mixture in a cylinder C) Expansion of gases in a piston-cylinder arrangement D) Heating air in a cylinder with a resistance heater 				
3.	The mass in a volume of 10 cubic meters with $v = 20 \text{ m}^3/\text{kg}$ is nearest:				
	A) 2 kg	B) 1 kg	C) 0.5 kg	D) 0.25 kg	
4.	If the elevation is 3000 m, the pressure at a point where the gage pressure is 200 mm of mercury is nearest ($\rho_{Hg} = 13.6 \ \rho_{water}$):				
	A) 97 kPa	B) 109 kPa	C) 127 kPa	D) 141 kPa	
5.	The volume occupied by 10 kg of water at 170°C and 800 kPa is nearest:				
	A) 13.1 L	B) 12.6 L	C) 11.9 L	D) 11.4 L	
6.	. Two kg of steam is contained in a piston-cylinder arrangement. The 20-mm-dia, 48-kg piston is allowed to rise with no friction until the temperature reaches 250°C. The final volume is nearest: A) 0.422 m ³ B) 0.388 m ³ C) 0.302 m ³ D) 0.284 m ³				
7.		er climate and th	e tire temperati	when the tire temperature is -30° C. The automobile ure increases to 65°C. The gage pressure in the tire	
	A) 480 kPa	B) 370 kPa	C) 320 l	kPa D) 280 kPa	
8.	Ten kilograms of air is nearest:	at 800 kPa are he	eated at constan	nt pressure from 170°C to 400°C. The heat required	
	A) 2300 kJ	B) 2100 kJ	C) 1900 k	kJ D) 1700 kJ	
9. A mass of 0.025 kg of steam at a quality of 10 percent and a pressure of 200 kPa is heater container until the temperature reaches 300°C. The pressure at state 2 is nearest:				-	
	A) 2.25 MPa	B) 2.5 MPa	C) 2.75 MF	Pa D) 3.0 MPa	
10. Two kilograms of air is expanded in a piston-cylinder arrangement at a constant pressure of 600 kPa from a volume of 0.1 m ³ to a volume of 0.3 m ³ . Then the temperature is then held constant during an expansion to 0.5 m ³ . The total work done by the air is nearest:					
	A) 119 kJ	B) 132 kJ	C) 151 kJ	D) 189 kJ	
1 1	¹ Suggested grades: A	· 15 - 20 R· 12-	14 C· 9 – 11	D: 6 - 8 F: 0 - 5	
	1 1 1 Suggested grades: A: 15 - 20, B: 12- 14, C: 9 - 11, D: 6 - 8, F: 0 - 5				

Questions 11-14

The frictionless piston shown in its initial position provides a pressure of 600 kPa in the cylinder. Energy is added until the temperature reaches 250°C.

- 11. The initial quality is nearest:
 - A) 39.8%
- B) 34.4%
- C) 30.1%
- D) 22.2%
- 12. The quality when the piston just hits the stops is nearest:
 - A) 64.0%
- B) 59.9%
- C) 51.5%
- D) 45.2%
- 13. The final pressure is nearest:
 - A) 920 kPa B) 980 kPa C) 1020 kPa D) 1220 kPa

- 14. The work done by the vapor on the piston is nearest:
 - A) 65 J
- B) 55 J
- C) 45 J
- D) 35 J
- 15. Energy is added to 5 kg of air with a paddle wheel until $\Delta T = 100$ °C. Find the magnitude of the paddle wheel work if the rigid container is insulated.
 - A) 424 kJ
- B) 392 kJ
- C) 358 kJ
- D) 306 kJ

Piston

Vapor

400 mm

60 mm

120 mm

Water

- 16. Helium is contained in a 2-m³ rigid volume at 50°C and 200 kPa. Calculate the heat transfer needed to increase the pressure to 400 kPa.
 - A) 1390 kJ
- B) 1230 kJ
- C) 1100 kJ
- D) 978 kJ
- 17. Air is compressed using an adiabatic quasi-equilibrium process from 100 kPa and 20°C to 800 kPa. The temperature T_2 is nearest:
 - A) 260°C
- B) 280°C
- C) 300°C
- D) 320°C
- 18. The initial temperature and pressure of 8000 cm³ of air are 300°C and 800 kPa, respectively. The necessary heat transfer, if the volume does not change and the final pressure is 200 kPa, is nearest:
 - A) -12 kJ
- B) -22 kJ C) -32 kJ
- D) -42 kJ
- 19. Heat is added to an initial 0.15-m³ volume of steam with a quality of 0.5. Estimate the final temperature if 800 kJ of heat is added while the pressure remains constant at 400 kPa.
 - A) 180°C
- B) 220°C
- C) 260°C
- D) 300°C
- 20. Nitrogen at 100°C and 600 kPa expands in such a way that it can be approximated by a polytropic process with n = 1.2. The work if the final pressure is 100 kPa is nearest:
 - A) 128 kJ/kg
- B) 143 kJ/kg
- C) 171 kJ/kg
- D) 194 kJ/kg

$$\rho = \frac{m}{V} \qquad v = \frac{V}{m}$$

$$v = \frac{V}{m}$$

$$F = ma$$

$$P = \frac{F_n}{A}$$

 $P_{\rm absolute} = P_{\rm gage} + P_{\rm atmospheric}$

$$x = \frac{m_g}{m}$$

$$v = v_f + x(v_g - v_f)$$
 $Pv = RT$

$$Pv = RT$$

$$h = u + Pv$$

$$u_2 - u_1 = C_v(T_2 - T_1)$$

$$u_2 - u_1 = C_v(T_2 - T_1)$$
 $h_2 - h_1 = C_v(T_2 - T_1)$

$$C_v = C_v + R$$

$$k = \frac{C_p}{C_n}$$

$$Z = \frac{Pv}{RT}$$

$$W_{1-2} = \frac{1}{2}K(x_2^2 - x_1^2)$$

$$\dot{W} = \omega T$$

$$\dot{W} = Vi = \frac{V^2}{R}$$

$$q - w = \Delta u$$

$$q - w = \Delta u$$
 $Q = m(h_2 - h_1)$ if $P = \text{const}$

$$Q = W = mRT \ln \frac{V_2}{V_1}$$

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k}$$

$$w = \frac{P_2 v_2 - P_1 v_1}{1 - n}$$
 for a polytropic process