https://selldocx.com/products/test-bank-vanders-human-physiology-14e-dr

Chapter 01 - Homeostasis: A Framework for Human Physiology

Chapter 01 Homeostasis: A Framework for Human Physiology

Multiple Choice Questions

- 1. Which of these is NOT one of the four general categories of cells that make up the human body?
- A. epithelial cells
- **B.** collagen cells
- C. connective tissue cell
- D. neuron
- E. muscle cell

Bloom's: Level: 1. Remember

HAPS Objective: A06.01 Describe, in order from simplest to most complex, the major levels of organization in the human organism.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

- 2. Physiology is the study of
- A. How two organisms interact
- **B.** How organisms function
- C. The spread of diseases
- D. The structure of the body

Bloom's: Level: 1. Remember

HAPS Objective: A05.01 Define the terms anatomy and physiology.

HAPS Topic: Module B01 Definition.

Learning Outcome: 01.01

Section: 01.01

Topic: Scope of anatomy and physiology

- 3. The study of disease states in the body is called
- A. Pathophysiology
- B. Anatomy
- C. Homeostasis
- D. Biology
- E. Histology

Bloom's: Level: 1. Remember

HAPS Objective: A05.01 Define the terms anatomy and physiology.

HAPS Topic: Module B01 Definition.

Learning Outcome: 01.01

Section: 01.01

Topic: Scope of anatomy and physiology

- 4. Which is NOT a connective tissue cell?
- A. bone cells
- **B.** skeletal muscle cells
- C. blood cells
- D. fat cells
- E. cartilage cells

Bloom's: Level: 1. Remember

HAPS Objective: A06.02 Give an example of each level of organization.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

- 5. What is the principal function performed by epithelial cells?
- A. fat storage
- B. anchoring body structures
- C. forming boundaries between body compartments
- D. generating movement
- E. transmitting electrical signals

Bloom's: Level: 1. Remember

HAPS Objective: A06.02 Give an example of each level of organization.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

- 6. The cell type that is specialized to communicate with other cells and control their activities is
- A. Epithelial cells
- B. Muscle cells
- C. Connective tissue cells
- **D.** Nerve cells

Bloom's: Level: 1. Remember

HAPS Objective: A06.02 Give an example of each level of organization.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

- 7. What is the term for the developmental process that leads to specialized cell types?
- A. genomics
- **B.** differentiation
- C. homeostasis
- D. positive feedback
- E. acclimatization

Bloom's: Level: 1. Remember

HAPS Objective: A06.01 Describe, in order from simplest to most complex, the major levels of organization in the human organism.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

- 8. Which best describes the extracellular matrix?
- A. It is found just inside the cell membrane in all tissues, it sends branching collagen fibers between cells to connect them, and it transmits chemical information from the interior of one cell to the interior of adjacent cells.
- B. It is a tissue having more than the four general cell types, it transports proteins and polysaccharides between body compartments, and it is the route by which chemical signals like hormones reach all parts of the body.
- C. It covers the body's surface, it contains connective and muscle tissue, and it helps generate movement.
- **<u>D.</u>** It surrounds cells; it contains proteins, polysaccharides, and minerals; it provides a scaffold for cell attachment; and it transmits chemical messengers to cells.

HAPS Objective: A06.02 Give an example of each level of organization.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

- 9. If a person begins to sweat upon entering a hot room but continued sweating is able to keep the body temperature constant, which of these best describes her condition?
- A. She is in an equilibrium state.
- B. She is not using energy to maintain a constant temperature.
- **C.** She is in a steady state
- D. She is using a positive feedback mechanism.

Bloom's: Level: 2. Understand

HAPS Objective: B01.01 Define homeostasis.

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.05

Section: 01.05

- 10. Which concept is the defining feature of the discipline of physiology?
- A. descent with modification
- **B.** homeostasis
- C. evolution
- D. dimorphism
- E. differentiation

HAPS Objective: B01.01 Define homeostasis. HAPS Topic: Module B01 Definition.

Learning Outcome: 01.04

Section: 01.04

Topic: Definition of homeostasis

- 11. Describing a physiological variable as "homeostatic" means that it
- A. has varied from the normal value, and will remain constant at the new value.
- B. never varies from an exact set point value.
- C. is in an equilibrium state that requires no energy input to stay at the normal value.
- **<u>D.</u>** is in a state of dynamic constancy that is regulated to remain near a stable set point value.
- E. has no normal range, but will just change to match the outside environmental conditions.

Bloom's: Level: 2. Understand

HAPS Objective: B01.01 Define homeostasis.

HAPS Topic: Module B01 Definition.

Learning Outcome: 01.04

Section: 01.04

Topic: Definition of homeostasis

- 12. Which of the following situations best represents a homeostatic mechanism?
- A. A person who becomes very nervous begins to sweat profusely.
- B. After going outside on a hot day, the core body temperature increases.
- C. Increasing the size of fast-food restaurant portions causes body weight to increase.
- **D.** After eating a large batch of salty popcorn, levels of salt in the urine increase.
- E. As age increases, the amount of calcium in bones tends to decrease.

Bloom's: Level: 2. Understand

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.05

Section: 01.05

- 13. What term is used to describe the steady-state value for any variable that the body attempts to maintain?
- A. Set point
- B. Equilibrium potential
- C. Error signal
- D. Reflex arc
- E. Median value

Bloom's: Level: 1. Remember

HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each.

HAPS Topic: Module B02 General types of homeostatic mechanisms.

Learning Outcome: 01.05

Section: 01.05

Topic: Examples of homeostatic mechanisms

- 14. Which of components of a general reflex arc are listed in the order information typically flows through them following a stimulus?
- A. effector, afferent pathway, integrating center, efferent pathway, receptor
- B. effector, efferent pathway, integrating center, afferent pathway, receptor
- C. integrating center, receptor, afferent pathway, efferent pathway, effector
- D. receptor, efferent pathway, integrating center, afferent pathway, effector
- **E.** receptor, afferent pathway, integrating center, efferent pathway, effector

Bloom's: Level: 1. Remember

HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each.

HAPS Topic: Module B02 General types of homeostatic mechanisms.

Learning Outcome: 01.06

Section: 01.06

- 15. Feedforward regulatory processes
- **<u>A.</u>** work in anticipation of changes in regulated variables.
- B. are identical to positive feedback processes
- C. lead to instability of the regulated variable
- D. maximize fluctuations in the regulated variable
- E. tend to force physiological variables away from their set point.

Bloom's: Level: 1. Remember

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B02 General types of homeostatic mechanisms.

Learning Outcome: 01.05

Section: 01.05

Topic: Examples of homeostatic mechanisms

- 16. Which situation describes a feedforward mechanism?
- A. Blood glucose returns toward normal an hour after a meal.
- **B.** The smell of rotten food on a plate triggers the vomit reflex.
- C. A drop in core body temperature triggers shivering.
- D. An increase in core body temperature stimulates sweating.
- E. Food in the stomach triggers the production of stomach acid.

Bloom's: Level: 2. Understand

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.05

Section: 01.05

Topic: Examples of homeostatic mechanisms

- 17. What is the general purpose of positive feedback mechanisms?
- A. to maintain a constant internal environment
- B. to anticipate changes in the environment
- C. to return a variable toward the set point
- **D.** to bring about a rapid change in the body
- E. to detect changes in the external environment

Bloom's: Level: 2. Understand

HAPS Objective: B02.02 Compare and contrast positive and negative feedback in terms of the relationship between stimulus and response.

HAPS Topic: Module B02 General types of homeostatic mechanisms.

Learning Outcome: 01.05

Section: 01.05

- 18. Shivering in response to a cold draft is an example of
- A. A homeostatic mechanism
- B. Negative feedback
- C. A physiological reflex
- D. Thermoregulation
- **E.** All of the choices are correct

Bloom's: Level: 2. Understand

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.05

Section: 01.05

Topic: Examples of homeostatic mechanisms

- 19. If the amount of sodium in the blood decreases, what would a negative feedback control mechanism be expected to do?
- A. Decrease the amount of sodium in the blood.
- **B.** Increase the amount of sodium in the blood.
- C. Leave the amount of sodium unchanged.
- D. Change the set point for sodium.
- E. Inhibit the ingestion of more sodium.

Bloom's: Level: 2. Understand

HAPS Objective: B02.02 Compare and contrast positive and negative feedback in terms of the relationship between stimulus and response.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.05

Section: 01.05

Topic: Examples of homeostatic mechanisms

- 20. What is the best description of the efferent pathway of a reflex arc?
- A. signals from the integrating center to receptors
- B. the route by which receptors send signals to effectors
- C. signaling pathway for receptors to influence the integrating center
- D. the route by which effector organs send signals to receptors
- E. the route by which signals from an integrating center reach effector organs

Bloom's: Level: 1. Remember

HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.06

Section: 01.06

- 21. Which one of the following is the correct sequence for a regulatory reflex arc?
- A. Stimulus, effector, efferent pathway, integrating center, afferent pathway, receptor
- B. Stimulus, receptor, efferent pathway, integrating center, afferent pathway, effector
- C. Stimulus, receptor, afferent pathway, integrating center, efferent pathway, effector
- D. Stimulus, effector, afferent pathway, integrating center, efferent pathway, receptor
- E. Effector, efferent pathway, integrating center, afferent pathway, receptor, stimulus

Bloom's: Level: 1. Remember

HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each.

HAPS Topic: Module B02 General types of homeostatic mechanisms.

Learning Outcome: 01.06

Section: 01.06

Topic: Examples of homeostatic mechanisms

- 22. Identify the effectors in this homeostatic reflex: Eating a salt-rich meal increases blood volume and pressure, stretching blood vessel walls. Nerve signals sent to the brainstem stimulate changes in hormonal and neural signaling. The heart rate is slowed, blood vessel walls are relaxed, and the kidneys increase urinary salt. The blood pressure returns toward normal.
- A. brainstem and blood vessels
- B. blood vessels, hormones, and nerves
- C. heart, kidneys, and blood vessels
- D. brainstem, blood vessels, and kidneys
- E. hormones and nerves

Bloom's: Level: 2. Understand

HAPS Objective: B02.01 List the components of a feedback loop and explain the function of each.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.06

Section: 01.06

- 23. The hormone insulin enhances the transport of glucose into body cells. Its secretion is controlled by a negative feedback system between the concentration of glucose in the blood and the cells that secrete insulin. Which of the following statements is most likely to be correct?
- A. A decrease in blood glucose concentration will stimulate insulin secretion, which will in turn lower the blood glucose concentration still further
- **B.** An increase in blood glucose concentration will stimulate insulin secretion, which will in turn lower the blood glucose concentration
- C. A decrease in blood glucose concentration will stimulate insulin secretion, which will in turn increase the blood glucose concentration
- D. An increase in blood glucose concentration will stimulate insulin secretion, which will in turn increase the blood glucose concentration still further

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.05

Section: 01.05

Topic: Examples of homeostatic mechanisms

- 24. How are endocrine glands and hormones involved in homeostatic reflexes?
- A. Endocrine glands can be receptors, and hormones can be effectors.
- **B.** Endocrine glands can be integrators and hormones can be efferent pathways.
- C. Endocrine glands can be efferent pathways and hormones can be effectors.
- D. Endocrine glands are not part of reflex mechanisms, but hormones can be afferent or efferent pathways.
- E. They are not involved; reflexes only involve actions of the nervous system.

Bloom's: Level: 2. Understand

HAPS Objective: B03.02 Provide an example of a negative feedback loop that utilizes the endocrine system to relay information. Describe the specific cells or molecules (production cells, hormones, target cells) included in the feedback loop.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.06 Learning Outcome: 01.07

Section: 01.06 Section: 01.07

25. What is a hormone?

- A. a chemical released from a nerve cell that affects nearby cells across a synapse
- B. a chemical released from an endocrine gland that affects target cells without entering the bloodstream
- C. a chemical found in the blood that catalyzes the destruction of ingested toxins and foreign substances
- D. a chemical excreted from sweat gland that signals other individuals about the physiological status of the body
- $\underline{\mathbf{E}}_{\bullet}$ a chemical regulator secreted from an endocrine gland that travels through the bloodstream to affect target cells

Bloom's: Level: 1. Remember

HAPS Objective: J01.02 Define the terms hormone, endocrine gland, endocrine tissue (organ), and target cell.

HAPS Topic: Module J01 General functions of the endocrine system.

Learning Outcome: 01.07

Section: 01.07

Topic: Examples of homeostatic mechanisms

- 26. Some neurons in the vagus nerve have synaptic connections to sinoatrial (pacemaker) cells in the heart. These neurons secrete acetylcholine, which ultimately results in a decreased heart rate. This is an example of
- A. endocrine control
- B. exocrine control
- C. hormonal control
- **D.** neural control
- E. paracrine control

Bloom's: Level: 2. Understand

HAPS Objective: B03.01 Provide an example of a negative feedback loop that utilizes the nervous system to relay information. Describe the specific organs, structures, cells or molecules (receptors, neurons, CNS structures, effectors, neurotransmitters) included in the feedback loop.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.07

Section: 01.07

- 27. Heart rate is increased by the release of epinephrine by the adrenal medulla into the bloodstream. This is an example of
- A. endocrine control
- B. exocrine control
- C. paracrine control
- D. direct neural control
- E. positive feedback

HAPS Objective: B03.02 Provide an example of a negative feedback loop that utilizes the endocrine system to relay information. Describe

the specific cells or molecules (production cells, hormones, target cells) included in the feedback loop.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.07

Section: 01.07

Topic: Examples of homeostatic mechanisms

- 28. How is autocrine regulation best described?
- A. Chemical regulators are released directly into blood vessels.
- B. Chemical regulators released by cells affect the functional status of different kinds of cells in the vicinity of the secretory cell.
- C. Chemical regulators affect the same cells that produce them.
- D. Chemical regulators reach their site of action through a duct.
- E. Chemical regulators are continuously released in constant amounts by the cell.

Bloom's: Level: 1. Remember

HAPS Objective: J06.01 Define the terms paracrine and autocrine.

HAPS Topic: Module J06 Local hormones (paracrines and autocrines) and growth factors.

Learning Outcome: 01.07

Section: 01.07

- 29. The tall slender body shape that helps to dissipate heat in people native to equatorial regions is an example of
- A. an adaptation.
- B. acclimatization.
- C. set point resetting.
- D. homeostasis.
- E. phase shift.

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.08

Section: 01.08

Topic: Human origins and adaptations

- 30. After spending several days at a high altitude, where oxygen pressure is low, a person will begin to produce more red blood cells, which enhances the ability of blood to carry oxygen to the tissues. What term best describes this type of response?
- A. developmental acclimatization
- B. positive feedback
- C. physiological acclimatization
- D. feedforward regulation
- E. evolution

Bloom's: Level: 2. Understand

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.08

Section: 01.08

- 31. Circadian rhythms are biological rhythms with what main characteristic?
- A. They are cyclical, like the 28-day female menstrual cycle.
- B. They are cyclical, like the rhythmic beating of the heart.
- C. They are voluntary rhythms, like the time you decide to eat lunch each day.
- D. They cease to occur when a person is in a dark environment.
- **E.** They repeat approximately every 24 hours, like daily spikes in hormone secretion.

Bloom's: Level: 1. Remember

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.08

Section: 01.08

Topic: Types of homeostatic mechanisms

- 32. What is the location of the internal pacemaker that sets biological rhythms?
- A. suprachiasmatic nucleus of the brain
- B. ventricles of the heart
- C. endocrine gland in the gonads
- D. photoreceptors of the eye
- E. the adrenal glands

Bloom's: Level: 1. Remember

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.08

Section: 01.08

Topic: Types of homeostatic mechanisms

- 33. A protein is found in blood that is produced by the pancreas and acts on receptors of cells in the liver. What type of physiological regulator is it most likely to be?
- A. a hormone
- B. an autocrine signal
- C. a paracrine signal
- D. a neurotransmitter
- E. an enzyme

Bloom's: Level: 1. Remember

HAPS Objective: J01.02 Define the terms hormone, endocrine gland, endocrine tissue (organ), and target cell.

HAPS Topic: Module J01 General functions of the endocrine system.

Learning Outcome: 01.07

Section: 01.07

- 34. Which best describes how the total body balance of any chemical substance is determined?
- A. the rate the body produces the substance
- B. the rate the substance is secreted from the body
- C. the rate the substance is metabolized by the body
- $\underline{\mathbf{D}}$ the difference between the amount of substance lost from the body and the amount gained the body
- E. the amount produced by the body minus the amount metabolized by the body

HAPS Objective: B05.01 Predict factors or situations affecting various organ systems that could disrupt homeostasis.

HAPS Topic: Module B05 Predictions related to homeostatic imbalance, including disease states and disorders.

Learning Outcome: 01.08

Section: 01.08

Topic: Types of homeostatic mechanisms

- 35. A burn patient ingests 100 grams of protein per day and loses 110 grams of protein per day due to the injury. What is the overall protein state of the patient?
- A. Positive protein balance
- **B.** Negative protein balance
- C. Stable protein balance
- D. A state that can't be determined

Bloom's: Level: 3. Apply

HAPS Objective: B05.01 Predict factors or situations affecting various organ systems that could disrupt homeostasis.

HAPS Topic: Module J09 Predictions related to homeostatic imbalance, including disease states and disorders.

Learning Outcome: 01.08

Section: 01.08

- 36. Eating a bag of salty potato chips without increasing sodium excretion would result in what state?
- **A.** positive sodium balance
- B. negative sodium balance
- C. stable sodium balance
- D. It can't be determined without knowing the size of the sodium pool

HAPS Objective: B05.01 Predict factors or situations affecting various organ systems that could disrupt homeostasis. HAPS Topic: Module J09 Predictions related to homeostatic imbalance, including disease states and disorders.

Learning Outcome: 01.08

Section: 01.08

Topic: Types of homeostatic mechanisms

True / False Questions

37. Differentiation is necessary before a cell can exchange material with its environment. **FALSE**

Bloom's: Level: 2. Understand

HAPS Objective: A06.01 Describe, in order from simplest to most complex, the major levels of organization in the human organism.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

38. The number of distinct cell types in the human body is about twenty.

FALSE

Bloom's: Level: 1. Remember

HAPS Objective: A06.01 Describe, in order from simplest to most complex, the major levels of organization in the human organism.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

39. One function of epithelial cells is to form selective barriers regulating exchange of materials across them.

TRUE

Bloom's: Level: 1. Remember

HAPS Objective: A06.02 Give an example of each level of organization.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

40. Organs are generally composed of only one kind of tissue.

FALSE

Bloom's: Level: 1. Remember

HAPS Objective: A06.01 Describe, in order from simplest to most complex, the major levels of organization in the human organism.

HAPS Topic: Module A06 Levels of organization.

Learning Outcome: 01.02

Section: 01.02

Topic: Levels of organization

41. The respiratory system is primarily responsible for transporting blood to the body's tissues.

FALSE

Bloom's: Level: 1. Remember

HAPS Objective: A07.02 Describe the major functions of each organ system.

HAPS Topic: Module A07 Survey of body systems.

Learning Outcome: 01.02

Section: 01.02

Topic: Survey of body systems

42. Homeostasis refers to the relative constancy of the external environment.

FALSE

Bloom's: Level: 1. Remember

HAPS Objective: B01.01 Define homeostasis.

HAPS Topic: Module B01 Definition.

Learning Outcome: 01.04

Section: 01.04

Topic: Definition of homeostasis

43. The composition of the fluid bathing the cells of the body is the same as that within the cells.

FALSE

Bloom's: Level: 2. Understand

HAPS Objective: Q03.02 Compare and contrast the relative concentrations of major electrolytes in intracellular and extracellular fluids.

HAPS Topic: Module Q03 Chemical composition of the major compartment fluids.

Learning Outcome: 01.03

Section: 01.03

Topic: Survey of body systems

44. The extracellular fluid compartment includes the interstitial fluid and blood plasma. **TRUE**

Bloom's: Level: 1. Remember

HAPS Objective: Q02.01 Describe the fluid compartments (including the subdivisions of the extracellular fluid) and state the relative

volumes of each.

HAPS Topic: Module Q02 Description of the major fluid compartments.

Learning Outcome: 01.03

Section: 01.03

Topic: Survey of body systems

45. Homeostatic control systems and acclimatization are examples of biological adaptations. **TRUE**

Bloom's: Level: 2. Understand

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.08

Section: 01.08

Topic: Examples of homeostatic mechanisms

46. A person who is acclimated to a hot environment will begin to react physiologically to a decreased environmental temperature faster than a person who is not.

<u>FALSE</u>

Bloom's: Level: 2. Understand

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.08

Section: 01.08

47. When loss of a substance from the body exceeds gain, the body is said to be in positive balance for that substance.

FALSE

Bloom's: Level: 1. Remember

HAPS Objective: B05.01 Predict factors or situations affecting various organ systems that could disrupt homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.08

Section: 01.08

Topic: Examples of homeostatic mechanisms

Fill in the Blank Questions

48	_ is the general term for a chemical released by axon terminals into a
synaptic cleft.	

Neurotransmitter

Bloom's: Level: 1. Remember

HAPS Objective: A07.02 Describe the major functions of each organ system.

HAPS Topic: Module A07 Survey of body systems.

Learning Outcome: 01.07

Section: 01.07

Topic: Survey of body systems

49. _____ is the general term for a chemical released by axon terminals into the bloodstream.

Neurohormone

Bloom's: Level: 1. Remember

HAPS Objective: J01.03 Compare and contrast how the nervous and endocrine systems control body function, with emphasis on the mechanisms by which the controlling signals are transferred through the body and the time course of the response(s) and action(s).

HAPS Topic: Module A07 Survey of body systems. Learning Outcome: 01.07

Section: 01.07

Topic: Survey of body systems

:0	manufation describes accordation of callular activity by massacrass from
50.	regulation describes regulation of cellular activity by messengers from
nearby cells.	
<u>Paracrine</u>	
Bloom's: Level: 1. Re	emember
	6.01 Define the terms paracrine and autocrine.
IAPS Topic: Module earning Outcome: ()	g J06 Local hormones (paracrines and autocrines) and growth factors.
ection: 01.07	4.07
opic: Examples of h	omeostatic mechanisms
51.	is town describing regulation of callular activity by chemical mediators
	is term describing regulation of cellular activity by chemical mediators
produced by the	hat same cell.
Autocrine	

Bloom's: Level: 1. Remember

HAPS Objective: J06.01 Define the terms paracrine and autocrine.

HAPS Topic: Module J06 Local hormones (paracrines and autocrines) and growth factors.

Learning Outcome: 01.07

Section: 01.07

Topic: Examples of homeostatic mechanisms

Multiple Choice Questions

- 52. An experimental subject is isolated in an underground room with no windows, no clocks, and no contact with the outside world. Researchers monitoring his behavior observe that he eats breakfast a little bit later each day. What term best describes the subject's biological activity?
- A. circadian rhythm
- **B.** free-running rhythm

C. jet lag

D. phase shift

E. entrainment

Bloom's: Level: 1. Remember

HAPS Objective: B04.01 Provide specific examples to demonstrate how organ systems respond to maintain homeostasis.

HAPS Topic: Module B03 Examples of homeostatic mechanisms.

Learning Outcome: 01.08

Section: 01.08

- 53. Which equation is most accurate?
- A. extracellular fluid volume + interstitial fluid volume = whole body fluid volume
- B. intracellular fluid volume + interstitial fluid volume = extracellular fluid volume
- **C.** extracellular fluid volume interstitial fluid volume = plasma volume
- D. plasma volume + intracellular fluid volume = extracellular fluid volume
- E. total body fluid volume intracellular fluid volume = interstitial fluid volume

Bloom's: Level: 1. Remember

HAPS Objective: Q02.01 Describe the fluid compartments (including the subdivisions of the extracellular fluid) and state the relative

volumes of each.

HAPS Topic: Module Q02 Description of the major fluid compartments.

Learning Outcome: 01.03

Section: 01.03